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Abstract: Paper-based analytical devices (PADs) are highly effective tools due to their low cost,
portability, low reagent accumulation, and ease of use. Molecularly imprinted polymers (MIP) are
also extensively used as biomimetic receptors and specific adsorption materials for capturing target
analytes in various complex matrices due to their excellent recognition ability and structural stability.
The integration of MIP and PADs (MIP-PADs) realizes the rapid, convenient, and low-cost application
of molecular-imprinting analysis technology. This review introduces the characteristics of MIP-PAD
technology and discusses its application in the fields of on-site environmental analysis, food-safety
monitoring, point-of-care detection, biomarker detection, and exposure assessment. The problems
and future development of MIP-PAD technology in practical application are also prospected.

Keywords: paper-based analytical devices; paper-based molecular-imprinting technology;
molecularly imprinted polymer

1. Introduction

Paper-based analytical devices (PADs) are an emerging class of platforms that can
operate without complex instrumentation, making them ideal for rapid analysis and
deployment in areas lacking medical resources. Compared with traditional analytical
techniques, paper-based devices have many advantages, such as low manufacturing cost,
ease of operation, rapid detection, and ease of handling after testing. As a versatile
substrate, paper has a porous structure that enables its surface to be easily modified
and thus acquire a large surface-to-volume ratio. This makes it an excellent support for
incorporating functional nanomaterials and a flexible platform for developing sophisticated
analytical devices. Since 2007 when Whitesides’ group [1] patterned paper to create
millimeter-scale channels, the applications of PADs have been reported in the fields of
point-of-care testing [2,3], environmental monitoring [4–6], food-safety assessment [7–9],
and biomedicine [10–12]. Currently, PADs are in paper chromatography [13,14], as lateral-
flow test paper [15,16], as paper-based microfluidic devices [17,18], and in paper-spray
ionization (PSI) [19,20], among others. However, despite the potential of PADs, their low
accuracy and poor anti-interference ability under complex detection conditions limit their
applications to a certain extent. Variations in the specificity of PADs in complex matrices
such as blood and urine can lead to false-positive or false-negative test results, which
reduce the accuracy and reliability of paper-based tests.

Molecularly imprinted polymers (MIPs) are a class of polymer-based biomimetic
receptors. MIPs first combine template molecules and functional monomers with covalent
or noncovalent bonds through self-assembly. Then they complete the polymerization in
the presence of cross-linking agents and initiators. Finally, the template molecules are
removed, thereby forming specific binding sites or cavities that are complementary in size
and shape to the template molecule [21]. MIP exhibits good stability and resistance to
matrix interference. Since 1931 when MIPs were first reported by Polyakov [22] using a
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silicon substrate, researchers have focused on the application of MIPs based on various
analytical systems and sensors [23–27]. However, most current MIP analysis techniques
require complex equipment and professional operators, which are difficult to operate
during on-site inspections. They cannot be popularized and used in backward areas.

PAD detection systems, regardless of the sensing technology used, are particularly
susceptible to various sources of interference in complex matrices. The addition of MIP
into PADs can effectively reduce the nonspecific response of the detection system. In the
multiple-signal readout mode of PADs, MIP as a biomimetic receptor can selectively bind
to analytes in the sample and trigger changes in optical or electrochemical signals through
recognition, thereby enabling quantitative measurements. In 2013, Yu’s research group [28]
first investigated the potential of MIPs as an identification element in the assay of PADs.
The group demonstrated their ability to enhance analytical performance, such as short
response time, high selectivity and sensitivity, good reproducibility, and ability to perform
high-throughput assays. Therefore, MIPs have received extensive attention as a specific
recognition tool in the assay of PADs [28–34]. Furthermore, MIP-PADs enable the visual
signal readout of results [35,36] without complex and expensive instrumentation. This
review introduces MIP-PAD technology and its application progress in the fields of on-site
environmental analysis, food-safety monitoring, point-of-care detection, biomarker detec-
tion, and exposure assessment. We also discuss the challenges in the practical application
of MIP-PAD technology and development prospects.

2. Paper-Based Molecular-Imprinting Technology

Paper can be used as a substrate to immobilize MIPs. MIPs immobilized on paper
can be used as recognition elements to capture target molecules in complex samples and
design signal-sensing systems for these molecules [37,38], thereby improving the analytical
performance of targets. Meanwhile, PADs are excellent substrates for the synthesis and
modulation of MIP materials, facilitating the development of various flexible application
modes while expanding their applications in portable devices. At present, the methods of
preparing MIP-PADs primarily include in situ polymerization and post-introduction.

2.1. Preparation of MIP-PADs by In Situ Polymerization

In situ polymerization can be used to directly synthesize MIPs on the surface of
microfiber paper (Figure 1). This method involves the premodification of paper, the
formation of template–monomer complexes, and in situ growth of MIPs. To associate paper
with the MIP itself or other useful components during polymerization and application, the
paper is pretreated with a silane coupling agent. The paper surface is rich in -OH groups,
which can be easily modified using silane coupling agents to introduce various functional
groups. Zhang et al. [39] selected Whatman filter paper as the carrier and modified the
double bond with 3-(trimethoxysilyl) propyl methacrylate to promote the good bonding
between the MIP layer and the paper surface.
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Figure 1. Preparation of MIP-PADs by in situ polymerization. Figure 1. Preparation of MIP-PADs by in situ polymerization.

Before MIPs are grown on paper, a template–monomer complex is formed by pre-
assembly between the target molecule and the selected functional monomer. The polymer-
ization reaction on the paper is then initiated in the presence of a cross-linking agent and
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an initiator under specific conditions, such as heat or UV light. Wang et al. [30] synthe-
sized MIPs in microfluidic PADs (µPADs) under UV-light irradiation, enabling the simple,
low-cost, rapid, and high-throughput detection of hazardous substances in real samples.

This method is most extensively used for the integration of MIP and PADs because of
its simple operation and synergy between PADs and MIPs. However, MIP-PAD synthesis
through this method involves immersing the paper in the solution for a long time during
polymerization and elution. It also requires treatment such as shaking and sonication.
These operations may reduce the stiffness and structural stability of the paper. Accordingly,
the stability of MIP-PADs prepared by this method should be addressed in future studies.

2.2. Preparation of MIP-PADs by Post-Introduction Method

The post-introduction method is the direct synthesis of MIPs in a solution phase by
traditional radical polymerization and sol–gel polymerization. Then the obtained MIPs
are introduced onto PADs for subsequent applications (Figure 2). The polymerization-free
strategy proposed by Díaz-Liñán et al. [29] provides a simple and convenient method of
preparing MIP-PADs. This method avoids direct polymerization or elution on the paper
and greatly reduces damage to the paper structure. Huang et al. [36] attach CdTe@SiO2@Si
QDs-MIPs onto a hydrophobic polyvinylidene fluoride membrane by vacuum filtration to
obtain a fluorescent test paper, which can be used to detect catechol in river water samples.
Han et al. [40] synthesized MIPs with arginine as a pseudo-template on the surface of
ZnFe2O4 particles and then added their complexes as a core substrate to the recognition
region of µPADs. By combining molecular-imprinting technology and microfluidic paper
chip, a new type of sensing platform is constructed using a smartphone, which realizes the
portable detection of microcystins.

Biosensors 2022, 12, x FOR PEER REVIEW 3 of 17 
 

Before MIPs are grown on paper, a template–monomer complex is formed by pre-

assembly between the target molecule and the selected functional monomer. The 

polymerization reaction on the paper is then initiated in the presence of a cross-linking 

agent and an initiator under specific conditions, such as heat or UV light. Wang et al. [30] 

synthesized MIPs in microfluidic PADs (μPADs) under UV-light irradiation, enabling the 

simple, low-cost, rapid, and high-throughput detection of hazardous substances in real 

samples. 

This method is most extensively used for the integration of MIP and PADs because 

of its simple operation and synergy between PADs and MIPs. However, MIP-PAD syn-

thesis through this method involves immersing the paper in the solution for a long time 

during polymerization and elution. It also requires treatment such as shaking and soni-

cation. These operations may reduce the stiffness and structural stability of the paper. Ac-

cordingly, the stability of MIP-PADs prepared by this method should be addressed in 

future studies. 

2.2. Preparation of MIP-PADs by Post-Introduction Method 

The post-introduction method is the direct synthesis of MIPs in a solution phase by 

traditional radical polymerization and sol–gel polymerization. Then the obtained MIPs 

are introduced onto PADs for subsequent applications (Figure 2). The polymerization-free 

strategy proposed by Díaz-Liñán et al. [29] provides a simple and convenient method of 

preparing MIP-PADs. This method avoids direct polymerization or elution on the paper 

and greatly reduces damage to the paper structure. Huang et al. [36] attach CdTe@SiO2@Si 

QDs-MIPs onto a hydrophobic polyvinylidene fluoride membrane by vacuum filtration 

to obtain a fluorescent test paper, which can be used to detect catechol in river water sam-

ples. Han et al. [40] synthesized MIPs with arginine as a pseudo-template on the surface 

of ZnFe2O4 particles and then added their complexes as a core substrate to the recognition 

region of μPADs. By combining molecular-imprinting technology and microfluidic paper 

chip, a new type of sensing platform is constructed using a smartphone, which realizes 

the portable detection of microcystins. 

 

Figure 2. Preparation of MIP-PADs by the post-introduction method. 

3. Paper-Based Molecular-Imprinting Technology 

Devices based on paper-based molecular-imprinting technology are attracting con-

siderable attention due to their rapid detection, low cost, and ease of operation. They en-

able rapid testing in a range of fields, such as on-site environmental analysis, food-safety 

monitoring, point-of-care detection, biomarker detection, and exposure assessment. 

3.1. On-Site Environmental Analysis 

Toxic and harmful pollutants in the environment are increasing, thereby inflicting 

certain harm to the survival of humans and animals. Thus, the demand for environmental-

pollutant detection is increasing daily. However, for samples such as organic contami-

nants and pesticides in water and soil, the process of collection and transport back to the 

laboratory can cause fluctuations in the sample environment. Testing also remains largely 

Figure 2. Preparation of MIP-PADs by the post-introduction method.

3. Paper-Based Molecular-Imprinting Technology

Devices based on paper-based molecular-imprinting technology are attracting con-
siderable attention due to their rapid detection, low cost, and ease of operation. They
enable rapid testing in a range of fields, such as on-site environmental analysis, food-safety
monitoring, point-of-care detection, biomarker detection, and exposure assessment.

3.1. On-Site Environmental Analysis

Toxic and harmful pollutants in the environment are increasing, thereby inflicting
certain harm to the survival of humans and animals. Thus, the demand for environmental-
pollutant detection is increasing daily. However, for samples such as organic contaminants
and pesticides in water and soil, the process of collection and transport back to the labora-
tory can cause fluctuations in the sample environment. Testing also remains largely limited
to complex, centralized laboratories. Indeed, processing such samples is time-consuming
and requires a large number of staff with technical expertise. Therefore, researchers are
striving to explore and develop paper-based molecular imprinting techniques that are
inexpensive and can detect environmental pollutants in real-time on-site.

As important industrial raw materials, nitrophenols (NPs), are extensively used in var-
ious fields. Owing to the difficulties in NP degradability, they cause serious pollution to the
environment and are classified as toxic pollutants and hazardous wastes in many countries.
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NPs have three isomers, namely 2-, 3-, and 4-NP. The 4-NP is much more toxic than the
other two. Moreover, 2-NP and 4-NP are hydrolyzates of pesticides and are widely present
in wastewater and food. They adversely affect the metabolism of an organism, although
they are usually present in the environment as mixtures. Therefore, the identification of
these three NP isomers in a simple and sensitive method is crucial to protecting the environ-
ment and human health. Zhu et al. [41] introduced a novel fluorescent sensor array µPAD
for multi-analyte discrimination based on molecular-imprinting technology (Figure 3).
Precise discrimination of the three NPs is achieved through MIP/carbon quantum dots
(QDs)/paper sensor arrays. Furthermore, the discriminative ability of the platform is
evaluated in a mixture of NP isomers, validating the utility of the device through the
identification of dead-zone samples and achieving 100% accuracy. Qi et al. [42] proposed
a molecular imprinting technique based on a spinning paper-based microfluidic chip to
detect phenolic pollutants, as well as to perform the qualitative and quantitative analyses
of 4-NP and 2,4,6-trinitrophenol. Under optimal conditions, the proposed sensor exhibits
high sensitivity and selectivity. The limits of detection (LODs) are 0.097 and 0.071 mg/L
respectively, enabling the rapid testing of environmental and biological samples.
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Pentachlorophenol is an organic pollutant that enters the environment as a by-product
of industrial processes, causing great environmental problems. Methods such as thin-layer
chromatography [43] and gas chromatography–mass spectrometry (MS) [44] have been
reported for pentachlorophenol determination. However, despite their good sensitivity and
specificity, these methods are costly and time-consuming. Sun et al. [45] established an MIP
sensor on a screen-printed paper electrode. The paper-based photoelectrochemical sensor
has the characteristics of low cost, short absorption time, high precision, good stability, and
reproducibility. It can be used to detect pentachlorophenol in real samples. Furthermore,
Nie et al. [46] detected p-nitroaniline by using fluorescent molecularly imprinted paper
strips based on nitrogen-rich QDs with an LOD of 1.65 nM, providing a simple, fast, and
reliable assay for p-nitroaniline detection. Chi et al. [47] detected perfluorooctanesulfonic
acid by using molecularly imprinted polyaniline on paper substrates with an LOD of
1.02 ng/L. The low cost, excellent sensitivity, and selectivity of this device indicate its
potential for the large-scale monitoring of wastewater.

Neonicotinoids are the most extensively used insecticides in the world, causing paral-
ysis and death of pest organisms. Thus, the real-time monitoring of neonicotinoid pesticide
residues is highly significant to food security and the sustainable development of the
ecological environment. In recent years, various analytical methods such as capillary
electrophoresis, high-performance liquid chromatography, enzyme-linked immunosor-
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bent assay, and electrochemical methods [48–50] have been used to detect neonicotinoid
compounds. Although these methods can achieve high-sensitivity detection, their high
cost, time-consuming nature, and complex sample preparation hinder their widespread
application. Therefore, a simple, rapid, and inexpensive analytical technique to identify
neonicotinoid compounds on-site needs to be developed. Zhao et al. [51] developed a
paper-based surface-enhanced Raman scattering sensing platform based on a mixture
of 3D silver dendrites and molecularly imprinted for the quantitative determination of
neonicotinoids. The device exhibits ultra-high specificity and sensitivity for imidacloprid
detection with an LOD as low as 0.02811 ng/mL.

In addition to testing for neonicotinoids, researchers have also tested other pesti-
cide residues. Liu et al. [52] used a sensitive chemiluminescence detection method for
the first time to detect dichlorvos on a paper device of MIPs. The paper-based chip has
specificity and selectivity for dichlorvos detection in samples with an LOD of 0.8 ng/mL.
Wang et al. [53] developed a simple paper-based molecularly imprinted photoelectrochem-
ical sensor for S-fenvalerate detection with an LOD of 3.5 × 10−9 mol/L. Wang et al. [54]
successfully developed a novel MIP-grafted paper-based multi-disk micro-disk plate and
performed the high-throughput chemiluminescence detection of 2,4-dichlorophenoxyacetic
acid. Vodova et al. [55] combined UV-induced fluorescence spectroscopy and MIP–PADs to
detect selected commercial pesticides (ZATO 50 WG, TITUS WG 25) from pesticide-sprayed
apples and tomatoes for the first time. These new MIP paper devices are particularly
suitable for the field testing of pesticide residues such as pesticides in remote areas.

3.2. Food-Safety Monitoring

Food safety is closely related to human life and health and is drawing the attention of
all countries in the world. In the food industry, the quality control of food products is very
important before the product reaches the market, that is, from the production stage to the
packaging stage. Food contaminated with viruses, bacteria, parasites, heavy-metal ions,
pesticides, and other adulterated chemicals can exert serious human health and economic
impacts. However, in the field of food safety, the matrix is complex, the content of heavy
metals and the amounts of additives added are small, and the detection method needs
to have good selectivity, low LOD, high sensitivity, and easy operation. These are the
advantages of paper-based molecular-imprinting technology.

Maize is one of the most important crops worldwide due to its economic importance,
nutritional value, and adaptability to different climates and regions. However, among
cereals, corn is the food most susceptible to mold infection and has a relatively high content
of fumonisin B1 (FB1). FB1 is a polyketide comprising 28 homologous compounds and is
primarily produced by Fusarium spp. FB1 severely damages agriculture, food, and health
due to its widespread presence and toxicity. The most commonly used detection methods
for FB1 are chromatography-based methods and immunoassays, gas chromatography, and
liquid chromatography coupled with MS [56–58]. However, these techniques require com-
plex procedures, high solvent consumption, and expensive instrumentation. Accordingly,
Ramalho et al. [59] proposed a new method of MIP combined with PSI-MS to improve
the sensitivity of FB1 analysis in maize samples (Figure 4). The precision and accuracy of
all analyses are below 5.5%. Finally, the MIP-PSI-MS method is used to quantify the FB1
content in commercial maize samples.
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Additives are often added to food to improve its, color, aroma, and taste, as well
as to meet the needs of antiseptic, fresh-keeping, and processing technology. However,
excessive use may exert negative health effects, including the creation of gastric tumor
precursors and DNA damage. It is commonly known that 17β-estradiol (17β-E2) is used
to reduce production costs and increase profitability in the meat and dairy industries.
However, the long-term exposure of 17β-E2 to the human body through the food chain
can cause accumulation effects, as well as some endocrine and reproductive effects. With
the improvement in people’s requirements for food safety, the residue of 17β-E2 is attract-
ing increased research attention. The detection methods of 17β-E2 include instrumental
analysis [60], among others. However, instrumental-analysis methods require expensive
equipment and preliminary procedures for sample purification and are unsuitable for the
rapid and real-time detection of 17β-E2. Xiao et al. [61] established a 17β-E2 detection
method based on MIP-grafted paper. Their method has the advantages of simple and
rapid operation, high sensitivity, and good selectivity and can be widely used to screen
positive samples. Fan et al. [62] developed a three-dimensional graphite paper-imprinted
electrochemical sensor for the selective recognition and sensitive detection of tert-butyl
hydroquinone (antioxidant) with an LOD of 1.2 × 10−8 mol/L. The template molecule can
be recognized from its analogs with high sensitivity. Chi et al. [63] prepared a nanoparticle
for 3-chloropropane-1,2-diol (3-MCPD) detection by electrodepositing or electropolymeriz-
ing Prussian blue, platinum nanoparticles, and MIPs on the surface of electrochemically
modified graphite paper. The sensor is also capable of detecting 3-MCPD in vegetable oil
samples with simple, economical, rapid, and highly selective operation. Da Silva et al. [64]
developed a sensitive electrochemical sensor based on molecularly imprinted polypyrrole
film electropolymerized on graphite paper electrode (PE). The sensor exhibited high stabil-
ity and good reproducibility and was successfully applied for the determination of LAC in
whole and LAC-free milk samples.

Heavy-metal ion pollution has become an important global problem over the years
due to its high risk to human health and the environment. Mercury is a highly toxic and
harmful heavy-metal pollutant that threats the human body, such as movement disorders
and coronary heart disease. Meanwhile, copper is an essential trace element for organisms
and is closely related to human health. However, when the copper content in the body is
too high, it imposes a burden on the liver and other organs, leading to metabolic disorders,
liver cirrhosis, and other diseases. The quantitative analysis of copper and mercury ions in
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food monitoring is attracting considerable attention. Among them, the emerging paper-
based microfluidic technology has unique advantages in the detection of heavy-metal ions.
Qi et al. [65] developed a three-dimensional origami ion-imprinted µPAD for the multiplex
detection of Cu2+ and Hg2+ by combining microfluidics and ion-imprinting technology.
The LODs are 0.035 µg/L (Cu2+) and 0.056 µg/L (Hg2+) respectively. Wang et al. [66]
proposed an ion-imprinted polymer-grafted paper-based fluorescent sensor based on QDs
for Cu2+ detection.

3.3. Point-Of-Care Detection

Point-of-care testing refers to the rapid detection and analysis technology carried out
at the bedside of patients. It is extensively used in hospitals in developed countries abroad.
As a type of detection technology with great potential, it saves many sample-preprocessing
steps, as well as numerous cumbersome processes, such as the detection, data processing,
and transmission of large-scale instruments and equipment. The rational use of medical
resources can directly and quickly obtain reliable results, ensure that medical staff in the
emergency ward can obtain accurate test results of critically ill patients the first time, attain
more rescue time, and be able to track the test results promptly. Point-of-care testing plays
an important role in healthcare and can be applied to large populations, including rural
areas with limited medical facilities. The introduction of paper-based devices and molecular
imprinting technology into point-of-care testing has further expanded its application.
Kumar et al. [67] reviewed the latest progress in the application of nanomaterial-modified
conductive paper in point-of-care diagnosis.

Glycoproteins play crucial roles in various biological events, such as growth control,
cell division, signal transduction, and cell migration. The occurrence of diseases is closely
related to glycoprotein levels. Therefore, various glycoproteins have been identified as
biomarkers in point-of-care testing. Since the COVID-19 pandemic caused by the severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in 2019 brought dramatic changes
to the world, many researchers have explored the detection of SARS-CoV-2 spike glycopro-
tein methods. Ratautaite et al. [68] described the application of a polypyrrole-based sensor
for the determination of SARS-CoV-2-S spike glycoprotein. Given the presence of high
levels of interfering substances and low glycoprotein concentrations in complex biological
samples, the identification and detection of glycoproteins require high selectivity and
excellent sensitivity. Sun et al. [69] proposed a strategy combining MIPs and hybridization
chain reaction onto a microfluidic-paper-based assay device for the ultrasensitive detection
of the target glycoprotein ovalbumin (OVA). The method can be used to detect OVA within
a wide linear range from 1 pg/mL to 1000 ng/mL with a relatively low LOD of 0.87 pg/mL,
indicating its potential applications in point-of-care and other related fields.

Point-of-care testing can be used for drug determination and is becoming increas-
ingly important in laboratories to obtain information on drug-therapy suitability, drug
interactions, and adverse effects. Some commercially available immunoassays have been
used in clinical studies for drug determination, such as enzyme-linked immunosorbent
assay (ELISA) [70], enzyme multiplex immunoassay [71], and fluorescence polarization
immunoassay [72]. Although these assays are specific, they have the disadvantages of
cross-reactivity with endogenous compounds, requiring specific skill and equipment,
short shelf life and single-use corresponding kits, excessive washing steps, and high cost.
Therefore, sensitive, selective, rapid, low-cost, and efficient methods of detecting drugs in
body fluids for point-of-care detection are urgently needed. Akbulut et al. [73] reported
an efficient, selective, rapid, and low-cost analytical method of detecting propranolol in
human plasma samples by combining a molecularly imprinted Whatman paper with a
UV-visible spectrophotometer.

Amatatongchai [74] designed an electrochemical paper-based device using a graphite
screen-printed electrode modified with MIP-coated Fe3O4@Au@SiO2 for serotonin deter-
mination (Figure 5). The device is accurate, sensitive, and selective and is suitable for
serotonin detection in samples such as urine. Chen et al. [75] also developed a paper-based
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electrical sensor with molecularly imprinted glucose-recognition sites for the determination
of various glucose concentrations in bovine blood solutions. Pereira et al. [76] developed
an MIP paper-based platform to detect β-amyloid, a biomarker of Alzheimer’s disease
present in blood. These new MIP-PAD sensors have great potential for point-of-care
detection applications.
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3.4. Biomarker Detection

Biomarkers refer to specific biomolecules, such as DNA, proteins, enzymes, lipids,
and carbohydrates that can reflect pathogenic factors or poisons from exposure to effect in
the process. Biomarkers can be used for disease diagnosis and disease staging, as well as to
evaluate the safety and efficacy of new drugs or treatments in target populations.

Biomarkers are simple to obtain and have wide-ranging sources, which are conve-
nient for clinical application, especially in primary hospitals. Early detection of multiple
biomarkers can improve the sensitivity and specificity of diagnosis. It has great value in
judging disease severity, early intervention, guiding the application of antibiotics, and eval-
uating the efficacy of anti-infection agents. However, quantifying biomarkers is not easy
because of their low concentration and the complexity of coexisting substances in biological
fluids. Indeed, quantifying biomarkers in biological matrices face great challenges and thus
requiring ultrasensitive detection. Accordingly, researchers have developed paper-based
molecular-imprinting technology to detect biomarkers.

The development of ultrasensitive, low-cost, and easy-to-use methods for the early
detection of cancer biomarkers is of great interest. ELISAs are globally recognized clinical
diagnostic assays because of their simple procedure, direct readout, and high feasibility.
However, the high cost of antibodies, strict storage conditions, long reaction times, and
cumbersome washing procedures limit the use of this method. Tawfik et al. [77] developed
a widely applicable assay (Figure 6). Its analytical quality factor is comparable to that of
ELISA while taking advantage of the many unique advantages of paper-based diagnostic
platforms. The enzyme-initiated catalytic signal amplification step is replaced with signal
amplification by conjugated polymers (CPs). CPs are converted into fluorescent molecu-
larly imprinted conjugated polymers (FMICPs) through molecular self-assembly with an
imprinting strategy. This fluorescent molecularly imprinted conjugated polymer is the first
to produce highly fluorescent, flexible, and stable nanofibrous structures that can generate
ultra-high, surface-area-to-volume ratios and numerous sensitive sites. Compared with
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traditional imprinted polymers, these polymers combine the strong specific binding sites of
molecular imprinting with the unique characteristics of CPs to develop fluorescent molecu-
larly imprinted conjugated polythiophene nanofibers (FMICP NFs) paper-based devices,
which have an enzyme-free signal-amplification capability for biomarker detection.
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Figure 6. Principle and Strategy of FMICPs and FMICP NFs Biomarkers Assay: (a) Synthesis of the
conjugated polythiophenes linked—molecular-imprinting strategy and fabrication of their fluorescent
nanofibers using an easy and low-cost electrospinning approach, as well as their interactions with AFP
biomarker. (b) Mechanism of dual-emission CPs linked with boronate-affinity molecular-imprinting
strategy. Reproduced with permission from Ref. [77]. Copyright 2020, Elsevier. Notes: VPBA:
4-vinylphenylboronic acid, AFP: Alpha-fetoprotein.

Qi et al. [78] used a microfluidic paper-based electrochemical device on a MIP movable
valve for the clinical detection of cancer biomarkers. This strategy can directly detect
antigens by using MIP on paper-based devices, thereby greatly reducing the cost during
clinical trials and the tedious washing process. It also eliminates the need to consider the
preservation of antibodies in ELISA. This feature makes the chip suitable for on-site home



Biosensors 2022, 12, 595 10 of 17

processing or commercial products. The device is inexpensive, easy to prepare, and can
provide reliable analysis compared with ELISA.

The determination of protein biomarkers plays an important role in the prediction of
diseases, such as acute renal failure. Rypar et al. [79] coated a layer of polydopamine MIPs
on distance detection-based microfluidic paper (DµPAD). Under alkaline conditions and
in the presence of oxygen, polydopamine MIP-DµPAD is systematically investigated for
the selective determination of chymotrypsinogen as a protein biomarker in urine within
a linear concentration range of 2.4–29.2 µM (R2 = 0.9903). The corresponding relative
standard deviations range from 2% to 11%, the LOD is 3.5 µM, and the LOQ is 11.8 µM.
Li et al. [80] proposed a new strategy of fluorescent MIP test strips for ferritin detection,
which can be used for the simple and visual detection of ferritin.

Biomarker levels in human fluids (including blood, urine, and saliva) are associated
with various cancers, diseases, and degenerative diseases, such as Alzheimer’s disease,
rheumatoid arthritis, Parkinson’s disease, and cardiovascular disease. Elevated levels of
3-nitrotyrosine (3-NT) in biological fluids are associated with Alzheimer’s disease, Parkin-
son’s disease, and pathologically related ischemia. The oxidation product of deoxyguano-
sine residues in DNA is 8-Hydroxy-2′-deoxyguanosine (8-OhdG). It is often used as a key
biomarker of DNA damage. However, quantifying 8-OhdG in urine or serum is not easy
because of its low concentration and the complexity of coexisting substances in biological
fluids. The quantification of 3-NT in biological matrices is also difficult due to trace levels of
endogenous 3-NT, which requires ultrasensitive detection. Nontawong et al. [81] reported
a novel bimolecular imprinting electrochemical paper-based assay device for the simulta-
neous determination of 8-OhdG and 3-NT and assessed oxidation/nitrification biomarkers
in urine and plasma samples. The LODs are 0.0138 µM and 0.0027 µM, respectively, with
high selectivity and sensitivity.

Furthermore, Martins et al. [82] developed an MIP paper biosensor for 3-nitrotyrosine
detection in human urine samples with an LOD of 22.3 nM. Tavares et al. [83] used PSI–
tandem MS based on MIP substrates for the analysis of cocaine in oral fluid with an LOD
of 0.27 ng/mL. Mendes et al. [84] proposed an analytical method of PSI-MS based on
MIP-coated paper substrates for the detection and quantification of dopamine, sarcosine,
and butyric acid in human urine without derivatization or complex sample pretreatment.
The LODs are 0.24 µg/L, 0.5 pg/L, and 0.07 µg/L, respectively.

3.5. Exposure Assessment

In addition to applications in testing point-of-care, environmental contaminants, food
safety, and biomarkers, paper-based molecularly imprinted devices can also be used for
exposure assessment. Exposure assessment is the qualitative or quantitative evaluation of
biological, chemical, and physical factors that may be exposed to humans or the environ-
ment through food intake or other relevant routes. Exposure assessments describe how
a hazard enters the body, estimating the level of ingestion by different people. Exposure
assessment regards biological, chemical, and physical factors in humans or the environment
as recipients of environmental pollutants, making up for the deficiency in pollutant hazard
assessment. Exposure assessment is a new way to control pollutants and provides new
means for health-risk assessment.

Bisphenol A (BPA) is extensively used to manufacture epoxy and polycarbonate plas-
tics as a surface coating for cans, food containers, dental composites, and thermal paper. Its
halogenated analogs, tetrabromobisphenol A and tetrachlorobisphenol A, are commonly
used as reactants or additive flame retardants in various synthetic textiles, electronic de-
vices, plastics, furniture, and building materials. Owing to the mass production and mass
consumption of these consumer products, BPA and its halogenated analogs are ubiquitous.
These compounds are also found in human serum and urine. BPA, tetrabromobisphenol A,
and tetrachlorobisphenol A are persistent organic pollutants with endocrine-disrupting ef-
fects, cytotoxicity, genotoxicity, immunotoxicity, and neurotoxicity, as well as reproductive
toxicity. Therefore, the simultaneous determination of bisphenols is critical to co-exposure
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assessment in humans. Conventional analytical methods for the simultaneous determina-
tion of these chemicals primarily rely on MS methods [85], but these methods have some
limitations, such as complex instrumentation, high cost, and time-consuming preprocess-
ing steps. Rapid methods for BPA determination have also been developed, including
electrochemistry [86], fluorometry [87], and colorimetry [88]. However, they can be applied
only to BPA and not for the simultaneous analysis of multiple compounds. Zeng et al. [89]
used BPA as a template to prepare MIP based on metal–organic frameworks on filter paper
(Figure 7). A MIP-based paper chromatographic separation and detection integrated µPAD
is developed for the simultaneous determination of BPA and its halogenated analogs, and
it is also used to determine the target chemicals in real dust samples.
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Based on the molecularly imprinted curcumin nanoparticle platform, Mars et al. [90] de-
veloped a novel dual-modal µPAD for the electrochemical and fluorescence sensing of BPA.
The sensing system has a wide linear range with LODs of 0.47 ± 0.2 and 0.62 ± 0.3 µg/L.
The device has high selectivity to BPA, high stability during storage, and high reproducibil-
ity. Additionally, various real samples such as water, food, and plastic packaging are used
to demonstrate sensor applicability. Kong et al. [91] combined the adsorption capacity
of MIP film with ZnFe2O4 as a peroxidase mimetic and its colorimetric potential to pre-
pare functional paper for BPA detection. This outstanding colorimetric sensor offers high
selectivity, sensitivity, and stability. Visual quantitative inspection can also be achieved
without any expensive instrumentation. Kamel et al. [92] first proposed a simple and
ultra-low-cost disposable MIP paper potentiometric sensor for the determination of neutral
BPA. The sensor displays a linear anion potential response within 0.5–13 µM, with an LOD
of 0.15 µM, and exhibits good selectivity over other phenols.
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Tobacco is extremely harmful to humans. Tobacco produces harmful gases and dam-
ages lung tissue. Long-term smoking is one of the most important causes of lung cancer.
Tobacco contains a substantial amount of harmful substances such as nicotine and cocaine
which can stimulate the blood vessels of humans and damage the arteries of the whole body.
Accordingly, the assessment of tobacco-smoke exposure has high significance. Detection
of the metabolites and chemical constituents of tobacco exposure, including nicotine, ben-
zopyrene, and thiocyanate from body fluid specimens, such as urine, plasma, and saliva, is
the target of smoking assessment. Among those biomarkers, cotinine, a major metabolite
of nicotine, is widely recommended for the monitoring of tobacco smoke exposure because
of its long half-life and distribution in various bodily fluids including blood, saliva, and
urine. D’Aurelio et al. [93] introduced a sensor based on molecularly imprinted polymer
nanoparticles and electrochemical impedance spectroscopy to detect trace amounts of
cocaine with a detection limit of 0.24 ng/mL. The sensor enabled highly sensitive, portable,
and cost-effective detection. For faster detection of harmful substances in tobacco, Larpant
et al. [94] used noncovalent MIP to adsorb selectively cotinine on paper scaffolds. This
study demonstrates that MIP paper stents can be used for the simple field sampling of
cotinine and to assess tobacco-smoke exposure.

4. Conclusions and Perspective

MIP materials have the advantages of good selectivity, high sensitivity, and good sta-
bility. PADs are excellent tools for rapid analysis. The strategy of integrating MIP materials
into PAD substrates can realize the miniaturization and integration of analytical devices. It
has the outstanding advantages of low cost, easy portability, and simple operation, enabling
rapid and high-throughput analysis.

MIP-PADs are emerging as paper-based integrated devices still in their early stages
and with room for improvement. However, the technology is insufficiently mature, and
users have low trust in it. Although MIP-PAD technology has rapidly developed over the
past years, high sensitivity and specificity are still the primary indicators for MIP-PAD
improvement. Conversely, MIP-PADs are usually synthesized using a single template
molecule or ion, limiting their application in simultaneous multi-target analysis.

Paper-based molecular-imprinting technology will develop in the following four
aspects in the future.

(1) The affinity for MIP is still lower than that of natural receptors, and many MIP
materials show poor selectivity in aqueous media, which is unsuitable for the analysis
of biological samples. In the future, the synthesis of MIP materials with higher affinity
and hydrophilicity will also be developed.

(2) The preparation of multi-templated MIPs can generate distinct recognition cavities,
allowing the simultaneous capture or removal of multiple analytes. Although chal-
lenging, the fabrication of multi-templated MIP-PADs holds promise for improving
assay efficiency and multifunctional assays.

(3) The application research of paper-based molecular-imprinting technology in different
fields is still worthy of attention. For the field of point-of-care and biomarker test-
ing, developing simple, fast, and efficient method of processing and testing real-life
samples is particularly important. In the field of food-safety testing, the functional
integration of MIP and PADs should be improved, such as the development of a multi-
plexed analysis system that can identify multiple bacteria at one time, helping further
reduce analysis time and cost. For the detection of environmental pollutants, most of
the existing MIP-PADs are still in the laboratory stage of detecting synthetic samples
due to their low selectivity, and MIP-PADs that can be applied in real environmental
samples require further development.

(4) MIP-PADs can be combined with smartphones or through the development of var-
ious effective and portable intelligent signal-readout devices, which can be read
anytime and anywhere, gradually become stable and generalized. They reduce the
dependence on professional testing equipment and professional technicians. At the
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same time, realizing the development of MIP-PADs from pure qualitative analysis
to semi-quantitative and fully quantitative with the help of smartphones will also
become a trend.

Overall, future MIP-PADs will develop in the direction of simplicity, portability,
intelligence, and practicality, providing an opportunity to promote global rapid detection
and intelligent monitoring.
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