
 International Journal of 

Molecular Sciences

Review

The Rich World of p53 DNA Binding Targets:
The Role of DNA Structure

Václav Brázda * and Miroslav Fojta

Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic;
fojta@ibp.cz
* Correspondence: vaclav@ibp.cz; Tel.: +420-541-517-231

Received: 11 October 2019; Accepted: 8 November 2019; Published: 9 November 2019
����������
�������

Abstract: The tumor suppressor functions of p53 and its roles in regulating the cell cycle, apoptosis,
senescence, and metabolism are accomplished mainly by its interactions with DNA. p53 works as
a transcription factor for a significant number of genes. Most p53 target genes contain so-called
p53 response elements in their promoters, consisting of 20 bp long canonical consensus sequences.
Compared to other transcription factors, which usually bind to one concrete and clearly defined DNA
target, the p53 consensus sequence is not strict, but contains two repeats of a 5′RRRCWWGYYY3′

sequence; therefore it varies remarkably among target genes. Moreover, p53 binds also to DNA
fragments that at least partially and often completely lack this consensus sequence. p53 also binds
with high affinity to a variety of non-B DNA structures including Holliday junctions, cruciform
structures, quadruplex DNA, triplex DNA, DNA loops, bulged DNA, and hemicatenane DNA.
In this review, we summarize information of the interactions of p53 with various DNA targets and
discuss the functional consequences of the rich world of p53 DNA binding targets for its complex
regulatory functions.
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1. Introduction

p53 is the most often mutated tumor suppressor in humans and is studied intensively from
different points of view due to its crucial role in malignant transformation [1–3]. p53 functions include
regulatory roles in processes such as ontogenesis [4–6], myogenesis [7], metabolism [8], cell cycle
arrest [9,10], apoptosis [11,12], angiogenesis [13,14], DNA repair [15,16], and cell senescence [16,17].
These numerous roles are realized through its interactions with other proteins and DNA. Although p53
mediated gene transcription is mostly connected to its direct interaction with DNA, it has also been
shown that p53 interacts with many proteins, including several transcription factors and regulators [18].
Especially for mutant p53, its transcriptional functions relate to its ability to interact with other
transcription factors [19]. Both activation, for NF-Y [20], or repression, for p63 and p73 [21,22], has
been demonstrated. However, many other transcription factors interact with p53 [23]. p53 plays roles
in multiple pathways [24–26] by acting as a transcription factor, therefore requiring DNA binding
activity [27–29]. Compared to many other transcription factors, p53 DNA targets are not defined by a
particular consensus sequence, but p53 is able to bind various DNA sequences and DNA targets defined
by their secondary structures. Many of these local DNA structures are conserved throughout evolution
and play essential roles in regulating many biological processes [30–32]. There are several types of
these “alternative” DNA structures such as cruciforms, left-handed DNA (Z-DNA), triplexes and
quadruplexes [33,34]. Bioinformatic analyses demonstrated non-random locations within the genome
for certain local DNA structures, for example origins of replication (cruciforms), promoter regions
(cruciforms, triplexes, and G-quadruplexes), introns (triplexes) and telomeres (G-quadruplexes) [35–41].
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In keeping with their important regulatory roles, many local DNA structures are important also in
human diseases, for example triplex structure in the frataxin gene caused by GAA/TTC triplet expansion
is associated with Friedreich’s ataxia [42,43]. Many studies have also shown dysregulation of local
DNA structures in cancer cells and especially G-quadruplexes are being tested as a target for cancer
treatment [44,45]. The interactions of p53 with DNA target sequences have recently been reviewed
in several papers [2,46–52], including detailed analyses of the p53 family consensus sites and its
non-canonical sequences with different lengths, variations of the core and flanking sequences and
spacers (see below) [53]. Therefore, in this review, we focus on p53 binding properties to DNA targets
in non-B-DNA conformation and to local DNA structures. We summarize published data about these
interesting p53 DNA binding properties and hypothesize their possible roles.

2. Various DNA Targets of p53

2.1. ChIP-Seq and p53-Target Sequences

DNA sequence-specific binding of p53 was initially determined by the SELEX method and has
been verified by many approaches in vitro and in vivo [54,55]. Complete mutagenesis of the p53 DNA
target, which is typically formed by two copies of a 5′-RRRCWWGYYY-3′ sequence (where R represents
purine, Y represents pyrimidine and W represents adenine or thymine bases), provides information
concerning p53 binding affinities for all possible consensus p53 targets and it is easy to compute
the theoretical p53 binding affinity to the target in its linear B-DNA form [56,57]. p53 is also able to
search for its target by sliding [29,58,59] and can promote intersegmental transfer by binding to two
DNA strands simultaneously [60]. Contemporary analyses of datasets from genome-wide chromatin
immunoprecipitation (ChIP) of p53-bound DNA fragments followed by high-throughput sequencing
has led to the development of p53 BAER (a human p53 Binding And Expression Resource) [61] that can
be accessed on the University of California Santa Cruz (UCSC) Genome Browser [62,63]. These complex
analyses confirmed and validated some known data about p53 sequence-specific DNA binding and
p53 consensus sequence(s), showing, for example, that the most common is the consensus sequence
without spacers and that many precipitated fragments contain only half of the consensus sequence [61].
In addition, these analyses brought many new and unexpected results. For example, only 35% of
the sequences are in the range of 5 kbp before the transcription start site (TSS), while 25% are found
in intragenic and 41% in intergenic regions. Assuming that the main role of p53 is associated with
transcription, it could be expected that the majority of p53-target sequences will be found in promoter
regions. Therefore, the above-mentioned results provoke the question: what is the role of p53 binding
to regions which are far away from TSS and therefore could hardly regulate transcription?

Based on homology with the consensus binding site or the presence of half-binding sites, it is
possible to predict potential p53 binding sites in the human genome and their theoretical affinities and
several tools are available for these purposes [56,57,64]. Using this approach, almost 800,000 potential
p53 target sequences containing a p53-like motif consisting of the p53 consensus 20-mer with a 0–15 bp
spacer or with only a half-site have been identified in the human genome [48]. However, data from 41
ChIP datasets identify only 54,947 p53-bound sequences, of which just 12,885 (23%) contain either a
full or half-site p53 consensus sequence [61]. Thus, from all of the predicted potential p53 targets in the
human genome (almost 800,000), only ∼1.6% are actually bound by p53 and most p53-bound DNA
fragments (77%) do not contain a consensus binding site. From these analyses, it is clear that multiple
factors are required to enable p53 binding to DNA. Moreover, what does p53 protein recognize in the
genome when the classic p53 double-stranded B-DNA target sequence is not present? Interestingly, a
substantial correlation exists amongst the p53 ChIP-seq data and the presence of CpG islands [61,65].
Moreover, many studies have now demonstrated that p53 binds to various non-B DNA targets, as
reviewed below.
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2.2. p53 Binding to Distorted Double-Stranded DNA

The majority of DNA exists in the double-stranded form in the genomes of both prokaryotic
and eukaryotic organisms. However, DNA is a structurally flexible molecule and exists also in
single-stranded, three-stranded and four-stranded variations. Most in vitro p53-DNA affinity studies
have been performed with short double-stranded oligonucleotides containing a p53 consensus
sequence. DNA in the cell nucleus is not present in such a form: nuclear DNA is involved in long
linear chromosomal structures and is organized on several levels. Thus, accessibility of genomic DNA
is dependent on its organization and interaction with diverse proteins. It is an inherently complex
process to pack long chromosomes into a structure that fits into the nucleus. Moreover, this structure
must not be rigid but has to be flexible to allow functional roles of DNA. Therefore, DNA in the nucleus
can be present as double-stranded DNA not only in the “standard” B-DNA conformation but also in
different double-stranded variations such as A-DNA, C-DNA, and Z-DNA (Figure 1). Many studies
have shown that p53 binds to damaged, mismatched, and/or distorted double-stranded DNA [66–68].
These p53 binding modes are crucial for p53 stabilization and trigger its posttranslational modification
and accumulation, leading to its sequence-specific binding. From this point of view, DNA distortions
and/or transitions between various double-stranded DNA conformations may be involved in rapid
p53 activation for sequence-specific DNA binding (particularly when sites of structural variation are
located in close proximity to the p53 sequence-specific motif).
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Figure 1. Various double-stranded DNA conformations, right-handed: A-DNA, B-DNA, C-DNA,
left-handed: Z-DNA (from left to right). First row–upper view, second row–side view.
A-DNA–AGGGGCCCCT repeat, B-DNA–random sequence, Z-DNA–CG repeat. Visualized using
Chimera software, A–blue, C–yellow, G–green, T–red.

The p53 central domain is the major region responsible for sequence-specific binding to
double-stranded B-DNA and this region contains all of the common, hotspot, mutations seen in
cancer. These hotspot mutations either alter the conformation of the DNA binding domain (such as
R175H) or involve mutation of an amino acid that directly contacts DNA (such as R273H), reducing
or abolishing sequence-specific transactivation [69–71]. The crystal structure of the p53 core domain
with a linear DNA target has shown the importance of individual amino acid residues interacting
with DNA [72] and were verified several times [73–76]. It has been also demonstrated that DNA
bending is important for p53 target sequence recognition [77]. Due to the lack of data for full-length
p53 protein interactions with non-B DNAs, we used PDB data of p53 structure (combined with de novo
predictions of particular unresolved regions by i-TASSER [78]) and Z-DNA, Triplex and G-quadruplex
DNA PDBs to predict p53 interactions with these structures in silico by HDOCK tool [79]. The results
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of these analyses were visualized in UCSF Chimera software [80] and are shown in Figure 2. Various
parts of the protein are predicted to interact with various DNA structures. While Z-DNA interacts
with p53 mainly at residues in the central part (Figure 2A), triplex (Figure 2B) and G-quadruplex
(Figure 2C) interacting residues are located mainly in the C-terminal domain, which corresponds to the
experimental observations discussed below.
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2.3. p53 Binding to DNA Structures Presented in Single-, Triple- and Four-Stranded DNA Motifs

Besides the variations in double-stranded DNA structures, important regulatory roles have been
ascribed to secondary DNA structures consisting of different numbers of chains and/or involving
single-stranded parts. The classic example of secondary structure in nucleic acids is the presentation of
RNAs as folded single-stranded molecules forming various functional three-dimensional structures with
or without protein parts, such as tRNAs, ribosomal RNAs, SRP RNA, snRNA, snoRNA, lncRNA, etc.
However, several alternative DNA structures have been characterized in vitro and their existence has
recently been demonstrated in vivo. Considering that the preferential binding of p53 to single-stranded
DNA was shown more than thirty years ago [81,82], it is perhaps not surprising that p53 binding to
several local DNA structures present as non-B (or more generally non-double-stranded) DNA was
described. The overview of various local DNA structures with different numbers of DNA strands is
shown in Figure 3.
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Besides the recent ChIP-seq results showing that a remarkable number of precipitated DNAs
do not contain the p53 consensus sequence, results showing preferential binding of wild-type p53 to
supercoiled DNA (both containing and lacking the consensus sequence) pointed to p53 structure-specific
DNA binding [84–87]. Selective binding to supercoiled DNA was later demonstrated for mutant
p53 (tested for seven hot spot mutant p53 proteins (R175H, G245S, R248W, R249S, R273C, R273H
and R282W), while the same plasmid DNAs in linear or relaxed circular forms were poorly bound
in the absence of a consensus sequence [88]. This preference for supercoiled DNA has also been
confirmed in cells using ChIP. These studies were initially performed on a circular plasmid with
negative supercoiled DNA and later also for positively supercoiled DNA [89,90]. Experiments with
superhelical DNA topoisomers revealed that p53 prefers DNA molecules with higher numbers of
super turns [90–92]. Notably, negative DNA superhelicity is known to stabilize different non-B DNA
structures. An increasing number of papers are demonstrating the regulatory importance of these local
DNA structures in the human genome [93–95] and, for example, G-quadruplexes have been suggested
as promising targets in cancer treatment [44,45,96]. Interestingly, inhibition of topoisomerases, resulting
in accumulation of DNA superhelicity, leads to changes in p53-directed regulations in human cell
lines [97]. Considering the stabilizing effects of negative superhelicity on local DNA structures including
cruciforms, triplexes, and quadruplexes [33,98], it seems that local DNA structure protrusions also play
a role in the mechanisms behind p53 function. Indeed, p53 preferential interactions with various local
DNA structures have been shown: p53 is able to bind to mismatched DNA duplexes [67], three-way
or four-way junctions [99,100], telomere T-loops [101], hemicatenated DNA [102], DNA loops [43],
cruciforms [103–106], triplexes [37], and quadruplexes [107,108].

2.3.1. Hemicatenate DNA

Hemicatenates (Figure 3A) are essential intermediates of DNA replication, repair, and
recombination [109]. These structures consist of distorted double helical, single-stranded and
four-stranded motifs. Based on their length and base content, they can adopt various 3D structures,
however, their basic characteristic—distortion of the B-DNA structure and shorter or longer
single-stranded DNA chains—is typical for hemicatenanes. The presence of hemicatenate DNA can
lead to DNA fragmentation and it is crucial to remove it before replication. Therefore, hemicatenanes
are resolved by topoisomerases, and topoisomerase inhibition leads to increased strand breakage
in DNA [110,111]. It has been demonstrated that p53 binds hemicatenate DNA in vitro by gel-shift
assays [102,112]. Interestingly, not only one type of complex is formed by the interaction of p53 with
hemicatenate DNA, but three different complexes can be formed, indicating that p53 can recognize
both single-stranded loops present in the hemicatenate DNA and the central part of the structure which
is multi-stranded. Whilst the p53 C-terminal domain has been proposed to play an important role in
binding to supercoiled DNA, C-terminally deleted p53 still selectively interacts with hemicatenate
DNA [102].

2.3.2. Telomeric T-Loops

In contrast to circular genomes found in the majority of bacteria as well as mitochondria and
plastids, the ends of linear chromosomal DNA form specific protective structures. For mammalian
telomere formation, so-called T-loops are typical [113,114]. This T-loop structure (Figure 3B) is formed
by a 3′ single-stranded overhang of at least one TTAGGG repeat, Holliday junction-like structure,
distorted double-stranded DNA and C-rich and G-rich parts that are prone to form non-B DNA
structures [115]. The p53 binding preference to Holliday junctions was shown more than twenty
years ago [99]. Therefore, p53 binding to T-loops is not surprising and p53 interacts with T-loop
structures as a tetramer or as two tetramers [101]. Furthermore, p53 binds single-stranded TTAGGG
with high affinity in oligonucleotides as well as in the presumably double-stranded form in plasmid
DNA [101]. Moreover, the strand transfer activity of p53 may involve the formation of T-loops and
cooperatively support TRF-2-mediated formation of the T-loop structure in vivo [115]. Both of these
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proteins have been detected together at the T-loop junction, suggesting the importance of p53 in T-loop
formation and/or maintenance [101]. On the other hand, direct interactions of p53 with T-loop DNA
have not been proven in vivo and it seems that DNA damage at human telomeres is prevented by p53
indirectly [116,117].

2.3.3. Three-Stranded Structure

Repetitive sequences with mirror symmetry, consisting of homopurine homopyrimidine tracks,
are capable of forming so-called triplex structures (Figure 3C), involving a segment of DNA with three
nucleic acid strands. The third strand is typically bound by Hoogsteen pairing in the deep groove
of the double-stranded DNA. Intramolecular triplexes are formed via the refolding of a segment of
duplex DNA, which results in leaving a part of the DNA single-stranded. The formation of a triplex
structure leads to torsions in surrounding parts of the DNA molecule [118]. Intermolecular triplexes
with either third DNA or RNA strands have been described [119]. Triplex-forming sequences occur
non-randomly in the human genome and have been found by bioinformatic approaches in several
gene promoters, for example the IL2R, POLA1, and MYC genes [120], implying that triplex structures
are involved in transcriptional regulation. In this regard, it has been demonstrated recently that
formation of RNA-DNA triplexes leads to transcriptional inhibition in human cell lines. Formation of
these RNA-DNA triplexes by interactions of long non-coding RNA with DNA could, therefore, be
involved in additional or alternative transcription regulatory mechanisms. p53 binding to a plasmid
DNA with confirmed presence of a triplex structure shows an increased affinity in comparison with
supercoiled DNA without the triplex-forming DNA sequence [37]. Interestingly, this preferential
binding to triplex-containing DNA was reduced by pre-treatment with monoclonal antibodies that
bind to and block the C-terminal domain of p53. This result is in agreement with the in silico model of
p53-triplex interaction (Figure 3B). Compared to p53 binding to hemicatenate DNA, it seems that the
C-terminal domain of p53 plays a crucial role in triplex recognition. On the other hand, in vitro ELISA
showed that both the core and the C-terminal p53 domains are capable of binding TAT triplex. Thus,
cooperation of these two domains of p53 seems to be important for recognition of triplex structures [37].
Very interesting results were shown by luciferase reporter assays and RT-PCR: while an isolated triplex
structure in a plasmid introduced into a human cell line showed no influence on transactivation by p53,
significant enhancement of p53 dependent transactivation was detected when the same triplex-forming
sequence was present next to the p53 consensus target sequence [37].

2.3.4. Four-Stranded Structures

G/C-rich nucleic acid sequences are prone to form two types of quadruplex structures:
G-quadruplexes (Figure 3D) formed by G tetrads, or i-motifs (Figure 3E) formed by two intertwisted
C-loops [121,122]. To date, the majority of research has been focused on G-quadruplexes, which can form
thermodynamically more stable structures in physiological conditions compared to double-stranded
B-DNA with the same sequence [123,124]. The arrangement of G-quadruplexes varies depending on
the G-track repetition length, number and kind of bases interrupting the G-tracks, ionic conditions,
etc., as reported in several studies [30,125,126]. Nevertheless, the principal structural features are
common for all G-quadruplexes: the arrangement of guanine quartets stabilized by Hoogsteen
hydrogen interaction, the presence of a (usually) monovalent ion (optimally K+) in the middle of the
G-quad bucket, single-stranded loops at the top and bottom parts of the structure and a four-way
junction where the G-quadruplex structure is attached to the double-stranded DNA. Current research
has emphasized the significance of G-quadruplexes in numerous cellular processes such as DNA
replication, telomere maintenance and the binding and activity of transcription factors [127–129].
Hot-spot mutant p53 proteins bind weakly or do not bind to p53 target sequences [2,130] and these
weak p53-DNA interactions are insufficient for effective transcription activation [131–134]. On the
other hand, both wild type and mutant p53 (R273H) are able to bind G-quadruplexes. The C-terminal
domain is therefore suggested as more important for G-quadruplex DNA binding compared to the
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central p53 domain, which is in agreement with the in silico model of p53-G-quadruplex interaction
(Figure 3C). Interestingly, p53-DNA binding affects transcription from G-rich regulatory regions [135].
Mutant p53 proteins are known to modify transcription levels via their interactions with intronic and
intergenic sequences predisposed to form non-B DNA structures [136]. Enrichment of mutant p53
(R273H) bound to regions from 1 kb upstream to 1 kb downstream of TSSs overlaps with CpG islands
and about 75% of mutant p53 binding regions are predicted to contain G-quadruplex motifs [135].
This suggests the ability of p53 to recognize quadruplex DNA structures in vivo. It was also shown
that p53 stabilizes G-quadruplex structures, but the p53 interaction with the G-quadruplex could
be also mediated by interaction with other G-quadruplex recognizing transcription factors, such as
ETS1, SP1 and others [137–139]. p53 interacts with the G-quadruplex-forming sequence present in the
MYC promoter and represses transcription in vitro and in human cell lines [107]. Interestingly, some
quadruplex-stabilizing ligands, such as N-methyl mesoporphyrin IX, boost the interaction of p53 to
the G-quadruplex formed by the human telomeric repeat sequence [108].

2.3.5. Loops and Cruciforms

The presence of various repetitive sequences is typical for the genomes of all organisms. Many
trinucleotide repeats have been described in the human genome, and their expansion is associated
with neurological, degenerative and muscular diseases such as Friedreich’s Ataxia and Huntington’s
disease [42,140,141]. Genomic elements with trinucleotide repeats are very flexible and are able to
form non-B DNA structures such as loops, hairpins, triplexes and slipped-strand structures [142,143].
An important regulatory role has been ascribed also to inverted repeats. Such palindromic sequences
are often identified as protein targets [103,144,145]. They are prone to form cruciform structures, which
consist of a branch point (represented by a four-way junction), a stem (double-stranded) and a loop
(single-stranded). Depending on the length and on whether the inverted repeat is direct or separated
by a spacer, cruciforms with shorter or longer single-stranded loops are formed (Figure 4).

Inverted repeats are present non-randomly in the genome and are often located in the proximity
of breakpoint junctions, promoters, and replication origins [57,144,146]. Interestingly, many p53
target sequences in double-stranded DNA with a high transactivation activity in vivo contain inverted
repeats [2,85,106] and there is a correlation between the presence of an inverted repeat in the p53
target site and enhancement of p53-DNA binding [92,147]. The formation of cruciforms within p53
double-stranded target sites facilitates p53-DNA binding in topologically constrained DNA [85].
A correlation between inverted repeat presence in the CDKN1A gene promoter and effective p53
binding was demonstrated by ChIP [104,148]. Analyses of genome-wide p53 ChIP data after cellular
stress showed that the majority of sequences contain at least part of the p53 consensus sequence
(93%) and 2245 of 2250 (99%) sequences contain at least one inverted repeat [52]. Moreover, inverted
repeats are often present in close proximity (within 20 bp) of p53 target sequences (76% of p53-ChIPed
sequences) and 34% contained the inverted repeat directly within the 20 bp long p53 consensus
sequence (Figure 5). ChIP and yeast transactivation assays have demonstrated the preferential binding
of p53 to cruciform-forming inverted repeats within p53 target sequences [104,106]. Most probably,
better accessibility and stability of the protein-DNA complex leads to the improved p53 function at
the fully symmetrical p53 target sites. An enhancement effect of a DNA loop in close proximity to a
p53 B-DNA target has also been shown for triplex DNA [37] and for DNA loops formed by triplex
expansion associated with Friedreich’s ataxia [43]. The presence of single-stranded loops and/or
four-way junctions in a cruciform could contribute to the p53-DNA binding at cruciform-forming
target sequences. Interestingly, p53 interaction with Holliday junctions (another four-way junction
motif occurring in DNA) has been reported [99] and it was suggested that p53 plays an important
role in protecting this structure against endonuclease cleavage. The p53 protein has been described to
exhibit a binding preference to cruciforms even in the absence of a target sequence, demonstrated using
various techniques including direct visualization by atomic force microscopy [149,150]. The correlation
between negative DNA supercoiling (facilitating local transitions from B-form DNA into a cruciform at
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2.3.6. Influence of Epigenetic Changes to p53-DNA Interactions

It is well-known that many basic biological processes including gene expression depend on
chromatin epigenetic states, such as DNA methylation [151] and histone modifications [152], and
on noncoding RNA-mediated regulation [153]. Changes in these epigenetic features are seen in
neurological diseases and cancer and become important in clinical medicine [154]. These epigenetic
phenomena are important for p53-DNA binding as well for local DNA structure formation. p53
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targets are typically associated with histone marks of transcriptionally active chromatin (H3K4me3 and
H3K36me3) in normal cells and cancer cell lines typically have lower levels of DNA methylation [155].
It was experimentally validated that methylation changes alter p53 regulation [156]. Examination
of genome-wide data sets shows three classes of p53 targets—near transcriptional start sites (TSS),
promoter-distal enhancer elements with dynamic histone acetylation upon p53 binding, and within
regions of inaccessible chromatin [157]. These data point to p53 acting as a pioneer transcription
factor [158], similarly to the FoxA transcription factor [159]. The presence of local DNA structures are
associated with an active genome when transcription and replications lead to increased superhelicity
favor local DNA structure formation and dynamic changes in DNA supercoiling in vivo determine DNA
accessibility for transcription [34]. These changes of superhelicity lead to cruciform extrusion [160].
The positive effect of p53 binding to supercoiled DNA has been demonstrated [85,86] and DNA
supercoiling changes transcription in general [161,162]. Interestingly, loss of histone modifications
(H3K4me3 and H3K9/14ac) around the TSS correlates with G-quadruplex prone sequences [163].
G-quadruplex ligands change epigenetic modification and, therefore, targeting of local DNA structures
was suggested as a tool for specific epigenetic reprogramming [164]. Considering that cruciform
structures as well for G-quadruplex have been shown to protect DNA from methylation [165,166],
formation of local DNA structures could be an important additional factor in the p53 pioneering and
DNA binding activities.

3. Conclusions

p53 binding to DNA is a basic feature important for its transcriptional-regulation function.
In dependence of chromatin state, p53 shows the ability to bind to its target sequences in double-stranded
DNA (reviewed in [2,46–52]) and/or to local non-B DNA structures [83] that may or may not be associated
with a p53 consensus target sequence (Figure 6).Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 10 of 18 
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These local DNA structures represent a variety of DNA targets also as single-, three-, and
four-stranded DNA. Interestingly, simultaneous binding of p53 to sequence- and structure-specific
motifs shows remarkable cooperativity, evidenced by the proximity effects of triplex DNA located close
to p53 double-stranded target DNA [37] and by the structural transition of symmetrical consensus target
sequences from double-stranded B-DNA into corresponding cruciform structures [104] (Figure 4). These
synergistic effects are observed not only at the level of increased protein-DNA binding affinity but also at
the level of enhanced transcriptional activity. Some other local DNA structures, such as G-quadruplexes,
have been identified as targets for mutant p53 proteins, which have lost sequence-specific DNA binding.
In general, the C-terminal part of p53 is required for its effective structure-selective DNA binding.
Moreover, tetrameric p53 binds DNA in a cooperative manner and activation of the apoptosis program
is dependent on DNA binding cooperativity, while p53 mutants with reduced or increased cooperativity
change the cell fate [167,168]. Mutant p53 with “gain of function” properties, which can be related
to the mutant protein binding to certain structural motifs such as G-quadruplexes, plays a critical
role in human tumor progression. It has been demonstrated that functional loss of p53 influences cell
microenvironments and promotes malignant progression [169]. Mutant p53 also promotes invasiveness
of cancer cells by extensive gene upregulation, for example, murine mutant p53R270H (the equivalent
of human R273H) is associated with activation of inflammatory and innate immune pathways [170].
It was also demonstrated that dominant-negative and “gain of function” features of mutant p53 could
be reduced by allele-specific siRNAs against p53 hotspot mutants [171]. While mutant p53 imbalanced
p53-DNA binding equilibrium, targeted degradation of mutant p53 seems to be a promising strategy
for treatment [172]. Moreover, the role of p53 isoforms has emerged in recent years [70,173,174]. Due
to the altered C-terminal parts of p53β and p53γ isoforms, their DNA binding specificity to local
DNA structures can be very different in comparison to the canonical p53α isoform. The evaluation of
individual p53 mutants and p53 isoforms interacting with local DNA structures will shed light on the
complex regulatory pathways controlled through orchestration of processes involving the p53 protein.
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