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Reactive oxygen species (ROS) are a group of oxygen-containing highly-reactive
molecules produced from oxidative metabolic processes or in response to intracellular
signals like cytokines and external stimuli like pathogen attack. They regulate a range of
physiological processes and are involved in innate immune responses against infectious
agents. Deregulation of ROS contributes to a plethora of disease conditions. Sialic acids
are carbohydrates, present on cell surfaces or soluble proteins. Sialic acid-binding
immunoglobulin-like lectins (Siglecs) recognize and bind to sialic acids. These are
widely expressed on various types of immune cells. Siglecs modulate immune
activation and can promote or inhibit ROS generation under different contexts. Siglecs
promote ROS-dependent cell death in neutrophils and eosinophils while limiting oxidative
stress associated with chronic obstructive pulmonary disease (COPD), sickle cell disease
(SCD), coronavirus disease-2019 (COVID-19), etc. This review distinguishes itself in
summarizing the current understanding of the role of Siglecs in moderating ROS
production and their distinct effect on different immune cells; that ultimately determine
the cellular response and the disease outcome. This is an important field of investigation
having scope for both expansion and medical importance.

Keywords: chronic obstructive pulmonary disease, coronavirus disease (COVID-19), Leishmania donovani,
neutrophil, reactive oxygen species, siglecs, Siglec-sialoglycan, eosinophil
INTRODUCTION

Sialic acids (SA), a family of nine-carbon acidic monosaccharides, are commonly found at terminal
positions in glycan chains attached to glycoproteins/glycolipids (sialoglycans) present on cell
surfaces or soluble proteins. So far, nearly 50 different derivatives of SA have been discovered
(1). Sialic acids are commonly found in higher mammals but also in several protozoans, bacteria,
and fungi (1). Sialic acid-binding immunoglobulin-like lectins (Siglecs) are a class of glycan-binding
proteins that recognize and bind to these SA (2–4). Several Siglecs modulate cellular activity and
response via signaling through cytoplasmic regulatory motifs.

Reactive oxygen species (ROS) refers to oxygen-derived, highly reactive molecules which include
superoxide anion and hydrogen peroxide (5). ROS are produced inmitochondria as by-products of the
electron transfer chain during aerobic respiration. Phagocytic cells (macrophages, neutrophils, and
org November 2021 | Volume 12 | Article 7585881
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dendritic cells) also generate ROS and reactive nitrogen species
(RNS) as components of “oxidative burst” for degrading
biomolecules and internalized pathogens (6).

In this review, we have attempted to highlight how Siglec-
sialoglycan interactions modulate ROS generation in various
immune cells depending on physiological states or infections.

Distribution and Classification of Siglecs
Most immune cells of hematopoietic origin express one or more
kinds of Siglecs (7). Although resting T cells show low Siglec
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expression, a few T cell subsets express Siglecs (particularly Siglec-5,
7, 9, and 10) after activation or in specific contexts (8–10) (Table 1).
Some Siglecs, like Siglec-9, are expressed on several immune cells.
However, expression of certain Siglecs is restricted to particular cell
types; like Siglec-1 (Sialoadhesin) on monocytes, macrophages, and
dendritic cells (15). Siglec-2 (CD22) is predominantly observed on
B cells though it is also expressed at low levels on mast cells,
dendritic cells, and basophils (17–20) (Table 1).

Siglecs are classified into two major groups based on sequence
homology. The first group (Siglec-1, CD22, Siglec-4, and
TABLE 1 | Distribution of human and mice siglec families on different cells, ligand preferences and their common functions.

Siglecs Distribution on cells Linkage preference on
sialylated ligands

Functions References

Evolutionary conserved siglecs
Siglec-1
(CD-169)

Macrophages a2,3 Recognition and phagocytosis of sialylated pathogens.
Modulates immune response through cell-cell interactions

(7, 11–15)

Siglec-2
(CD22)

Predominantly on B-cells, also
detected in
Dendritic cells
Mast cell
Basophils,
Gut eosinophils of mouse

a2,6- preferably, Neu5Gc/
Neu5Ac

Regulates B cell survival, signaling and homeostasis (7, 11, 12,
14, 16–20)

Siglec-4
(MAG)

Neuronal cells a2,3> a2,6 Secures myelin-axon associations through binding with
axonic gangliosides GD1a and GT1b.
Regulates axon growth and survival

(7, 12)

Siglec-15 Osteoclasts, macrophages a2,6 Regulates osteoclast differentiation, involved in regulation of
immune response

(11–13, 16)

Siglec-3 (CD-33) related siglecs
Siglec-3 Myeloid progenitors a2,6> a2,3 Involved in immune inhibitory functions (7, 11, 12)
Siglec-5 Monocytes, neutrophils,

activated T cells
a2,3 Involved in pathogen phagocytosis and clearance of sialylated

substrates
(7, 9, 10, 12)

Siglec-6 Trophoblasts,
Mast cells
B cells

a2,6- is preferred Highest expression levels in placenta but function in gestation
still not explored

(11, 12)

Siglec-7 Neutrophils,
monocytes,
mast cells, NK cells, CD8-T cell
subset

a2,8- is preferred Inhibitory in nature, down regulates T cell signaling (11, 12)

Siglec-8
(Human)

Eosinophils, basophils,
mast cells

a2,3- and sulphated
ligands

Involved in cellular apoptosis (7, 12)

Siglec-F
(closely related functional
murine paralog)

Eosinophils
Macrophages

Siglec-9
(Human)

Neutrophils, monocytes,
NK cells, dendritic cells, B cells,
CD8-T cell subset

a2,3 or a2,6- or sulfated
ligands

Involved in cellular response apoptosis and inhibition of
immune response

(7, 9, 10, 12)

Siglec-E
(murine paralog)

Neutrophils
Monocytes
dendritic cells

Siglec-10
(Human)

NK cells, B cells,
monocytes
eosinophils, T cells

a2,3 or a2,6 Inhibits calcium signalling mediated by B cell receptor (7, 10, 11)

Siglec-G
(Murine paralog)

B cells,
dendritic cells

Siglec-11 Macrophage, B cells, microglia,
ovary stroma

a2,8- is preferred Involved in pathology of neurodegenerative diseases (7, 11)

Siglec-14
(Human)

Monocytes, neutrophils a2,3 Functions as an activating receptor through association with
DNAX Activating Protein of 12 kDa (DAP12)

(7, 14)

Siglec-H
(Murine paralog)

Monocytes
neutrophils Microglia

Siglec-16 Microglia a2,8- is preferred Involved in Pathology of neurodegenerative disease (7, 11)
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Siglec-15) has low sequence similarity between each other but is
conserved across species. In contrast, CD33-related Siglecs
(CD33r Siglecs) are closely related but not highly conserved
(21). Siglecs have been extensively studied in humans, mice, and
few other animals. Humans express around 11 different CD33r
Siglecs (Siglec-3,-5,-6,-7,-8,-9,-10,−11,−14,−16,−17) while mice
express only a few (Siglec-3,-E,-F,-G,-H) (11). Therefore, murine
equivalents of only a few human Siglecs are known (Table 1).

Siglec Affinities and Ligand Preferences
Sialic acids are attached to glycans via a-glycosidic linkages
formed between its C2 with C3 (a2,3) or C6 (a2,6) positions of
galactose or C6 position of N-acetylgalactosamine. Polymers of
SA are termed polysialic acid, where successive SA residues are
primarily linked via a2,8 linkages, or by a2,9 linkages in a few
cases (1). Different Siglecs have characteristic affinities towards
specific sialoglycans based on the SA position, linkages, and
surrounding sugars (Table 1). Siglec-9 recognizes SA linked to
galactose via a2,3/a2,6 linkages and other sialylated structures
like sialyl Lewis-x (SLex), 6-sulfo-SLex (22, 23). However, Siglec-
8 prefers a2,3 linked SA attached to sulfated galactose, as seen in
6-sulfo-SLex (22). Ligand preferences of several Siglecs have been
elucidated through glycan-binding arrays, molecular modeling
studies, cell-based binding assays, etc. (22). Siglecs can bind
sialoglycans present on the same cell (cis-interactions) or
extracellular ligands present on neighboring cells or secretory
glycoproteins (trans-interactions).

Siglec Clustering Enhances Their
Signaling Activity
Siglec-sialoglycan binding is weak and transient (24). Interaction
between Siglecs with multivalent ligands leads to Siglec
clustering, which increases the strength of Siglec-ligand
binding and initiates cellular signaling (22, 25–27). Multivalent
ligands present several Siglec-binding sites. These may be
extracellular ligands, antibodies, synthetic agonists interacting
with Siglecs in trans, or cell surface sialoglycans, membrane-
bound synthetic ligands binding in cis (26, 27). Siglec-clustering
into nanodomains was revealed by high-resolution microscopy
(28, 29). Siglec clustering into signaling domains by anti-Siglec
antibodies is shown (Figure 1A).

Function
Siglecs are transmembrane proteins that generally interact with
sialoglycans through the carbohydrate recognition domain
present in their extracellular N-terminal immunoglobulin-like
folds (V-set domain). Several Siglecs contain immunoreceptor
tyrosine-based inhibitory motifs (ITIMs) in their cytoplasmic
domains while some are associated with adaptor proteins that
contain immunoreceptor tyrosine-based activatory motifs
(ITAMs) (7, 30). Signaling via ITIM leads to recruitment of
Src homology region domain-containing phosphatase-1 and 2
(SHP-1, SHP-2) which inhibits phosphorylation-based cellular
signaling pathways (14, 31). Siglec-sialoglycan binding leads to
modulation of cellular activity due to signaling via either ITIMs
(inhibitory) or ITAMs (activatory) motifs (21).
Frontiers in Immunology | www.frontiersin.org 3
Siglecs play several roles in normal physiology, including
immunomodulation, phagocytosis of sialylated pathogens
(mainly Siglec-1); regulation of B cell signaling and survival
(CD22); maintenance of axon-myelin interactions, axon growth
(Siglec-4); regulation of osteoclast differentiation (Siglec-15), etc
(12–14, 16). Distribution, ligand preference, and functions of a
few human Siglecs have been compiled in Table 1.

Effect of ROS
ROS has a direct detrimental effect on lipids, proteins, and DNA.
However, low levels of ROS are required for maintaining
metabolism, signal transduction, cell proliferation, apoptosis,
and aging process (32). Oxidative stress due to excessive ROS
generation is implicated in asthma, chronic obstructive
pulmonary disease (COPD), diabetes, cardiovascular diseases,
auto-immunity, and neurodegenerative diseases (5). Phagocytic
cells express a multi-subunit NADPH-dependent phagocytic
oxidase (Phox or NOX2), which produces ROS as a
component of antimicrobial defense (33). Some components of
NOX2 (p67phox, p47phox, p40phox, a small G protein-rac1, rac2),
are localized in the cytosol and some are membrane-associated
(gp91phox, p22phox). The activity of membrane-associated
gp91phox (34) is indispensable for NOX2 function, which uses
NADPH as an electron donor to generate superoxide anion
(O2*

-) by oxygen reduction (35–37).

Siglec-Based Modulation of ROS
Production
Siglecs modulate ROS production through Siglec-sialoglycan
binding, signaling through ITIMs or direct protein-protein
interactions. Siglec-9 was identified as a potential ligand for
human amine oxidase type 3 (hAOC3) by phage peptide library-
based screening (38). Flow cytometry confirmed the binding
between recombinant Chinese Hamster Ovary cells (CHO)
expressing hAOC3 and CHO-expressing Siglec-9 (39). Surface
plasmon resonance (SPR) based binding assays demonstrated
that Siglec-9 C22 domain binds to the active site of hAOC3.
Introduction of point mutations followed by SPR-based binding
assays identified Arg284 and Arg290 in Siglec-9 to be critical for
its binding with hAOC3. Such Siglec-binding with oxidase
enzyme through protein-protein interactions enhances hAOC3
activity and generates hydrogen peroxide (39). Siglec-9 also
binds to sialoglycoprotein hAOC3 through sialic acid-Siglec
binding via its V domain (40).

Siglec-E knockout neutrophils infected with non-sialylated
Escherichia coli strains (Gram-negative bacteria) produced
significantly less amount of ROS than wild-type neutrophils,
suggesting that Siglec-E promoted ROS generation (41).
Silencing Siglec-E or Siglec-9 (the human equivalent of
Siglec-E) also reduced ROS generation in neutrophils/THP-1
cells after E.coli infection (41). Immunoprecipitation revealed
that endogenous Siglec-E associates with NOX2 subunits
(gp91phox/p47phox) in E.coli-infected murine neutrophil and
Tyr432 residue was found to be critical for Siglec-E-p47phox

binding. Cells overexpressing Siglec-E with mutated Tyr432
also produced lower amounts of ROS following E.coli infection.
November 2021 | Volume 12 | Article 758588
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FIGURE 1 | Schematic representation of ROS modulation by Siglecs in immune cells under different pathological conditions. (A) Schematic representation of
clustering of Siglecs on immune cell surface induced by interaction with various multivalent ligands. (B). Siglec-crosslinking using anti-Siglec antibodies promote
ROS generation which triggers cellular apoptosis in resting neutrophils and eosinophils. (C) Uromodulin binding leads to enhanced Siglec-9 activation in
neutrophils in vitro, inhibiting ROS production. This interaction possibly limits excessive inflammation during urinary tract infection. (D) Increased expression of
soluble Siglec-9 (sSiglec-9) lowers Siglec-9-sialic acids engagement on neutrophils, leading to increased inflammation and ROS generation in chronic obstructive
pulmonary disease (COPD). (E) Cancer cell sialoglycoproteins engage Siglecs on neutrophil via Siglec-sialoglycan interaction to reduce ROS production, which
enhances cancer cell survival. (F) Siglec-E engagement with neural sialoglycoproteins suppresses ROS generation by microglial cells and prevents oxidative
stress mediated neuro-degeneration. (G) Sialylated bacteria like Group B Streptococcus (GBS) and Pseudomonas aeruginosa interact with Siglec-9 present on
neutrophil using sialic acids present on their surface. Additionally, non-sialylated GBS b-protein of GBS also binds with Siglec-5 present on neutrophil in a sialic
acid-independent manner. Both Siglec-sialoglycan and Siglec-protein interactions encourage pathogen survival through subdued immune response. However,
the exact binding site of protein mediated interaction between Siglec-5 and GBS b-protein, remains unknown. (H) Interaction of macrophage Siglec-E with
sialylated pathogens like Pseudomonas aeruginosa and Leishmania donovani respectively subdues ROS production for disease progression.
Frontiers in Immunology | www.frontiersin.org November 2021 | Volume 12 | Article 7585884
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This confirmed that Tyr432 in the ITIM domain of Siglec-E is
needed for its association with NOX2 subunit p47phox which
promotes ROS production (41).

Interestingly, treatment of primary human neutrophils with a
synthetic Siglec-9 agonist (pS9L) or anti-Siglec-9 antibody also
leads to ROS generation which is inhibited upon SHP-1/2
inhibitor treatment. This indicates that Siglec-9 engagement
also promotes ROS generation through SHP-1/SHP-2
signaling (42).

Siglec Engagement on Immune Cells
Modulates ROS Generation
Eosinophils
Treating resting eosinophils with anti-Siglec-8 monoclonal
antibodies and secondary polyclonal antibodies leads to
extensive crosslinking or clustering of Siglec-8 (Figure 1B, left
panel). Siglec-8 clustering was followed by ROS generation,
reduction in mitochondrial membrane potential, and cleavage
of caspases; culminating in cellular apoptosis (43, 44).
Eosinophils incubated with pro-survival cytokine IL-5 show
further increased cell death upon Siglec-8 cross-linking (45).
These IL-5-activated eosinophils exhibit caspase-independent
necrotic death, involving ROS generation and increased
phosphorylation of MEK1, ERK1/2 (46). Treatment with ROS
inhibitors confirmed that Siglec-crosslinking-mediated ROS
production is essential for triggering eosinophil death in both
resting and activated cells. Produced ROS was accumulated
intracellularly in eosinophils (47).

In contrast, eosinophils stimulated with pro-survival cytokine
IL-33 also exhibit enhanced cell death after Siglec-8 cross-
linking, but without any significant increase in ROS generation
(48). The lack of ROS production in IL-33-stimulated
eosinophils remains to be explored.

Siglec-F shows a similar ligand binding profile like Siglec-8
and is also expressed on eosinophils. It is considered as a
functionally convergent paralog of Siglec-8 in mice (49, 50).
Mice treated with anti-Siglec-F antibodies show induction of
caspase-dependent eosinophil death independent of NADPH
oxidase activity and ROS production (51).

Binding Siglec-8 with monoclonal antibodies or synthetic
Siglec-8 ligands leads to increased expression of CD11b/CD18.
CD11b/CD18 heterodimer belongs to the b2-integrin subgroup,
which increases the adhesiveness of IL-5-stimulated eosinophils.
Such Siglec-8 engagement also leads to a time-dependent
increase in ROS production, dependent on b2-integrin
expression (52). NADPH oxidase (NOX) enzyme was
identified as the source of ROS (52). This indicates antibodies
or ligand-based Siglec-8 binding triggers ROS production
through probable modulation of NOX activity.

Neutrophils
Neutrophils are the most abundant type of immune cells present
in blood. Neutrophils perform immunosurveillance and
respond to infiltrating microbes by phagocytosis, respiratory
burst, degranulation, and formation of neutrophil extracellular
traps (NETs) (53). Following successful clearance of microbes,
responding neutrophils generally undergo apoptosis.
Frontiers in Immunology | www.frontiersin.org 5
However, pro-survival cytokines or growth factors in the
milieu often prevent such apoptosis, leading to chronic or
acute inflammations.

Antibody-based cross-linking of Siglec-9 triggers apoptosis in
normal resting neutrophils due to ROS generation and caspase
cleavage (Figure 1B, right panel) (54). Interestingly, neutrophils
isolated from patients suffering from inflammatory conditions
like rheumatic arthritis, acute septic shock, etc. show enhanced
expression of Siglec-9 and increased death upon Siglec-9 cross-
linking. Neutrophils stimulated with GM-CSF, interferon-a or
interferon-g (IFN-a/g) similarly exhibit increased cell death after
Siglec-9 cross-linking (47).

Such cytokine-stimulated neutrophils mainly showed non-
apoptotic cell death upon Siglec-binding, characterized by
cytoplasmic vacuolization, non-involvement of caspases, and
only ROS generation. However, ROS generated by NADPH
oxidase was identified to be crucial in both kinds of cell
death (54).

Neutrophils express adhesion factors (like CD11b containing
b2-integrins) for attachment and migration from blood to other
sites of injury or infection. They adhere to fibrinogen-coated
plates via CD11b-fibrinogen binding, leading to integrin-
triggered ROS production (55). Additionally, Siglec-E binding
with the sialoglycoprotein fibrinogen further increases ROS
generation via NADPH-oxidase activity, which required
fibrinogen-CD11b binding. In summary, Siglec-8 in
eosinophils (52) and Siglec-9/E in neutrophils (54, 55)
modulate NOX activity for promoting ROS generation.

Additionally, Siglec-E-mediated b2-integrin-dependent ROS
generation prevented migration of neutrophils into the lungs of
mice exposed to lipopolysaccharide, which was reversed upon
inhibition of NOX activity (55).

In Inflammation
In normal physiology, Siglec-sialoglycan mediated signaling
modulates immune cell activation, their response, ROS release,
etc for preventing excessive inflammation and tissue injury (6).

Urinary Tract Infections (UTI)
Tamm-Horsfall protein (THP, uromodulin), is the most
abundant protein in urine. It is a sialoglycoprotein that binds
to Siglec-9/Siglec-E. Uromodulin treatment of neutrophils leads
to reduced ROS generation, lowered chemotaxis, and reduced
killing of uropathogenic Escherichia coli (56). During urinary
tract infections, Uromodulin-Siglec-9 interaction possibly limits
excessive neutrophil infiltration, reduces ROS generation,
thereby modulating tissue inflammation (Figure 1C).

Chronic Obstructive Pulmonary Disorder (COPD)
Siglec-based regulation of ROS levels is observed in COPD
patients. These patients exhibit elevated levels of the
extracellular domain of Siglec-9 (soluble Siglec-9/sSiglec-9)
in their plasma along with neutrophil hyperactivation,
chemotaxis, and increased oxidative stress (57) (Figure 1D).
Healthy neutrophils treated with sSiglec-9 in vitro show lower
binding between neutrophil surface Siglec-9 and sialoglycans
and thereby reducing Siglec-9 activation. This leads to
November 2021 | Volume 12 | Article 758588
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increased ROS production and chemotaxis by neutrophils (57).
Expression of Siglec-9 was upregulated in peripheral blood and
alveolar neutrophils in COPD patients, possibly to enhance
Siglec-based inhibitory signaling in response to neutrophil
hyperactivation (57).

Sickle Cell Disease (SCD)
Siglec-based regulation of neutrophil activation is also seen in
sickle cell disease (SCD). Neutrophils cultured with healthy
erythrocytes showed lowered activation and ROS generation.
Healthy erythrocytes suppress neutrophil activation by engaging
with neutrophil Siglec-9 via sialylated erythrocyte membrane
proteins like glycophorin A (58). In SCD, erythrocytes rapidly
age, losing membrane elasticity and undergoing changes
in cell membrane composition and protein expression.
SCD-erythrocytes contain more SA compared to healthy
erythrocytes but show lowered binding with neutrophil-
Siglec-9 (59). Consequently, culturing healthy neutrophils with
SCD erythrocytes leads to increased ROS release due to lowered
Siglec-9 activation. Hyperactivation of neutrophils may lead to
systemic inflammation, vaso-occlusion, etc. commonly observed
in SCD.

Cancer Progression
Several types of cancers exhibit increased sialylation (60, 61).
Neutrophils incubated with cancerous cells in vitro showed
enhanced Siglec-9 engagement with cancer cell sialoglycoproteins,
which increased SHP-1 recruitment. Consequently, ROS
production and killing of tumor cell was inhibited (62)
(Figure 1E). Mice lacking Siglec-E (murine equivalent of Siglec-
9) show increased neutrophil activity, immunosurveillance, and
killing of injected tumor cells (62).

Surprisingly, established tumors grew quicker in mice lacking
Siglec-E. Tumor-infiltrating macrophages in such mice showed
an M2 type phenotype. Depending on environmental stimuli,
macrophages are activated into M1 (pro-inflammatory,
eliminates tumor cells) or M2 (promotes cell proliferation,
wound repair) macrophages (63). Peritoneal macrophages
from mice lacking Siglec-E showed upregulation of M2
polarization markers upon co-culture with cancerous cells.
Therefore, depending on the stage of cancer progression, the
absence of Siglec-E can enhance cancer cell killing (by neutrophil
activity like ROS generation) or promote tumor growth (by
inducing macrophage M2 polarization).

Coronavirus Infections
During the COVID-19 pandemic, coronavirus infections have
been linked with uncontrolled inflammatory responses,
hyperactivation of neutrophils, and NETs formation (64).
Incubation with serum/plasma from COVID-19 patients
triggered NETosis in neutrophils from healthy donors (65, 66).
Siglec-9 engagement inhibits neutrophil activity and induces
apoptosis. A Siglec-9 agonist, a glycopolypeptide bearing
modified SA residues and lipid moieties (pS9L), induces Siglec-
9 clustering through cis interactions in macrophages after
membrane insertion (28). Incubation of neutrophils with this
agonist leads to ROS generation via SHP-1/2 and blocked
Frontiers in Immunology | www.frontiersin.org 6
NETosis induced by COVID-19 plasma or TLR 7/9 agonists
(42). This agonist may reduce inflammation by blocking
NETosis and by triggering neutrophil apoptosis through ROS
generation (54).

Polysialic Acid-Based Nanoparticles
Polysialic acids serve as multivalent ligands and activate Siglecs.
Treatment of neutrophils with phorbol 12-myristate 13-acetate
(PMA) induces NETosis and ROS generation. However,
incubating neutrophils with aliphatic amine latex nanoparticles
coupled to polysialic acids having <9 sialic acid residues, leads to
a reduction in PMA-induced ROS levels and NETs formation
(67). These polysialylated nanoparticles possibly function as
ligands for neutrophil surface Siglec-5. Similarly, injection of
polysialic acids having ~20 SA residues in transgenic mice
prevented ROS generation by Siglec-11-expressing phagocytes.
Age-related macular degeneration happens due to excessive ROS
production, complement deposition which may be prevented by
targeting siglec-11 via polysialic acids (68).

All these studies suggest that enhancing Siglec-sialoglycan
engagement may be beneficial for controlling ROS levels in
inflammatory disorders.

Neurodegenerative Diseases
Microglia are immune cells resident in the central nervous system,
responsible for detecting invasive pathogens and maintaining
tissue homeostasis by removing damaged, apoptotic or
unnecessary synapses, neurons, and plaques. Microglial cells
produce ROS following the phagocytosis of apoptotic bodies.
However, oxidative stress in the central nervous system leads to
neurodegenerative problems. SA content is highest in mammalian
brains. Silencing Siglec-E expression in microglia confirmed that
microglial Siglec-E binds to the sialylated neuronal glycocalyx to
suppress ROS release following phagocytosis of neuronal debris
(69). Here, Siglec-E regulates microglial ROS to prevent
neurodegeneration (Figure 1F).

Early Aging
The lifespan of mammals is positively correlated with the
number of CD33r Siglec genes (70). Siglecs are responsible for
regulating ROS, particularly produced by activated phagocytes
via NOX enzyme, during inflammatory responses. ROS possibly
plays a role in early aging (71). Deletion of Siglec-E in mice
resulted in shortened lifespan with increased generation of ROS
and inhibition of ROS-detoxification systems (70). This
correlation was confirmed across 26 species and held true for
both activatory and inhibitory Siglecs (72).

Although a positive correlation exists between mammalian
lifespan and siglecs, further research is needed to clearly
understand how both the activatory and inhibitory siglecs are
able to regulate the specific signaling pathways and receptors
involved in neurodegenerative diseases.

Down-Regulation of ROS in the Infection Process
Through Siglec-Sialoglycan Interaction
The capsular cell wall on Group B Streptococcus (GBS) is
sialylated and associated with its virulence (73–77). These
November 2021 | Volume 12 | Article 758588
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sialoglycans interact with Siglec-9 on human neutrophils for
suppressing neutrophil oxidative burst and NETs formation,
thus leading to enhanced bacterial survival (Figure 1G). A
similar interaction was also reported with Siglec-E expressed
on murine macrophages (76, 78).

Additionally, Group A Streptococcus expresses high molecular
weight hyaluronan (HMW-HA). A similar sialylated molecule is
also expressed on human neutrophils. Thus, Group A
Streptococcus activates Siglec-9 on neutrophils through
molecular mimicry to subdue ROS production, decrease NETs
and apoptosis, for securing its existence inside the host (76, 79).

A few GBS strains express a non-sialylated b-protein
docked on their cell wall that can efficiently engage Siglec-5
(Figure 1G). Such interaction was confirmed through the
binding of SA-deficient mutant GBS with hSiglec-5-Fc.
Trypsin treatment prevents this interaction by degrading the
b-protein on the pathogen, indicating that binding was
protein-mediated and independent of SA (75). It remains to
be explored how non-sialylated proteins bind to Siglecs, as the
binding site and the mechanism of such binding is still
unknown. This association activated the inhibitory signaling
through the engagement of SHP1/2. Thus, suppressed host
immune responses like oxidative burst, repressed phagocytic
activity, and extracellular traps in the leucocytes, thereby
favoring pathogen persistence (75).

Likewise, we had reported the presence of SA in Pseudomonas
aeruginosa (PA) and identified a few sialoglycoproteins by mass
spectrometry (80). These sialoglycoproteins interact with several
human Siglecs via SA to enhance their pathogenicity (81–83).
Interaction of PA-SA with inhibitory Siglec-9 on neutrophils
reduced ROS production, elastase release, and decreased
NETs formation, which altogether suppressed the activation of
these immune cells (Figure 1G). Moreover, the association of
the bacterial SA with murine Siglec-E on macrophages
exhibited enhanced phagocytosis but reduced oxidative burst
(Figure 1H) (83).

Our group also had demonstrated that Leishmania donovani,
the causative agent of Indian visceral leishmaniasis displays
different derivatives of sialic acid on its cell surface (84).
Subsequently, it was also shown that various strains of
Leishmania species causing different forms of the disease
exhibited a differential distribution of SA on their surface.
Binding studies of sialylated virulent L.donovani strain with
soluble siglec-Fc chimeras displayed its high interaction only
with Siglec-1 and Siglec-5. Furthermore, we also reported that
these parasites interact with Siglec-E on murine macrophages
to subvert the host immune response (85, 86). ROS production
and other macrophage effector functions were upregulated
by silencing Siglec-E, which ultimately diminished the
parasite survival inside the host (83). This indicates that
Siglec-E suppresses ROS production in parasite-infected
macrophages (Figure 1H).

All this information supports the well-established immune-
inhibitory role of Siglecs in the promotion of pathogen survival
and disease progression. Thus, Siglecs at the host-pathogen
Frontiers in Immunology | www.frontiersin.org 7
interface can play a very important role in modulating the
immune response through regulating ROS production in the
immune cells.
DISCUSSION

The crucial role of Siglec-sialoglycan interactions in regulating
immune and inflammatory responses is increasingly becoming
relevant. Siglecs are being recognized as potential therapeutic
targets in various inflammatory disorders and cancer (87,
88). Strategies to target activatory or inhibitory Siglecs for
regulating immune response involve modulation of overall
sialylation, use of antibodies, or sialic acid mimetics (89–93).

Several studies demonstrate that Siglec-sialoglycan
interactions additionally promote as well as inhibit ROS
generation to control diverse cellular functions ranging from
apoptosis to maintenance of cellular life-spans. Such
interactions may be beneficial for modulating oxidative stress
as a part of anti-tumor, anti-inflammatory therapy. Siglecs may
induce immune-tolerance or suppress inflammation by depleting
ROS-producing cells or inhibiting ROS release. A few Siglec
agonists which enhanced Siglec-based suppression of ROS
production in inflammatory disorders have already been
demonstrated (28, 42, 67–69).

However, the consequence of Siglec-sialoglycan interaction
may vary depending upon the location of Siglec and the presence
of its cognate ligand in the surroundings. Also, some of the
Siglecs have redundant roles. More comprehensive studies are
required to define the outcome of such signaling events before
siglecs may be used as therapeutic agents. In this respect,
the role of Siglec-sialoglycan interactions and protein-protein
interactions in Siglec-based ROS regulation needs to be explored
in detail.
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