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A B S T R A C T

Environmental risk factors, including physicochemical agents, noise and mental stress, have a considerable impact on human health. This environmental exposure
may lead to epigenetic reprogramming, including changes in non-coding RNAs (ncRNAs) signatures, which can contribute to the pathophysiology state. Oxidative
stress is one of the results of this environmental disturbance by modifying cellular processes such as apoptosis, signal transduction cascades, and DNA repair
mechanisms. In this review, we delineate environmental risk factors and their influence on (ncRNAs) in connection to disease. We focus on well-studied miRNAs and
analyze the novel roles of long-non-coding-RNAs (lncRNAs). We discuss commonly regulated lncRNAs after exposure to different stressors, such as UV, heavy metals
and pesticides among others, and the potential role of these lncRNA as exposure biomarkers, epigenetic regulators and potential therapeutic targets to diminish the
deleterious secondary response to environmental agents.

1. Introduction

Mammalian genes are susceptible to changes depending on their
environment, influencing disease development. These environmental
stressors promote perdurable epigenomic changes. Non-coding RNAs
are epigenetic modifiers of gene expression that have been in the
spotlight for the past decades. Initially misconceived as junk DNA, these
RNAs do not translate into functional proteins. The discovery and
characterization of ncRNAs has shed light on the complexity and depth
of gene regulation [1]. Depending on their length and function, they are
classified as small non-coding RNAs and long-non-coding RNAs. Those
shorter than 200 nucleotides (nt) are considered short non-coding RNAs
and include microRNAs (miRNAs), short interfering RNAs (siRNAs) and
piwi-interacting RNAs (piRNAs), whereas those longer than 200 nt are
termed long non-coding RNAs (lncRNAs) [2].

While the function of piRNAs and siRNAs is related to maintaining
genomic stability in the germline and anti-viral responses respectively,
multiple microRNAs and lncRNAs have been involved in the develop-
ment and progression of different diseases [3,4]. LncRNAs can act as
positive or negative regulators of gene expression through transcrip-
tional and post-translational regulatory mechanisms. They may target
processes such as chromatin structure, RNA maturation and protein
synthesis and transport [5,6]. This review summarizes our current un-
derstanding of the role of microRNAs and lncRNA in pathophysiological
changes caused by exposure to environmental stressors.

2. Non-coding-RNA biogenesis and function

2.1. MicroRNAs

miRNAs are a large family of conserved, small, non-coding RNAs of
~22 nucleotide (nt) length. The human miRNAome is composed of
1,917 precursor microRNAs (pre-miRNAs) and 2,654 mature miRNAs,
which regulate at least 60% of protein-coding genes by repressing the
translation and/or inducing degradation of their messenger RNA
(mRNA) targets [7]. Their mechanism of action is based on the Watson-
Crick base-pair complementarity between miRNAs and target sequences
mainly located in the 3′ untranslated region (UTR) of mRNAs [8]. Mi-
croRNAs expression patterns differ among tissues and cell types.
miRNA-mRNA interaction depends on several factors such as sub-
cellular location, abundance of the miRNAs and/or their target mRNAs,
and the affinity between the miRNA-mRNA sequences [9].

miRNAs are transcribed by RNA polymerase II (Pol II) as a transcript
precursor RNA known as primary miRNA (pri-miRNA). This pri-miRNA
is sequentially processed by an RNAse III double-stranded RNA-specific
endoribonuclease (DROSHA) in the nucleus, resulting in a ~70 nt pre-
miRNA. The pre-miRNA is exported to cytoplasm through Exportin-5
where a second RNAse III, the Double-stranded RNA endoribonuclease
(DICER), generates the ~22-nt mature miRNA. miRNAs associate with
specific mRNAs within the RNA-induced silencing complex (RISC),
providing sequence-specific silencing activity [10]. One strand of the
mature miRNA (the ‘guide’ strand) is loaded into RISC whereas the
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other strand is discarded [8]. A single miRNA can potentially target
hundreds or thousands of mRNAs, regulating crucial functions in nu-
merous biological processes including development, differentiation,
stress response and apoptosis [11].

2.2. LncRNAs

LncRNAs are untranslated transcripts longer than 200 nts [12].

Human lncRNAs spans are estimated to be around 127,802 transcripts
grouped on 56,946 lncRNA genes in the last LNCipedia release [13].
However, some evidences indicate that only 1,000 lncRNAs would be
present at greater than one copy per cell [14]. LncRNAs' mechanisms of
action include 1) promoter-specific repression or activation of transcription,
2) modulation of the epigenetic profile, 3) regulation of mRNA stability or 4)
miRNA function by acting as sponges [5]. LncRNA expression is tissue-
specific, and they have a tight regulation during development. They can
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ATO Arsenic trioxide
BARD BRCA1 associated RING domain 1
BNIP3 BCL2 interacting protein 3
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CDKN1A Cyclin-dependent kinase inhibitor 1
CeRNA competing endogenous RNA
CFTR cystic fibrosis transmembrane regulator
CNS central nervous system
COPD chronic obstructive pulmonary disease
CSE cigarette smoke extract
DACT3.AS1 dishevelled binding antagonist of beta catenin 3 anti-

sense RNA 1
DAPK1 death-associated protein kinase 1
DDB1 damage specific DNA binding protein 1
DDB2 damage specific DNA binding protein 2
DEET N,N-diethyl-m-toluamide
DES diethylstilbestrol
DGCR8 DGCR8 microprocessor complex subunit
DICER double-stranded RNA (dsRNA) endoribonuclease
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LCPAT1 lung cancer progression-association transcript 1
lncRNA long-non-coding-RNA
MALAT1 Metastasis Associated Lung Adenocarcinoma Transcript 1
MAPK MKK3/p38/mitogen-activated protein kinase
MBD1 methyl-CpG–binding domain protein 1
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miRNAs microRNAs
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ncRNAs non-coding RNAs
NORAD Non-coding RNA activated by DNA damage
Nrf2 nuclear factor erythroid 2–related factor 2
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OGG1 8-oxoguanine DNA glycosylase
ORF Open reading frame
OSGIN1 oxidative stress-induced growth inhibitor 1
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Pb lead
PBDEs polybrominated diphenyl ethers
PBLs peripheral blood leukocytes
PCAWG Pan-Cancer Analysis of Whole Genomes
PCBs polychlorinated biphenyls
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PFCAs perfluoro carboxylic acids
PFOS perfluorooctanesulfonate
piRNAs piwi-interacting RNAs
PKM2 pyruvate kinase muscle isoform 2
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Pol II RNA polymerase II
PPARA peroxisome proliferator activated receptor alpha
pre-miRNA precursor miRNA
PXR pregnane X receptor
RAD50 RAD50 Double Strand Break Repair Protein
RedoximiRs redox-responsive microRNAs
RISC RNA-induced silencing complex
ROS reactive oxygen species
RPL37 ribosomal protein L37
siRNAs short interfering RNAs
Skp2 S-phase kinase protein 2
SRBP1 sterol regulatory element-binding protein
TGF-β transforming growth factor-beta
UBA52 ubiquitin A-52 residue ribosomal protein fusion Product 1
UCA1 urothelial cancer associated 1
UTR untranslated region
UV ultraviolet
VDAC1 voltage-dependent anion channel 1
VEGF vascular endothelial growth factor
Xist X-inactive specific transcript
XRCC1 X-ray repair cross complementing 1
Zeb1 Zinc finger E-box-binding homeobox 1
Zeb2 zinc finger E-Box binding homeobox 2
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have a stand-alone promoter, and they are usually affected by DNA
methylation changes. Although the primary sequence is poorly con-
served, lncRNA secondary and tertiary structure has been well con-
served across mammals. The first case of lncRNA regulation was de-
scribed in the 1990s. The lncRNA H19 was described as an "unusual
RNA molecule" [13], and the lncRNA X-inactive specific transcript
(Xist) was characterized as a gene without a conserved open reading
frame (ORF), suggesting that it may function as a scaffold RNA in the
nucleus [15,16]. These were the first hints indicating that not only the
sequence, but the RNA structure and folding would have gene regula-
tion roles.

2.2.1. LncRNA classification
The diversity of lncRNAs, in terms of their location, structure, and

function, makes their classification challenging. They can be classified
into five groups regarding genomic location: 1) stand-alone lncRNAs, 2)
natural antisense transcripts, 3) pseudogenes, 4) long-intronic RNAs, and 5)
promoter-associated RNAs or enhancers [17]. Stand-alone lncRNAs do not
overlap with protein-coding genes and they are usually referred as long-
intergenic ncRNA (lincRNAs). These lncRNAs are transcribed by Pol II,
polyadenylated and have multiple splicing isoforms. Natural antisense
transcripts are transcribed in the opposite strand of a coding-gene. In-
terestingly, this happens in several imprinted regions like insulin like
growth factor 2 receptor (Igf2r) and potassium voltage-gated channel
subfamily Q member 1 (Kcnq1). Transcribed pseudogenes have now been
shown to act as gene expression regulators. Long-intronic ncRNAs are
encoded through the introns of annotated genes, however, their study
in mammals awaits further characterization. Finally, promoter associated
RNAs are a heterogenous group of ncRNA transcribed from transcrip-
tion start sites in both, sense and antisense, directions [17].

Considering their regulatory function, lncRNAs can be classified
into those that act in cis, regulating nearby genes, or those that regulate
different biological functions in trans, in distant regions from their
genomic location [18].Cis-acting lncRNAs regulate the expression of the
proximal genes. The best example of this type of cis-acting lncRNA is
the X-inactive specific transcript (Xist), which silences one of the X
chromosomes in females for dosage compensation, due to the presence
of repetitive domains. In other cases, the function of the lncRNA is
independent of its transcription [19,20]. A clear case is the antisense
Igfr2 non-coding RNA (AIRN) that generates transcriptional inter-
ference with the imprinted Igfr2 gene, silencing the paternal allele [21].
A third case is that the cis-regulation depends on DNA elements within
the lncRNA locus. The lincRNA-p21 contains DNA elements that reg-
ulate the neighbor gene Cyclin-dependent kinase inhibitor 1 (CDKN1A)
in a p53 dependent manner [22,23].Trans-acting lncRNAs leave the site
of transcription to influence chromatin organization, like the HOX
(homeobox) antisense intergenic chromatin markers RNA (HOTAIR)
that is required to maintain repressive chromatin marks at the distant
HOXD locus [24]. Likewise, lncRNA can interact with protein or other
RNA molecules. They can serve as a decoy for RNA-binding proteins
like the case of the lncRNA NORAD (Non-coding RNA activated by DNA
damage) [25,26]. They can also regulate the abundance or other
lncRNAs molecules like their counterpart microRNAs; these lncRNAs
are known as competing endogenous RNAs (ceRNAs) [27].

3. Roles of ncRNAs in environmental health

Exposure to environmental agents is long-lasting and triggers epi-
genetic changes. Abnormal expression of ncRNAs can induce develop-
mental changes or lead to disease progression. We discuss the most
common environmental hazards and their involvement in miRNA and
lncRNA biology along with the role of these aberrantly expressed
ncRNAs in different related pathologies (Graphical abstract).

3.1. Oxidative stress

In previous works, we summarized how redox-responsive
microRNAs (redoximiRs) react to environmental stressors and their
involvement in cardiovascular disease and fibrosis development
[28–30]. The nuclear factor erythroid 2–related factor 2 (Nrf2) pathway
is a key modulator of these redoximiRs [31]. Similarly, numerous
lncRNAs have been associated with dysregulation of the Nrf2/Keap1
pathway. Thus, the lncRNA Metastasis Associated Lung Adenocarci-
noma Transcript 1 (MALAT1) is induced by hydrogen peroxide in en-
dothelial cells and acts as a cytoprotector lowering Keap1 (Kelch-like
ECH-associated protein 1) levels and stabilizing the antioxidant tran-
scription factor Nrf2 through direct interaction with these factors [32].
The expression of MALAT1 is regulated by perturbation of redox
homeostasis, generated by hypoxic or ischemic conditions as well
[33,34]. MALAT1 also dampens endogenous microRNAs and promotes
changes in the redox state. Moreover, MALAT1 regulates apoptosis in
mesenchymal cells after treatment with the antioxidant quercetin [35].
The lncRNA H19 is also sensitive to hydrogen peroxide. In cardiac
progenitor cells exposed to hydrogen peroxide, H19 is decreased. In-
terestingly, miR-365, a microRNA derived from H19, is reduced [36].
H19 overexpression reduces oxidative stress in a diabetic mouse model
by targeting miR-657 to inhibit voltage-dependent anion channel 1
(VDAC1). This mechanism has shown benefit in cancer cells, as in-
hibition of H19 increases oxidative stress on hepatocellular carcinoma
and counteracts chemotherapy resistance [37]. A similar effect was
found on hippocampal neurons in diabetic mice, through inhibition of
H19 that led to decreased insulin like growth factor 2 (IGF2) gene
methylation [38].

Metabolic activation and detoxification reactions catalyzed by cy-
tochrome P450 enzymes (CYPs) affect the toxicities of many xenobiotic
compounds. CYP-mediated toxicity is associated with two types of re-
actions that either produce reactive electrophiles that damage critical
biomolecules or induce oxidative stress via free radical reactions.
ncRNAs are involved in regulating CYP expression. For instance,
CYP450 family 2 subfamily E member 1 (CYP2E1) mRNA is directly
targeted by multiple miRNAs at different regions. miR-214–3p targets
CYP2E1 at the coding sequence, while miR-552, miR-570, and miR-
378a-5p target its 3′-UTR [39]. The lncRNAs hepatocyte nuclear factors
1A antisense-RNA-1 (HNF1A-AS1) and 4A antisense-RNA-1 (HNF4A-
AS1) are important regulators of CYP gene expression as well, inter-
fering with the xenobiotic-dependent CYP2E1 bioactivation [40].

3.2. Ultraviolet radiation

Exposure to Ultraviolet (UV) radiation is one of the leading causes of
skin disease development like skin cancer, skin aging, eye damage and
immune system suppression. While some of these effects are related
with an increased oxidative stress due to UV radiation, some lncRNAs
have been connected only to this specific environmental stressor. Yo
et al., demonstrated that due to the differential cellular effects of UVA
versus UVB, lncRNA signatures from UVA and UVB exposed keratino-
cytes only partially overlapped [41] . Kraemer et al. analyzed the
miRNA UVA and UVB signature in human keratinocytes as well. They
defined a 10-miRNA overlapping set that includes miR-330–3p, miR-
988, miR-598, miR-376, miR-323–3p, miR-494, miR-376c, miR-191,
miR-501–5p and miR-96. In this study, the authors described a sig-
nificant upregulation of miR-23b, a miRNA responsible for keratinocyte
differentiation in human skin. These results suggest that UVA through
miR-23b induces an accelerated keratinocyte differentiation [42].

Some lncRNAs are upregulated in response to UV to rein in the
damage response. This is the case of the lncRNA RP11‐670E13.6 in
dermal fibroblasts. Inhibition of this specific lncRNA leads to senes-
cence through a p16/pRB-dependent mechanism. Therefore, increased
expression of this lncRNA potentially delays senescence due to DNA
damage in fibroblasts exposed to UV radiation [43]. LncRNAs
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dysregulated by UVB such as lnc-GKN2-1:1 and lnc-CD1D-2:1 showed a
potential role in cancer progression. Lnc-CD1D-2:1 are induced after
UVB irradiation and the use of the broad antioxidant N-acetylcysteine
(NAC) can impair the reactive oxygen species (ROS) dependent upre-
gulation in melanocytes [44]. In dermal fibroblasts, MALAT1 was up-
regulated after UVB. However, in keratinocytes its expression was not
affected, highlighting the cell specificity of these mechanisms [45].

3.3. Persistent environmental chemicals

Involvement of ncRNAs in xenobiotic-induced disease pathogenesis
has been mostly covered for persistent environmental chemicals in-
cluding polychlorinated biphenyls (PCBs), polybrominated diphenyl
ethers (PBDEs), perfluoro carboxylic acids (PFCAs), per-
fluorooctanesulfonate (PFOS), benzene and bisphenol A (BPA).
Summary of ncRNA studies on persitent environmental chemical can be
found on Table 3.

3.3.1. Polychlorinated biphenyls and polybrominated diphenyl ethers
PCBs are associated with several vascular alterations such as en-

dothelial cell dysfunction and atherosclerosis, by producing oxidative
stress and induction of proinflammatory cytokines and cell adhesion
proteins [46]. In human peripheral blood mononuclear cells, miR-191
expression correlates with total blood concentrations of the dioxin-like
congener PCB169 [47]. The nondioxin-like PCBs have been associated
with neuropsychological dysfunctions such as Rett syndrome and
schizophrenia through the modulation of miR-132 [48]. In primary
human endothelial cells, the commercial PCB mixture Aroclor 1260
modifies the expression of 21 miRNAs associated with vascular diseases
[49]. The polybrominated diphenyl ether BDE-209 reduces pluripotent
gene expression via epigenetic regulation, including the modulation of
miR-145 and miR-335 and the triggering of apoptosis through ROS
generation [50,51]. Interestingly, the liver needs the gut microbiota to
efficiently biotransform chemicals such as PBDE. Yanfei Li et al., de-
scribed the changes in lncRNA signatures between germ free (sterile)
and conventional mouse. They described how lack of the gut microbiota
increased the number of PBDE modulated lncRNA in mouse liver and
these lncRNA signatures were able to discriminate between different
PBDE species such as BDE-47 and BDE-99 [52]. Similarly, Zhang et al.,
analyzed the expression profile of lncRNA in the human liver cell line
HepaRG. They described how PBDE exposure affect lncRNA expression
and lncRNA-protein interactions in a (PXR)/(CAR) dependent and

independent manner [53].

3.3.2. Perfluoro carboxylic acids and perfluorooctanesulfonate
The perfluorocarboxylic acid PFNA generates hepatomegaly, in-

creases hepatic triglycerides and total cholesterol, and enhances serum
transaminases at least partially through the modulation of miR-34a,
miR-362–3p, and miR-338–3p [54,55]. PFOS induces adipogenesis and
glucose uptake in preadipocytes. These changes correlates with miR-
155-dependent activation of the oxidative stress-responsive transcrip-
tion factor Nrf2, which is essential for upregulating antioxidant genes
and metabolic reprogramming [54,56].

3.3.3. Endocrine disruptors, benzene and bisphenol
Benzene exposure positively correlates with hematological dis-

orders, affecting the expression of microRNAs that control pathways
involved in cell proliferation and differentiation, including vascular
endothelial growth factor (VEGF), transforming growth factor-beta
(TGF-β) and Wnt signaling. In peripheral blood mononuclear cells from
benzene-exposed workers, six upregulated miRNAs (miR-34a, miR-205,
miR-10b, let-7d, miR-185 and miR-423-5p-2) and seven downregulated
miRNAs (miR-133a, miR-543, hsa-miR-130a, miR-27b, miR-223, miR-
142–5p and miR-320b) were observed, with identified targets involved
in these signaling pathways. It also highlights their potential role as
biomarkers of chronic benzene poisoning [57]. The lncRNA HOXA
Transcript Antisense RNA, Myeloid-Specific 1 (HOTAIRM1) has shown
a leading role in the development of acute myeloid leukemia (AML). In
long-term benzene-exposed workers HOTAIRM1 expression is de-
creased. Benzene exposure triggers DNA Methyltransferase 3 Beta
(DNMT3b) expression and hypermethylation of the HOTAIRM1 pro-
moter region [58].

Bisphenol A (BPA) is an endocrine disruptor that can act as an
agonist or antagonist through estrogen receptor signaling. BPA ex-
posure is involved in the development of hormone-dependent cancers
in breast, prostate, and ovarian [59]. Several studies have shown that
exposure to BPA can lead to epigenetic modifications in the placenta
that may have an impact on the fetus [60]. Although the studies are
limited, BPA affects gene imprinting in the placenta and global and CpG
methylation [61]. miR-146 expression has been proposed as a bio-
marker for developmental exposure to BPA [62]. miR-134 mediates
BPA-mediated disturbances in pluripotency in embryonic stem cells and
embryoid bodies [63]. Furthermore, exposure to BPA is associated with
breast cancer. In the ER-positive and hormone-sensitive human MCF-7

Table 1
List of relevant studies in heavy metals and microRNAs from 2016 to present.

Target genes Altered cell function Species or cell type References

miR-31 ↓ Special AT-rich sequence-binding protein 2 (SATB2) Cell growth, migration, invasión Human bronchial epithelial (BEAS-2B) cells [84]
miR-330 ↑ S-phase kinase associated protein 2 (Skp2) Cell growth, motility, invasión,

apoptosis
Pancreatic cancer (PC) cells [85]

miR-122 ↑ Pyruvate kinase M2 Autophagy Primary hepatocytes [86]
miR-4665 ↑ Gse1 Coiled-Coil Protein (GSE1) Migration, invation, EMT Gastric cancer cell lines [87]
miR-155 ↑ Nrf2/NQO1/HO-1 Bcl-2/Bax Cell survival, migration, apoptosis Human lung adenocarcinoma A549R cell line [88]
miR-539 ↓ Bcl-2/Bax Apoptosis Hepatocellular carcinoma [89]
miR-372 ↓ Large tumour suppressor kinase 2 (LATS2) Cell proliferation and migration Human prostate cancer cell lines DU145 and PC3 [90]
miR-214 ↓ Activating Transcription Factor (4ATF4) and Enhancer Of

Zeste Homolog 2 (EZH2)
Cell survival Mouse erythroleukemia (MEL) cells [91]

Cadmium
miR-125 ↓ Bak and caspase-3 Apoptosis Renal epithelial cell line LLC-PK1 [92]
miR-33 ↓ AMP-activated protein kinase (AMPK) Autophagy Chicken spleen [93]
miR-30 ↓ Glucose regulated protein (GRP78) Autophagy Chiken kidney [94]
miR-181 ↓ Toll-like receptor 4 (TRL4) and sequestosome 1 (SQSTM1) inflammation Human bronchial epithelial (BEAS-2B) cells [95]
miR-122 ↑ Phospholipase D1 (PLD1) Apoptosis Human renal cell lines HK-2 and NRK-52E [96
miR-326 ↑
Mercury
miR-92 ↑ N/A N/A Human plasma [97]
miR-486 ↑
miR-575 ↓ N/A N/A Human cervical cells [98]
miR-4286 ↓
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breast cancer cell line, BPA promotes ER transcriptional activity, which
alters the expression profiles of certain miRNAs, including miR-21, an
onco-miR frequently upregulated in solid tumors [64]. In addition, BPA
induces the expression of miR-19a/b and downregulates the miR-19/
PTEN/AKT/p53 axis [65]. BPA exposure has been correlated with type-
2 diabetes, gestational diabetes mellitus (GDM) and obesity [66]. miR-
21a-5p promoted BPA-induced obesity in vivo while BPA-induced pre-
adipocyte differentiation is repressed by miR-21a-5p by targeting
map2k3 in the MKK3/p38/mitogen-activated protein kinase (MAPK)
pathway [67].

Among persistent environmental chemicals affecting lncRNAs, BPA
exposure has the strongest impact [68,69]. Thus, the imprinted cluster
H19/IGF2 methylation is altered in the placenta. IGF2 gene is located
upstream of H19 and is paternally expressed. H19 is a lncRNA ex-
pressed from the maternal strand and hypermethylation of this ncRNA
has been previously connected to changes in fetal growth [70]. H19
itself controls several genes within the imprinted gene network, re-
cruiting methyl-CpG–binding domain protein 1 (MBD1) as a partner.
H19/MBD1 partnership is required for a fine tune regulation of gene
expression in the embryo [71]. Therefore, changes in the levels of H19
due to BPA can trigger severe complications in development.

Endocrine disruptors can also affect other lncRNAS such as HOTAIR.
HOTAIR has been previously associated with different types of cancer,
such as lung, hepatocellular carcinoma, prostate, gastric, and breast
cancer [72]). In breast cancer, BPA and diethylstilbestrol (DES) ex-
posure can induce HOTAIR expression in vitro and in vivo, revealing a
new epigenetic mechanism for endocrine disruption in breast cancer
[73]. BPA also has adverse effects on the nervous system during neu-
rological development, affecting behavioral problems [74]. Pang et al.,
described that BPA increases apoptosis on PC12 cells at concentrations
higher than 40 μM. Using microarray expression profiling, they char-
acterized 151 differentially expressed lncRNAs in response to BPA.
They identified growth arrest specific 5 (GAS5), that controls the re-
sponse to neural cell injury through regulation of the Jun/RAS axis and
is downregulated after BPA treatment [75].

BPA analogues, bisphenols F (BPF), and S (BPS) can promote en-
docrine disruption properties in specific contexts [76]. Low doses of
BPF and BPS, similarly to BPA exposure compromise ncRNA expression
in adipocytes in vitro [77], so further investigation is needed to un-
derstand the toxicity of these chemicals and their relevance in human
health. Other endocrine-disrupting chemicals, phthalates, can cross the
placenta and affect the fetal epigenome, including lncRNA expression.

Table 2
List of relevant studies in heavy metals and lncRNAs from 2015 to present.

Target genes Altered function Cell/Tissue Ref

Arsenic
UCA1 ↑ Oxidative stress induced growth inhibitor 1 (OSGIN1) miR-

184
Autophagy, cell death Hepatocellular carcinoma [99]

Kcnq1ot1 ↓ Kcnq1 Electrophysiology Cardiac muscle [100]
MEG3 ↑ Pyruvate kinase muscle isoform 2 (PKM2) EMT Hepatocellular carcinoma cell lines [101]
PU.1 AS ↑ Enhancer of Zeste Homolog 2 (EZH2) Lipid homeostasis Hepatocyte cell line NCTC [102]
PANDAR ↑ N/A DNA damage Peripheral blood lymphocytes [103]

DNA methylation
MALAT1 ↑ Hypoxia-inducible factor-2 α (HIF-2α) Cell migration inflammation Hepatocellular carcinoma [104]
Cadmium
ENST00000414355 ↑ ATM, ATR, ATRIP DDB1, DDB2, OGG1, ERCC1, MSH2,

RAD50, XRCC1, BARD1
DNA damage and repair Lung tissue and bronchial epithelial

cells (16HBE)
[105]

MALAT1 ↑ FOXC2, STAT, BAX, EGFR, TGF-β, BCL-2 Cell proliferation, apoptosis, migration
and invasion

Lung tissue and bronchial epithelial
cells (16HBE)

[106]

MT1DP ↑ NRF2, miR-365 Oxidative stress, cell death Hepatocellular carcinoma cell line
HepG2

[107, 108]
RhoC, MT1H

Mercury
MALAT ↑ N/A Neurotoxicity Brain [109]
H19 ↓ N/A Development Sperm [110]

N/A: not available.

Table 3
List of relevant studies in persistent environmental chemicals and ncRNAs from 2013 to present.

Target genes Altered function Cell/Tissue Ref

PBCs and PBDEs
miR-191↑ N/A Fetal malformations Human PBMCs [128]
miR-132↑ p250GAP Neuropsychological dysfunctions Hippocampal neurons [129]
miR-145↑ N/A Oxidative stress, development, apoptosis Human embryonic stem cells [50,51]
miR-335↑
PFCAs and PFOs
miR-34↑ Ldha, Fut8 Hepatotoxicity Mouse liver [54,55]
miR-362-3p↓
miR-338-3p↓
miR-155↑ Nrf2 Adipogenesis, Antioxidant pathways SD Rat and HepG2 [130,131]
Benzene and Bisphenol
miR-21↑ p38/MAPK Obesity Preadipocyte [66],[67]
miR-19↑ PTEN/AKT/p53
HOTAIRM1↓ N/A AML Human lymphoblast [58]
GAS5↓ Jun/RAS Neurotoxicity PC12 cells [75]

PBMCs: peripheral blood mononuclear cells.
SD: Sprague Dawley.
AML: acute myeloid leukemia.
N/A: not available.

V. Miguel, et al. Redox Biology 37 (2020) 101580

5



Li D et al., found a strong correlation between the lncRNAs AIRN,
DACT3.AS1, DLX6, DPP10, HOTTIP, LOC143666, and LOC91450 in
human placenta and a number of maternal urinary phthalate metabo-
lites [78]. Indeed, in an independent study, the Michigan Mother-Infant
Pairs (MMIP) cohort, a correlation between infant cord blood DNA
methylation changes and maternal levels of endocrine disrupting che-
micals phthalate and BPA was found. The study revealed decreases in
methylation of IGF2, and peroxisome proliferator activated receptor
alpha (PPARA) with increasing phthalate concentrations, which links
early exposures with disease risk later in life [79].

3.4. Heavy metals

3.4.1. Arsenic
Chronic exposure to arsenic-contaminated waters is a worldwide

problem. Arsenic (As) poisoning is associated with several adverse
outcomes in human health, such as skin lesions, a broad spectrum of
cancers, and other outcomes like cardiovascular disease or diabetes.
Arsenic exposure modulates epigenetic changes in DNA methylation
and histone acetylation, including changes in microRNAs and lncRNAs
[80]. Kong et al. assessed the relationship among microalbuminuria,
metals detected in the urineHg, lead (Pb), As, and cadmium (Cd)) and
the levels of miR-21, miR-126, miR-155, and miR-221. They found miR-
21 and miR-221 were negatively associated with arsenic and lead levels
and miR-21 was associated with microalbuminuria. Thus, miR-21 and
miR-221 were proposed as biomarkers of kidney function in the context
of heavy metal exposure [81].

In a study of pregnant mothers and their infants exposed to arsenic,
Rager et al. examined the potential association between the presence of
arsenic in drinking water and maternal urine and miRNAs expression in
cord blood. There were significant correlations between a number of
cord blood miRNAs (let-7a, miR-107, miR-126, miR-16, miR-17, miR-
195, miR-20a, miR-20b, miR-454, miR-96, and miR-98) and urinary
arsenic. These miRNAs have been linked to cancer and diabetes.
Furthermore, there was a decrease in the expression of several immune
response-related mRNAs that was attributed to changes in the levels of
these miRNAs [82].

Bollati et al. studied the expression of miR-21, miR-146a and miR-
222 in peripheral blood leukocytes (PBLs) from steelworkers occupa-
tionally exposed to ambient pollution containing arsenic, iron, nickel,
lead, cadmium, chromium, and manganese. Both miR-21 and miR-222
were increased after 3 days of exposure, while miR-222 levels were
correlated with lead exposure. Conversely, miR-146a was inversely
correlated with lead and cadmium exposure. Furthermore, miR-21 in-
creased expression was associated with levels of the oxidative stress
marker 8-hydroxyguanine [83]. In Table 1, we have summarized mi-
croRNAs involved with arsenic exposure, together with other heavy
metals from studies after 2016 (see Table 2).

The role of miRNAs in cancer-related processes such cell survival,
motility, invasion, proliferation and apoptosis has gained increasing
attention. The oncogenic role of microRNA induction or repression
varies in cancer type specific manner. The miR-122/PKM2 autophagy
axis protects hepatocytes from arsenite stress via the PI3K/Akt/mTOR
pathway [132]. Further, arsenic inhibits prostate cancer cell prolifera-
tion and migration through the regulation of large tumor suppressor
kinase 2 by repressing microRNA-372 [133], while it promotes the miR-
330-mediated S-phase kinase protein 2 (Skp2) associated inhibition in
pancreatic cancer cells, favoring these malignant features [134]. Some
of them control the oxidative stress underlying these cellular processes.
Thus, miR-155 mediates arsenic trioxide resistance by activating Nrf2
and suppressing apoptosis in lung cancer cells [135], while miR-214
protects erythroid cells against oxidative stress by targeting the ATF4
and the enhancer of EZH2 [136].

LncRNA Urothelial Cancer Associated 1 (UCA1) has an essential
protective role in arsenic-induced autophagy through its downstream
target oxidative stress-induced growth inhibitor 1 (OSGIN1) and acts as

a competing ceRNA for miR-184 [137]. Prenatal arsenic exposure
modifies lncRNA GAS5 expression in mouse, reprogramming gluco-
corticoid receptor (GR) downstream gene transcription. Interestingly,
Caldwell et al. observed that GAS5 dysregulation was sex-dependent,
inasmuch as GAS5 was reduced in male but not in female mice [138].
MALAT1 is also involved in the response to carcinogenic agents like
arsenic. Arsenic increases the expression of MALAT1 in human hepatic
epithelial cells in vitro through a hypoxia-inducible factor 2-alpha (HIF-
2α) positive feedback loop accelerating malignant transformation
[139]. Arsenic-induced DNA damage increases the expression of the
p53-dependent promoter of CDKN1A antisense DNA damage activated
RNA (PANDAR), a regulator of cell senescence. He et al. described how
DNA methylation in the PANDAR promoter region is affected in arsenic
smelting plant laborers [140]. However, the downstream effects of
PANDAR in response to arsenic needs further investigation. Likewise,
arsenic poisoning induces a disequilibrium in lipid metabolism. Dong
et al. demonstrate that PU.1 AS, an arsenic-induced lncRNA, regulates
the EZH2/Sirtuin-6 axis by decreasing sterol regulatory element-
binding protein (SRBP1) and triglyceride synthesis in the liver [141].

Some arsenic compounds like Arsenic trioxide (ATO) are used in the
clinic as chemotherapeutic agents [142]. ATO has shown excellent re-
sults in hepatocellular carcinoma (HCC). Fan et al. reported that ATO
positively regulates maternal expression gene 3 (MEG3) lncRNA. In this
same work, they described that ATO reduces the expression of pyruvate
kinase muscle isoform 2 (PKM2), a glycolytic enzyme with a high af-
finity for arsenic. Through this double regulation, they proposed that
MEG3 can control epithelial to mesenchymal transition (EMT), and
therefore invasion and metastasis [143]. Some studies have revealed
that the treatment of promyelocytic leukemia with ATO triggers sec-
ondary cardiovascular effects such as sudden cardiac death. Jiang et al.
demonstrated that the lncRNA Kcnq1ot1 is responsible for the ATO-
induced long QT syndrome that results in cardiac death [144].

3.4.2. Cadmium
Cd is a highly toxic and persistent heavy metal. Fabbri et al. studied

the effects of Cd exposure in the human hepatoma cell line HepG2.
They found that higher Cd exposure induced transcriptional changes
related with cancer and depressed hepatic function and that some let-7
miRNA family members were differentially expressed after Cd ex-
posure, suggesting a connection between their tumor suppressor roles
and cadmium carcinogenesis [145]. Chronic exposure to Cd induces
significant alterations of miRNAs in kidneys. Cd-induced apoptosis is
modulated by miR-125a/b via the mitochondrial pathway in renal
epithelial cells [146]. MiR-122–5p and miR-326–3p may serve as novel
biomarkers for Cd-induced nephrotoxicity [147]. Cadmium modulates
autophagy through microRNA regulation. Thus, its exposure induces
BNIP3-dependent autophagy in chicken spleen by modulating miR-33-
AMPK axis [148], while cadmium-mediated miR-30a-GRP78 leads to
JNK-dependent autophagy in chicken kidney [149].

Cd is a significant component of cigarette smoke. Hassan et al.
showed that cigarette smoke and cadmium exposure increased miR-101
and miR-144 expression in human airway epithelial cells, which sup-
pressed the expression of the cystic fibrosis transmembrane regulator
(CFTR) protein. Furthermore, they showed that cigarette smoke ex-
posure induced miR-101 in mice lungs. Moreover, chronic obstructive
pulmonary disease (COPD) patients had higher pulmonary expression
of miR-101, suggesting a link between cigarette smoking, Cd exposure,
and suppression of CFTR in COPD [150].

Chronic Cd exposure also triggers changes in gene and lncRNA ex-
pression. Gu et al. recently reviewed the latest findings in lncRNAs
related to Cd poisoning [151]). In this context, the role of MT1DP in Cd-
induced liver toxicity through inhibition of Nrf2 and RhoC pathway
should be emphasized [152,153]. The lncRNA MALAT1 can be used as
a potential biomarker for Cd toxicity in the lung. Huang et al. have
observed a positive correlation between MALAT1 levels and Cd in blood
from Cd-exposed rats [154]. Further, in Cd-exposed rat lungs, the
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lncRNA ENST00000414355 shows a positive correlation with blood Cd
concentration. Interestingly, the silencing of this ENST00000414355
decreased Cd-induced DNA damage through increased expression of
essential DNA repair genes such as DDB1, DDB2, OGG1, ERCC1, MSH2,
RAD50, XRCC1 and BARD1 [155].

3.4.3. Mercury
Mercury, in its inorganic form (Hg2+ ion), has deleterious effects in

the kidney, whereas the methylated form of mercury (MeHg) targets the
central nervous system (CNS) [156]. In an in vitro model of CNS dif-
ferentiation, Pallocca et al. showed that MeHg chloride treatment of co-
cultured neuronal/glial cells during their differentiation promoted dif-
ferential regulation of several miRNAs (miR-141, miR-196b, miR-302b,
miR-367, and miR-372), whose targets were mapped to pathways in-
volved in axonal guidance, learning, and memory [157]. Ding et al.
reported that high-level Hg exposure correlates with miR-92a and miR-
486 expression, suggesting that these two miRNAs may be potential
biomarkers in populations occupationally exposed to Hg [158]. In an
independent cohort, a decrease in the levels of miR-575 and miR-4286
in the human cervix was reported as a response to maternal chemical
exposure during pregnancy [159].

The lncRNA MALAT1 seems to respond as well to HgCl2 and MeHg
exposure in the zebrafish embryo. Cao et al. described that MALAT1,
among other four candidates, was the only significantly upregulated in
the brain and notochord of the fish embryo. They proposed that
MALAT1 could represent a potential biomarker for mercury-induced
damage [160]. However, more extensive research needs to be done in
further cellular and in vivo models. Lu et al. studied the correlation
between DNA methylation changes due to mercury exposition and three
imprinted lncRNAs, H19, MEG3 and PEG3 (paternal expression gene 3),

analyzing the sperm and urine from a cohort of 616 men. They found a
negative correlation between H19 methylation and mercury levels in
urine [161]. As previously mentioned, changes in H19 methylation and
imprinting can have severe consequences in fetal growth [70].

3.5. Air pollution

3.5.1. Particulate matter
The SPHERE study (Susceptibility to Particle Health Effects,

microRNAs, and Exosomes) [162] is focused on evaluating the adverse
health effects of air pollution on obese subjects. Rodosthenous et al.
found an association between the long-term exposure to ambient par-
ticulate matter (PM) of< 2.5 μm in diameter (PM2.5) and the increased
levels of serum miRNA levels. These included miR-126–3p, miR-19b-
3p, miR-93–5p, miR-223–3p, and miR-142–3p with 6 months of ex-
posure, and miR-23a-3p, miR-150–5p, miR-15a-5p, miR-191–5p, and
let-7a-5p with 1 year of PM2.5 exposure. Gene targets of these miRNAs
were associated with cardiovascular disease as they were important
regulators of oxidative stress, inflammation and atherosclerosis
[163].Summary of miRNA and LncRNA in air polution can be found on
Table 4.

Changes in miRNA expression have also been explored as bio-
markers of air pollution exposure [164,165]. In follow-up studies,
Fossati et al. investigated the relationship between miRNAs in periph-
eral blood leukocytes (PBLs) and PM exposure. The miRNAs miR-1,
miR-126, miR-135a, miR-146a, miR-155, miR-21, miR-222, and miR-9
were all associated with PM exposure. Pathway analysis revealed that
miR-126, miR-146a, miR-155, miR-21 and miR-222 were strongly as-
sociated with changes in the high-mobility group chromatin proteins.
The relationships between the expression of these miRNAs and PM

Table 4
List of relevant studies in air pollution and ncRNAs from 2014 to present.

PM size Target genes Altered function Disease Ref

miRNAs
miR-126 ↓ <2.5 N/A Oxidative stress, inflammation Atherosclerosis [111]
miR-19b ↓
miR-93 ↓
miR-223 ↓
miR-142 ↓
miR-23a ↓ <2.5 N/A Oxidative stress, inflammation Atherosclerosis [185]
miR-150 ↓
miR-15a ↓
miR-191 ↑
let-7a ↑
miR-126 ↓ <2.5 High-mobility group chromatin proteins Inflammation Endothelial dysfunction, atherosclerosis [112]
miR-146a ↓
miR-155 ↓
miR-21 ↓
miR-222 ↓
miR-21 ↓ <10 N/A Oxidative stress, inflammation Retinal arteriolar narrowing [113]
miR-222 ↓
miR-144 ↓ <2.5 Zeb1 EMT Lung cancer [114]
miR-4516 ↑ <2.5 RPL37 Autophagy Lung cancer [115]

UBA52
miR-183 ↑ <2.5 FOXO1 Inflammation Sperm quality [116]
miR-16 ↓ <2.5 Twist1 EMT Hepatocellular carcinoma [117]
miR-224 ↑ <2.5 TLR2 Inflammation, airway remodelly Asthma [118]
let-7a ↓ <2.5 ARG2 Oxidative stress cell injury, apoptosis Airway epithelial injury [119]
miR-32 ↓ <2.5 Smad1 EMT Lung cancer [120]
miR-194 ↓ <2.5 DAPK1 Apoptosis Bronchial epithelial injury [121]
LncRNAs
MALAT1 ↑ <2.5 Zeb1 miR-204 EMT Lung cancer [122]
LCPAT1 ↑ <2.5 RCC2 Autophagy Lung cancer [123]

EMT
MEG3 ↑ <2.5 p53 Autophagy, apoptosis proliferation, inflammation COPD [124,125]

CSE miR-218
HOTAIR ↑ CSE N/A EMT Lung cancer [126]
LOC101927514 ↓ <2.5 STAT3 Inflammation Bronchial epithelial injury [127]

N/A: not available, CSE: cigarette smoke extract.
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exposures were influenced by polymorphisms in the RNA processing
genes GEMIN4 and DGCR8 [166]. More recently, Motta et al. found that
miRNAs provide a likely regulatory mechanism underlying the BP-re-
lated effects of air pollution exposure, showing that changes in miR-101
expression provide an important epigenetic basis for this action [167].

PM has adverse effects on vascular function, as assessed by mea-
suring the impact on BP and flow-mediated vessel dilation [167].
Louwies et al. measured microvascular responses to PM with retino-
graphy and explored the role that oxidative stress-mediated induction
of miR-21 and miR-222 might have on PM-induced changes in these
microvessels. Both miR-21 and miR-222 levels correlated with PM-in-
duced abnormalities in retinal microvessel diameter, suggesting a role
for oxidative stress and inflammation in these effects [168]. Although
less investigated than the effects on cardiopulmonary function, a recent
study documented the association between miRNA expression, air
pollution exposure and lung cancer. Pan et al. found that miR-144 le-
vels were decreased in air pollution-related lung cancer, possibly by
targeting the oncogene Zeb1 (Zinc finger E-box-binding homeobox 1)
[169]. In this condition, miR-4516 regulates autophagy-associated ri-
bosome function genes RPL37 and UBA52 [170], while miR-32 down-
regulation promotes EMT through the modulation of Smad1 [171].
Particulate matter-induced lung epithelial injury is counteracted by let7
which modulates oxidative stress through arginase 2 [172] and pro-
moted by miR-194 upregulation which control death-associated protein
kinase 1 (DAPK1) [173]. Finally, there is evidence that PM is associated
with suppression of innate immunity and decreased clearance of
viruses. Hou et al. explored the associations of short-term PM2.5, EC,
and PM10 with miRNA expression, suggesting that latent viral miRNAs
are potential mediators of air pollution-associated health effects [174].

Previous studies found that lncRNAs are also involved in the de-
velopment and progression of diseases associated with air pollution.
Interestingly, the lncRNA MALAT1 is induced with PM in vitro. This
lncRNA impacts Zeb1 and the EMT process through the downregulation
of miR-204 [175]. These two mechanisms contribute to invasion and
lung cancer progression. Other lncRNAs were identified in lung cancer
induced by PM and cigarette smoke. A lncRNA, named lung cancer
progression-association transcript 1 (LCPAT1), increases its expression
in in vitro studies triggering autophagy and invasion via RCC2 [176].
Similarly, MEG3 upregulation after PM exposure leads to autophagy
and apoptosis. Li et al. studied that silencing this specific lncRNA would
be beneficial for the treatment of COPD. Disruption of MEG3 expression
in human bronchial cells prevented apoptosis and autophagy, poten-
tially through a p53 dependent mechanism [177], while it regulates
cigarette smoke extract (CSE)-induced apoptosis and inflammation via
miR-218 in 16HBE cells [178]. Moreover, cigarette smoke extracts in-
crease levels of HOTAIR in human bronchial epithelial (HBE) cells
[179]. Aberrantly expressed long non‐coding RNAs due to air pollution
can also induce congenital defects. He et al., showed the correlation
between lncRNA H19 methylation and length and weight at birth. Their
data showed that prenatal NO2 exposure correlated with increased H19
methylation, whereas PM10 exposure and SO2 exposure did so with
reduced H19 methylation [180]. Li Z et al., found 554 differentially
expressed lncRNAs (216 up‐regulated and 338 down‐regulated) in air
pollution‐exposed rat embryos, with potential cellular functions in
neurological mechanisms, sensory perception of smell and the G‐pro-
tein signaling pathway [181].

3.5.2. Asbestos
Malignant pleural mesothelioma is an aggressive cancer, highly

related to exposure to the chemical stressor asbestos, a natural mineral
widely used in construction materials. This disease is characterized by a
significantly long latency period (40–60 years) after the exposure. The
absence of suitable biomarkers for early diagnosis [182] and lack of
appropriate treatments for late-stage patients remain challenging. In-
terestingly, a microRNA has been involved in the progression of me-
sothelioma. Munson, et al. have described that mesothelioma cells

secrete exosomes containing tumor suppressor ncRNAs, like the mi-
croRNA miR-16. Reintroducing miR-16 into the mesothelioma cells
reduces the tumorogenic capacity and it could be a great therapeutic
strategy [183]. MesomiR 1, is a miR-16 based therapy designed as a
targomer (miRNA therapeutic delivery with nanoparticles) that is under
Phase I clinical trial (NCT02369198) [184,185]. Some efforts have also
been done to test changes in lncRNAs in this model, trying to find new
early biomarkers for this model. Several lncRNAs, AK130275,
AK129685, EF177379, BX648695, NR_003584, and AF268386 were
upregulated in mesothelioma tissue compared to healthy pleura. This
lncRNA panel is highly sensitive and has great potential as a biomarker
for mesothelioma [186]. Another lncRNA involved in mesothelioma is
GAS5, with a reported low expression in mesothelioma cells. Growth
arrest was able to induce GAS5 expression and accumulation in the
nuclei, leading to quiescent tumor cells [187].

3.6. Pesticides

The use of pesticides is intended for the prevention or mitigation of
different pests like insects, rodents, or weeds. However, its exposure can
be deleterious for humans [188]. Organophosphates, which are a group
of insecticides that inhibit acetylcholinesterase, promote cognitive
dysfunction in the learning and memory process. miR-132 and miR-212
have been proposed to mediate the disruption of neurotrophin-medi-
ated cognitive processes after chlorpyrifos exposure [189]. Urinary
miRNAs have been suggested as potential biomarkers for human ex-
posure [190]. The organophosphate dichlorvos induces aberrant ex-
pression of miRNAs, inducing both neurotoxicity and non-neuronal
toxicity [191]. Conazole-dependent formation of liver cancer is medi-
ated by miRNA dysregulation [192]. Paraquat produces toxicity in the
lung through superoxide anion formation and eventually hydroxyl ra-
dicals leading to lipid peroxidation [193]. In human neural progenitor
cells, paraquat treatment alters microRNA expression modulating
neural proliferation, differentiation, cell cycle and apoptosis [194].

Few studies have been performed to study the impact of pesticide
exposure on lncRNAs. Some preliminary lncRNA expression profiles
have been described with the insect repellent N,N-diethyl-m-toluamide
(DEET) and the insecticide fluocyanobenpyrazole (fipronil). Mitchell
et al. showed that 20 lncRNA are commonly dysregulated in response to
these two insecticides independently or when used in combination in
primary human hepatocytes. They observed than 18 of these lncRNAs
were downregulated, and only 2 of them were increased [195]. The
most upregulated lncRNA from this list was CYP2B7, a pseudogene
from the CYP450 family.

Paraquat is a widely used herbicide. The molecular mechanism of
paraquat depends on redox cycling and superoxide anion formation.
Paraquat accumulates in the lungs leading to pulmonary fibrosis [193].
In a mouse model of paraquat-induced pulmonary fibrosis, two upre-
gulated lncRNAs, uc.77 and 2700086A05Rik, were involved in mod-
ulation of EMT. These lncRNAs target Zeb2 and HOX3, critical genes in
the initiation of EMT [196]. In the brain, Paraquat poisoning acts as a
neurotoxin, and it has been associated with higher risk of Parkinson's
disease [197,198]. In this context, paraquat also alters lncRNAs in the
mouse susbtantia nigra through interaction with the transcription factor
Nrf2 [199]. However, the functional role of this lncRNA needs further
exploration.

4. Future perspectives and conclusions

A rapidly growing number of ncRNAs has been identified in the last
three decades due to developments in genomics and bioinformatics.
However, besides efforts have been made to model the complexity of
the networks and regulatory mechanisms of ncRNAs involved in en-
vironmental pollution gene regulation, in the overwhelming majority of
cases definitive or causative roles for these exposure-disease associa-
tions have not been established. Notwithstanding, they have provided
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the opportunity to explore selected ncRNAs as potential biomarkers of
toxic exposure, as well as potential therapeutic targets. Based on new
oligonucleotide therapies under U.S. Food and Drug Administration
(FDA) approval and several microRNAs-based therapies clinical trials,
we have attempted to summarize the most favorable cases of
microRNAs as potential therapeutic agents. Among them, mesomir is a
promising drug for malignant pleural mesothelioma, a lethal disease
with yet a lack of effective treatment. The mesomir clinical trial is
awaiting to start Phase I, after successful studies in in vivo experimental
models. Still the concern with mesothelioma is the latency state after
asbestos exposure, hence the need of identifying a good combination of
ncRNA biomarkers.

In the last years, our understanding of microRNA biology and their
influence on regulation of gene expression has grown and brought new
actors, in particular lncRNAs. These molecules may adopt different
roles depending on their topology, interactions and cell types. LncRNA
structure transforms junk-RNA molecules into versatile modifiers of
gene expression and molecular function. They are promiscuous mole-
cules that can partner either with nucleic acids or proteins. LncRNA
expression is low within the cells and their own expression is tightly
regulated. These molecules have demonstrated essential roles in de-
velopment and gene-dosage and are highly conserved across mammals.
Xist lncRNA silences one of the X-chromosomes in females inactivating
gene expression. Mutation in this lncRNA can lead to incomplete X-
chromosome inactivation favoring X-linked diseases such as Duchenne
muscular dystrophy or hemophilia A [200].

Fluctuations of lncRNAs due to environmental toxins in utero or
germ line can lead to dramatic developmental and growth defects in the
fetus. Different agents such as oxidative stress, BPA and mercury affect
DNA methylation of the imprinted lncRNA H19. H19 has been linked to
pathologies like diabetes. However, H19 expression changes in germ-
line or in utero after toxic exposure can cause severe damage in fetus
development [70].

We herein featured several lncRNAs that are commonly upregulated
with specific stressors. Many of them have been recently described as
high-confidence lncRNAs in the Pan-Cancer Analysis of Whole Genomes
(PCAWG) study [201]. Among them is the case of MALAT1. MALAT1
responds to changes in the redox balance, such as treatment with hy-
drogen peroxide or hypoxia. Not surprisingly, this lncRNA is also af-
fected after UV, air pollutants mercury, cadmium or arsenic
[32,45,139,154]. MALAT1 is regulated by Nrf2/Keap1 antioxidant re-
sponse. Independently of the mechanism behind MALAT1 expression,
increased expression seems to be deleterious, promoting cancer pro-
gression and metastasis though activation of EMT pathways [139,175].
Although MALAT1 could be a good prognostic factor for malignant
transformation, it unlikely constitutes a good specific biomarker to
identify different poisoning agents. The combination of a lncRNA panel
might prove more powerful, as exemplified in mesothelioma [186] or
Parkinson's disease in early stages [199].

A long road lies ahead to clarify the benefits of lncRNA as potential
therapeutic targets. First, the majority of the studies and lncRNA
screening here described have been done in vitro, with some exceptions
in vivo and few patient studies. Second, even though we described
highly conserved lncRNA among mammals due to the different number
of mechanisms in several cell lines, it is still difficult to predict whether
external overexpression or inhibition would be beneficial in patholo-
gical progression. However, in-depth knowledge of the downstream
mechanisms of these lncRNAs may help to design new therapeutic
strategies to prevent and control deleterious consequences of toxic
environmental stressors. Therefore, experimental and population-based
epidemiological studies are warranted to clarify lncRNAs role in the
interaction of genetic and environmental factors underpinning the de-
velopment of many common diseases.
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