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THE BIGGER PICTURE Computational cell type deconvolution methods were developed to understand
the cellular heterogeneity in disease-related tissues from bulk RNA-seq data. Due to the presence of
strong batch effects, the performance of existing methods could fluctuate greatly when applied to
different datasets even with the latest development in batch normalization or platform-agnostic signature
designs. To tackle this issue, we proposed a DNN-based cell abundance estimation method with dataset-
specific training data populated from a certain number of calibrated samples from a target dataset using
DAISM, a data augmentation method using an in silico mixing strategy. DAISM-DNN enables accurate cell
type proportions prediction and is robust to random errors in the ground truth cell type proportions of
calibration samples. Importantly, we showed that with strict SOPs, it is possible to create a ‘‘train
once, reuse many times’’ DAISM-DNN model for multiple biomedical experiments without the need for
retraining.

Proof-of-Concept: Data science output has been formulated,
implemented, and tested for one domain/problem
SUMMARY
Understanding the immune cell abundance of cancer and other disease-related tissues has an important role
in guiding disease treatments. Computational cell type proportion estimation methods have been previously
developed to derive such information from bulk RNA sequencing data. Unfortunately, our results show that
the performance of thesemethods can be seriously plagued by themismatch between training data and real-
world data. To tackle this issue, we propose the DAISM-DNNXMBD (XMBD: Xiamen Big Data, a biomedical
open software initiative in the National Institute for Data Science in Health and Medicine, Xiamen University,
China.) (denoted as DAISM-DNN) pipeline that trains a deep neural network (DNN) with dataset-specific
training data populated from a certain amount of calibrated samples usingDAISM, a novel data augmentation
method with an in silico mixing strategy. The evaluation results demonstrate that the DAISM-DNN pipeline
outperforms other existing methods consistently and substantially for all the cell types under evaluation in
real-world datasets.
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INTRODUCTION

It has been shown that the cellular composition of immune infil-

trates in tumors is directly linked to tumor evolution and

response to treatments.1,2 A high intratumoral infiltration of lym-

phocytes and dendritic cells is a favorable prognostic marker for

cancer treatment,3,4 while a high stromal content of cancer-

associated fibroblasts and M2 macrophages has been shown

to be associated with poor outcomes.5,6 Particularly, recent

progress in immunotherapy has led to durable clinical benefits,

but only in a subpopulation of patients with ‘‘hot’’ tumor immune

microenvironments that are characterized by a high infiltration of

lymphocytes.7 Therefore, knowledge of the patient-specific im-

mune cell type proportion of solid tumors is invaluable in predict-

ing disease progression or drug response as well as stratifying

patients to select the most suitable treatment options.

In the past, fluorescence-activated cell sorting (FACS) and

immunohistochemistry (IHC) were used as gold standards to

measure the cellular components in a patient sample.8 FACS re-

quires a large number of cells, which limits its clinical applica-

tions. On the other hand, IHC only provides information on the

cellular composition of a single biopsy slice, which may not

represent the full tumor microenvironment (TME) due to its

heterogeneity.

With the increasing availability of RNA quantification technol-

ogies, such as microarrays, high-throughput RNA-seq, and

NanoString, the large-scale expression profiling of clinical sam-

ples has become feasible in routine clinical settings.9 However,

these methods only measure the average expression of genes

from the heterogeneous samples in their entirety but do not

provide detailed information on their cellular compositions. To

bridge this gap, computational methods have been proposed

to estimate individual cell type abundance from the bulk RNA

data of heterogeneous tissues (see Table S1). In these methods,

the abundance of each cell type from the mixed sample is quan-

tified by aggregating the expression levels of the marker genes

into an abundance score (MCP-counter10), by measuring the

enrichment level of the marker genes using statistical analysis

(xCell11), or by using computational deconvolution methods,

such as least-squares regression (quanTIseq,12 EPIC13), support

vector regression (SVR) (CIBERSORT,14 CIBERSORTx15), or

nonnegative matrix factorization (NMF),16 to derive an optimal

dissection of the original sample based on a set of pre-identified

cell-type-specific expression signatures.

Undoubtedly, it is very challenging in practice for any of these

computational methods to meet the rigid robustness and reli-

ability requirements of biomedical or clinical studies over a broad

range of sample types and conditions as well as sequencing

technical platforms. For example, in deconvolution-based algo-

rithms, it is expected that the cell-type-specific expression

signature should truly represent the expression characteristics

of the underlying immune cells from the mixture samples. Unfor-

tunately, the signature gene expression levels employed in

existing methods are derived from either FACS-purified and

in vitro differentiated or simulated cell subsets or single-cell ex-

periments. The application of antibodies, culture material, or

physical disassociation may affect the cell status, resulting in

signatures that deviate from those of the actual cells in vivo.

Moreover, technical and biological variations between RNA
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quantification experiments may introduce additional confound-

ing factors that lead to sample or dataset-specific bias in cell

type estimation. Similarly, marker gene expression aggregating

methods such asMCP-counter require highly specific signatures

with genes that are exclusively and stably expressed in certain

cell types, which may not be possible for some immune cell

lineages.17

Recently, the development of deep neural networks (DNNs)

has granted computational power to resolve complex biological

problems using data-driven approaches with the vast trove of

data available from the biomedical research community pow-

ered by high-throughput genomic sequencing technologies.18,19

An application of DNN in cell type proportion estimation was pro-

posed in Scaden,20 where a neural network was trained on bulk

RNA-seq data simulated from the scRNA-seq data of different

immune cell types to predict cell type proportions from the

bulk expression of cell mixtures. A DNN-based model could

automatically create optimal features for cell fraction estimation

during the training process, thus alleviating the need to generate

reliable gene expression profile (GEP) matrices for different cell

types. Moreover, it learns the potentially intricate non-linear rela-

tionships between the gene expression composition and cell

type proportions from training data, which are not possible to

be captured by linear models used in other deconvolution algo-

rithms. However, as the performance of DNN is still subject to the

same statistical learning principle that test and train conditions

must match, it is challenging for a DNN-based algorithm to

deliver consistent performance under different experimental

conditions unless sufficient ground truth data are available to

train a specific predictive model for each distinct experimental

condition. As a DNN model usually requires tens of thousands

of training samples, the cost of implementing such a method

would be prohibitive in practice.

To address these challenges, we developed the DAISM-DNN

pipeline (Figure 1) that consists of an in silico data augmentation

method in collaboration with a DNNmodel to achieve robust and

highly accurate cell type proportion estimation. The DAISM-DNN

pipeline performs model training on a dataset augmented from a

calibration dataset comprised of a certain amount of the actual

data from the same batch of RNA-seq experiments, of which

the ground truth cell type proportions are available for calibra-

tion. DAISM-DNN is able to deliver consistent cell type abun-

dance profiling accuracies over different datasets. In addition,

it is highly customizable and can be tailored to estimate the

abundance of a large variety of cell types including those that

are difficult for existing methods to estimate due to the lack of

marker genes or GEP signature matrices, and immune cells

with overlapping markers or signature genes.21,22

RESULTS

There is no one-size-fits-all algorithm for cell type
proportion estimation
We first evaluated nine state-of-the-art cell type proportion esti-

mation algorithms, namely, CIBERSORT, CIBERSORTx, EPIC,

quanTIseq, MCP-counter, xCell, ABIS,21 MuSiC,23 and Scaden,

on 11 independent real-world datasets (n = 685 total samples)

acquired using different techniques or platforms (see Table

S2) and three simulated datasets generated with scRNA-seq,



Figure 1. The DAISM-DNN pipeline

A typical DAISM-DNN workflow involves the following steps to perform cell type proportion estimation. (1) Measure the ground truth proportions of the cell types

of interest in a certain portion of calibration samples from the batch of samples to be evaluated. (2) Perform bulk RNA-seq on the calibration and test samples to

obtain their expression profiles. (3) Perform data augmentation on the expression profiles of the calibration samples through in silicomixingwith the RNA-seq data

of purified cells or scRNA-seq data (DAISM). (4) Train a DNN using the augmented data. (5) Use the trained DNN model for cell type proportion estimation in the

remaining samples with their bulk expression profiles. Steps (1)–(4) could be optional if the DNN model has already been trained for the given RNA-seq

experimental conditions.
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bulk RNA-seq of purified cells, and microarray, respectively

(Experimental procedures). Importantly, themethods under eval-

uation included the most recent developments to improve the

cross-dataset robustness of cell type proportion estimation.

For CIBERSORT, we further included four established basis

signature matrices, namely, IRIS,24 LM22,14 TIL10,12 and

immunoStates25 in our evaluation. ImmunoStates used a basis

matrix built using 6,160 samples with different disease states

across 42 microarray platforms to mitigate the technical bias

from different platforms. In MuSiC, the deconvolution algorithm

further included appropriate weighting of genes showing cross-

subject and cross-cell consistency to enable the transfer of

cell-type-specific expression information from one dataset to

another. CIBERSORTx also implemented two batch correction

modes (B-mode and S-mode) to reduce the potential bias from

batch effects, and we tested with both modes.

Our results show that none of these methods were able to

address the estimation bias problem to deliver consistently bet-

ter results than others across multiple datasets. With regard to

the overall prediction accuracy across all cell types and data-

sets, the DNN-based method (Scaden) achieved the highest

average rank in terms of performance in RNA-seq data deconvo-

lution, while ABIS ranked first dealing with microarray data.
However, the improvement over most other methods was not

significant (Friedman test with post hoc two-tailed Nemenyi

test, a = 0:05; Figures S1, S2A, and S2B). In fact, as the perfor-

mance of DNN is still subject to the same statistical learning prin-

ciple that test and train conditions must match, Scaden, similar

to other algorithms, showed inconsistent performance on

different datasets. A t-distributed stochastic neighbor embed-

ding (t-SNE) analysis of all test datasets demonstrated signifi-

cant batch effects among those datasets, and the difference

among the testing samples was dominated by batch effects

rather than cellular composition (Figure S2C). It is understand-

able that traditional signature-based approaches could suffer

from batch effect when the dataset used to derive the signature

is very different from the test datasets. Furthermore, as both

signature-based and marker-based deconvolution methods as-

sume linear relationships between gene expressions and cell

type proportions, their performance could also be influenced

by the actual non-linear relationships between them (Figure S3).

This result partially explains the inconsistent performance of the

existing methods on different datasets and the challenge in

developing a one-size-fits-most cell type proportion estimation

method that performs uniformly well under different experi-

mental conditions.
Patterns 3, 100440, March 11, 2022 3
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DAISM-DNN enables accurate and robust cell type
proportion estimation
To overcome the aforementioned limitations, we developed

DAISM, a data augmentation method, to produce dataset-spe-

cific training data for DNNmodel training, provided that a certain

amount of RNA-seq data with ground truth cell type proportions

from the same batch are available for calibration. DAISM gener-

ates a large amount of dataset-specific pseudo training data by

performing in silico mixing of the calibration data with publicly

available scRNA-seq data or RNA-seq data from purified cells

at predefined ratios that are known to the training process.

A DNN model that predicts the cell type proportions for the re-

maining samples is then trained using the DAISM-generated

pseudo training data (Figure 1).

We evaluated the performance of DNN models trained from

DAISM-generated pseudo training data (DAISM-DNN) on the

RNA-seq dataset SDY67. A total of 250 samples with ground

truth proportions of five cell types (B cells, CD4 T cells, CD8

T cells, monocytes, and NK cells) from SDY67 were used for

analysis in this paper. The performance of DAISM-DNN was

measured from 30 permutation tests independently. For each

permutation test, we used 50 randomly selected samples from

SDY67 as testing data, and the remaining 200 samples were

served as calibration data, which were augmented with the

scRNA-seq data PBMC8k of the five cell types to create the

training data (Experimental procedures). DNN was trained on

DAISM-generated training data. For comparison, we also em-

ployed other cell type proportion estimation algorithms on the

same 50 testing samples. Overall, DAISM-DNN outperformed

all other algorithms by a significant margin from 30 permutated

tests for all the cell types under evaluation (Figures 2 and S4–

S6). When evaluated by the average per-cell-type Pearson cor-

relation between the predicted and ground truth cell type propor-

tions, DAISM-DNN achieved the highest correlation, followed by

Scaden (Figure 2B). In addition, DAISM-DNN had the lowest

root-mean-square error (RMSE) and the highest Lin’s concor-

dance correlation coefficient (CCC), followed by ABIS (Fig-

ure 2B). We replaced the scRNA-seq data with the RNA-seq

data of purified cells to generate training data with DAISM and

did not find a significant difference in performance between

the DNN models derived from these two approaches (DAISM-

scRNA versus DAISM-RNA; Figure S7).

We further tested DAISM-DNN on two microarray datasets

GSE59654 and GSE107990 with 153 and 164 samples, respec-

tively. Similarly, we randomly selected 50 samples as test data,

and the remaining samples were augmented with the scRNA-

seq data of the respective cell types to generate the training

dataset for DAISM-DNN. Results from 30 permutation tests

showed that DAISM-DNN outperformed the other algorithms

by a significant margin for all the cell types under evaluation (Fig-

ures 2 and S4–S6), except for GSE107990 where the difference

between ABIS and DAISM-DNN was not significant.

We extended our evaluation to a fine-grained cell population

of 11 cell types: naive B cells, memory B cells, naive CD4

T cells, memory CD4 T cells, regulatory T cells, naive CD8

T cells, memory CD8 T cells, monocytes, NK cells, macro-

phages, and myeloid dendritic cells (mDCs). The results were

compared with those of CIBERSORTx (S-mode and B-mode),

ABIS, and xCell, which are also able to produce estimations of
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fine-grained cell type proportions. Comparisons were only per-

formed on cell types where ground truth cell type proportion

information was available for each dataset (Figure S8). The re-

sults indicate clear advantages of DAISM-DNN over traditional

methods not only in overall performance but also for all individual

cell types and datasets in terms of the Pearson correlation (Fig-

ure S8B), RMSE, and CCC (Figure S8C).

To understand if the performance gain of DAISM-DNN indeed

comes from the data-specific training set generated using

DAISM, we generated in silico mixed training data using DAISM

with calibration data from SDY67 as well as the direct mixing of

RNA-seq data from sorted cells or scRNA-seq data of selected

cell types (Experimental procedures). All the in silico mixed

data from different mixing strategies followed the same cell

type proportions. The t-SNE plot revealed highly distinct clusters

of these datasets. Importantly, only the clusters of the DAISM-

generated dataset strongly overlapped with SDY67, while the

clusters from the remaining datasets showed a clear gap from

SDY67, demonstrating strong batch effects between them and

the real samples (Figure 3). We also used a combination of simu-

lated training data and real data with a priori cell fraction informa-

tion as suggested in Menden et al.20 to train DNN models. We

integrated five RNA-seq real-world data, including 200 samples

excluded for testing of SDY67, with simulated training data

generated by scRNA-seq data respectively. The training data

size was kept the same in these separate trainings. Obvious per-

formance gains were observed only when calibration samples

largely overlapped with the simulated training dataset. Further-

more, DNN models trained with DAISM-generated training

datasets achieved significantly better performance than those

trained with other in silico training data (Figure 3B), demon-

strating the critical role of training data in determining the perfor-

mance of DNN-based models and the effectiveness of DAISM in

creating a training dataset that matches the intrinsic distributions

of the real-life data to enable highly accurate cell type proportion

estimation.

In addition, we asked whether DAISM-generated training sets

can be similarly leveraged by machine learning models other

than DNN to deliver the same performance gain. To this end,

we performed experiments on k nearest neighbor regression

and SVR. Interestingly, although these two methods were able

to achieve better prediction performance when real-life samples

were included in the training sets, they were not able to gain

further performance improvement when the training sets were

augmented with DAISM-generated data, as these non-neural-

network models lack the ability to fit a sophisticated model to-

ward better prediction when a large amount of high-quality

data are available. As a result, their performances were not as

good as DAISM-DNN (Figure S9).

We further asked whether the performance gain of DAISM-

DNN is mainly due to the dataset-specific training data gener-

ated from DAISM or its DNN design. To this end, we first trained

DAISM-DNN and Scaden on the same training set (S4) that

combined the four pre-generated peripheral blood mononuclear

cells (PBMC) in silico mixtures provided by Menden et al.,

and we tested their abundance prediction accuracy using 50

randomly selected samples from SDY67. Results from 30 per-

mutation tests showed that there was no significant difference

between the two models in Pearson correlations (Figure S10).
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Figure 2. Performance of different algorithms on datasets SDY67, GSE59654, and GSE107990

(A) Scatterplots of ground truth fractions (x axis) and predicted cell fractions (y axis) for DAISM-DNN and CIBERSORTx (S-mode). The bar plot shows the Pearson

correlation for each cell type in 30 permutation experiments. The value in bar plots indicates the mean value of 30 experiments.

(B) Boxplot of themean of per-cell-type Pearson correlations for 11methods, and bar plots of RMSE (right) andCCC (left) for ninemethods. All data in bar plots are

presented as themean ± SD. Note that RMSE andCCC are not suitable for evaluating the twomarker-basedmethods, MCP-counter and xCell. Two-sided paired

Student’s t tests were used for comparing DAISM-DNN with other methods.

ll
OPEN ACCESSArticle
In terms of CCC and RMSE, the DNN used in DAISM-DNN

generated slightly inferior results than the ensemble model in

Scaden. On the other hand, when trained on DAISM-generated

training datasets with calibration samples from SDY67, both
models gained sizable and highly similar improvements in pre-

diction accuracy.

We further evaluated DAISM-DNN with DNNs of different

model complexity (layers, number of neurons). In total, we tested
Patterns 3, 100440, March 11, 2022 5
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Figure 3. Performance of DNN on different training datasets

(A) The t-SNE projection of the SDY67 dataset (n = 50 samples) and training datasets (n = 500 samples per platform) constructed by different strategies and

purified samples from different platforms, colored according to training datasets.

(B) The cell type proportion estimation performance on SDY67 was evaluated using Pearson correlation (left), CCC (middle), and RMSE (right). Models trained by

nine training datasets generated by different mixing strategies.
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25 hyperparameter settings of different numbers of neurons and

layers (Table S3). Results on three datasets (SDY67, GSE59654,

and GSE107990) showed that only small variations of predic-

tion performance over different hyperparameter settings were

observed for both coarse-grained and fine-grained deconvolu-

tion tasks except for some extreme configurations with one hid-

den layer and small number of hidden neurons (<64) (Figure S11).

Scaling and error sensitivity of DAISM-DNN
To understand how the number of calibration samples would

affect the performance of DAISM, we compared the cell

type proportion estimation performance of DAISM-DNN when

different numbers of calibration samples were used in creating

the augmented training data. We found that in general, the esti-

mation accuracy improved with an increasing number of calibra-

tion samples used in creating the in silico mixed training data

(Figures 4A and S12). When evaluated by CCC or RMSE, which

require that the predicted cell fractions follow the real fractions

in terms of absolute numbers, the estimation performance

improved dramatically when the number of real samples used

in in silico mixing increased from zero to 20–40. Beyond that,

the rate of improvement slowed down significantly with more

calibration samples. Therefore, the actual number of calibration

samples have to be decided based on the balance between the

desired prediction quality and the costs to create the calibration

samples.

As cell type proportion measurements on the calibration sam-

ple can never be perfect, the performance of DAISM may be

affected by measurement errors. To understand how the quality

of calibration samples affects the performance of DAISM-DNN,

we generated artificial RNA-seq data of different cell type pro-

portions from scRNA-seq data as our test dataset, and then

added different levels of random permutations to the ground

truth cell type proportions on the selected calibration samples

to simulate the noise in the real world (Experimental procedures).
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Interestingly, regardless of the level of permutations, random

measurement errors in the calibration samples did not signifi-

cantly affect the prediction accuracy of DAISM-DNN when the

number of calibration samples is small (n = 30; Figure 4B). For

the case where a larger number of calibration samples (n =

200) is available, the prediction accuracy would be affected,

and the level of degradation increases with the level of permuta-

tion (Figure S13). However, the overall degradation in prediction

accuracy is actually very small, suggesting that DAISM-DNN is

robust to random errors in the cell type proportions of calibration

samples.

Moreover, we investigated at which abundance can DAISM-

DNN reliably identify the presence of immune cells using in silico

mixed bulk RNA-seq samples that contain an increasing amount

of the cell type of interest with a background of other immune or

cancer cells (Experimental procedures). We defined the minimal

detection fraction as theminimal fraction of spike-in cells needed

for the score to be significantly different from zero. For all cell

types, the minimal detection fractions of DAISM-DNN were

smaller than those of CIBERSORTx and xCell (Figures S14A

and S14B), indicating the superior detection sensitivities of

DAISM-DNN at low cell abundance.

Applicability of DAISM-DNN in real-life biomedical
experiments
A limitation of DAISM-DNN is that it requires calibration samples

to train the dataset-specific models, which may not always be

available. On the other hand, it is common that in many sce-

narios, rigorous standard operation procedure (SOP) and quality

control are enforced to derive consistent gene expression quan-

tification results across experiments, such as defined by the

gene expression-based biomarker Oncotype DX.26,27 In cases

where strict SOPs are enforced, it is possible to pre-train a

generic DAISM-DNN model that can be used across different

batches without the need for retraining every time. To verify
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Figure 4. Scaling and error sensitivities of DAISM-DNN

(A) The effect of calibration sample size on the DAISM-DNN pipeline, assessed by the Pearson correlation, CCC, and RMSE of the cell type proportion estimation

results (on SDY67). For each calibration sample size, 30 permutation tests were conducted.

(B) The performance of DAISM-DNN when ground truth of calibration samples (n = 30) has different degrees of deviation (5, 10, 15, 20%). ns, not significant;

paired one-way ANOVA test.
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this concept, we generated a validation dataset comprising

36 human PBMCs samples assayed by the sameRNA-seq panel

in two separate batches (Experimental procedures). The first

batch consisted of 30 samples that were used as calibration

samples to generate the DAISM-mixed training dataset, while

the other batch consisted of six samples for testing. The ground

truth cell type proportions of both batches were established us-

ing mass cytometry (CyTOF, see Experimental procedures).

To generate the DAISM-mixed data for training in this study,

we used CITE-seq28 data, which provide single-cell transcrip-

tome and surface proteins simultaneously, from two public

CITE-seq datasets (PBMC5k and PBMC10k) for augmentation.

Clusters of different cell types were identified separately for

both CyTOF and CITE-seq datasets through meta-clustering

on 11 surface marker proteins in common in these two datasets,

and manually annotated based on canonical marker expression

patterns consistent with known immune cell types. These clus-

ters were further pairwise linked according to Pearson correla-

tion of normalized mean marker expression of each cluster to

identify matching populations between them (Figures S15 and
S16A; Experimental procedures). It can be seen from the results

that with a strict SOP, it is possible to minimize the technical

variance of gene expression results between batches (Fig-

ure S16B) and enable more stable, robust, and accurate cell

type proportion estimation compared with other established

methods through a pre-established DAISM-DNN model trained

on different batches (Figure S16C).

DISCUSSION

Understanding the cellular heterogeneity in disease-related tis-

sues is essential for the identification of cellular targets for treat-

ments. To this end, computational methods have been devel-

oped to quantify cell type compositions from the GEPs of bulk

samples, thus allowing the elucidation of cell type contributions

to disease from highly available disease-related bulk RNA-

seq data. Existing deconvolution methods rely on pre-selected

cell-type-specific marker genes or signatures based on cell-

type-specific gene expression, which could be derived from ex-

isting RNA-seq datasets of single cells or purified cell lines of
Patterns 3, 100440, March 11, 2022 7
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target cells. The accuracy of these methods is therefore subject

to the effectiveness of the selected GEPs to represent different

bulk RNA-seq datasets under testing. Unfortunately, due to the

presence of strong non-biological cross-platform variations,

the performance of such methods could fluctuate greatly

when applied to different datasets even with the latest advance-

ments in batch normalization15 or platform-agnostic signature

designs.23,25

We developed DAISM-DNN to meet the challenge of accurate

cell type proportion quantification for bulk tissues using GEPs

derived from disparate sources. One of the key features that dif-

ferentiates our method from previous works is that we used a

DNN-based, data-driven approach that is free from manually

curated marker genes or expression signatures. By learning

directly from the data, DAISM-DNN not only discovers new fea-

tures that were previously unrevealed from conventional

methods, but also leverages their intricate interactions with

target phenotypes to achieve accurate prediction results, which

is impossible when shallow models are used.

Another key feature of DAISM-DNN is that instead of relying on

normalization or platform-agnostic reference profiles to over-

come the cross-platform variation problem, DAISM-DNN builds

a dataset-specific prediction model from a certain amount of

calibration samples from the testing dataset, thus fundamentally

avoiding the problem. This requirement may seem stringent and

restrictive as the calibration samples need to be sorted to estab-

lish the ground truth cell type proportions. However, our results

indicated that only a certain amount of calibration samples are

needed to train the prediction model thanks to the DAISM data

augmentation strategy. More importantly, we have also shown

that with stringent SOPs in the overall experimental procedure,

such as those being practiced for GEP-based assays for clinical

usage,27 it is possible to create a ‘‘train once, reuse many times’’

assay-specific DAISM-DNN model for data generated under the

same or similar experimental conditions. Overall, DAISM-DNN is

particularly suitable for large cohort studies or routine clinical ap-

plications of which highly reliable and accurate cell fraction infor-

mation is expected and relatively stable RNA-seq experimental

conditions are involved.

Finally, despite the success of deep learning, people find it

challenging to apply such models in genomic studies in a super-

vised learning setup due to the scarcity of training samples. The

data augmentation strategy as in DAISM provides a broadly

applicable framework to create a large amount of in silicomixed

artificial training data from a certain amount of real-life samples

with the aid of the increasing availability of scRNA-seq datasets

or other datasets that provide comprehensive characteristic

maps of different cell types. We hypothesize that the algorithmic

principles underlying DAISM could be generalized to the decon-

volution of other data modalities, e.g., DNA methylation,29–31 or

other gene expression-based prediction tasks that are currently

incompatible with deep learning due to limited availability of

training data. Of note, despite the flexibility of DAISM, it still

has limitations. For example, as a supervised machine learning

algorithm, it requires annotated training data. Therefore, it is

not possible to extend DAISM-DNN to learning tasks where

such data are not available, e.g., prediction tasks that involve

cell types that do not have clear annotations or data for augmen-

tation. Future works are warranted to bring the latest develop-
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ment in unsupervised learning32 or few-shot learning,33 where

the model can be trained with little data, to overcome this

limitation.

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources should be directed to and will

be fulfilled by the lead contact, Rongshan Yu (rsyu@xmu.edu.cn).

Materials availability

There are no physical materials associated with this study.

Data and code availability

All expression datasets analyzed in this work, including accession codes and

web links (if available), are listed in Table S2. The source code for DAISM-DNN

is available at https://github.com/xmuyulab/DAISM-XMBD, https://doi.org/

10.5281/zenodo.5723561. In-house validation data are available from the cor-

responding authors upon reasonable request.

Data augmentation through in silico mixing (DAISM)

Deep learning-based approaches require a large amount of training data. In

general, existing data from real tissue samples with known fractions of cell

types and gene expression levels could be insufficient to use as a training

set. In this regard, we extracted a small number of real-life samples with

ground truth cell type proportions to use as a calibration dataset, and we

applied the DAISM strategy to create a large number of in silicomixed samples

from this calibration dataset.

The expression profile of a DAISM-generated (i.e., in silicomixed) sample is

calculated as follows. First, we generate a random variable f with uniform dis-

tribution between 0 and 1 to determine the fraction of the calibration sample in

the mixed sample, and C random variables with Dirichlet distribution pk ,

ðk = 1;.;CÞ such that
PC

k = 1pk =1 to determine the fractions of the immune

cells in the mixed sample, where C is the number of cell types. The expression

profile of the final mixed sample e is then calculated as follows:

e = fq+ ð1� fÞf;

where q is the expression profile of a real-life sample randomly selected from

the calibration dataset as a seed sample for this in silicomixed sample, and 4 is

the aggregated expression of single cell samples or purified samples used for

data augmentation. When using scRNA-seq dataset for data augmentation

(DAISM-scRNA), we have

f =
XC
k = 1

Xnk
j = 1

εkj ;

where nk = 500,pk is the number of cells of type k extracted randomly from

scRNA-seq datasets for mixing, and εkj denote their expression profiles.

Note that 4 is further TPM-normalized before mixing. When using RNA-seq

data from purified cells (DAISM-RNA) for augmentation, we have

f =
XC
k = 1

pkεk ;

where εk is the expression profile of a randomly selected purified sample of cell

type k from the respective RNA-seq dataset. Once the expression profile of the

in silico sample is created, its ‘‘ground truth’’ cell fractions can be calculated as

follows:

rk = flk + ð1� fÞpk ;

where rk is the fraction of cell type k in the in silicomixed sample, and lk is the

ground truth fraction of cell type k in the calibration samples, which is known a

priori through experiments, e.g., flow cytometry analysis.

To decide a suitable range of the fractions of calibration samples in the

in silico mixed samples, we tested the performance of DAISM-DNN with

different maximum fraction of calibration samples on SDY67, and the result

indicated that a wider range of the fractions of calibration samples in the mixed

mailto:rsyu@xmu.edu.cn
https://github.com/xmuyulab/DAISM-XMBD
https://doi.org/10.5281/zenodo.5723561
https://doi.org/10.5281/zenodo.5723561
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samples would ensure that the final generated training data provide both sta-

tistical similarity with the test data and diversity for training the DNN, thus lead-

ing to better prediction results (Figures S17A and S17B).

The DAISM-DNN pipeline

We trained deep feed-forward, fully connected neural networks (multilayer

perceptron networks) on DAISM-generated training data to predict the cell

fractions from bulk expression data. The network consists of one input layer,

three fully connected hidden layers (1024-512-256) and one output layer, im-

plemented with PyTorch (v1.5.1) in Python (v3.7.7). As a DNN can fit a large

feature space with a large number of parameters (i.e., connection weights),

we did not perform feature selection in advance. Instead, we used all the genes

that were present in both the training and testing datasets as input to the neural

network. Moreover, the expression profile of each sample was log2-trans-

formed, and scaled to the range of [0,1] through min-max scaling before

training:

bei =
ei �minðeÞ

maxðeÞ �minðeÞ:

Here, ei is the log2-transformed expression level of gene i, e is the vector of

the log2-transformed expression levels of all genes of a sample, and bei is the

vector of min-max scaled values.

The network was trained using the back-propagation algorithm with

randomly initialized network parameters. The mean-square error (MSE) be-

tween the ground truth and predicted absolute cell fractions was used as

the loss function. The optimization algorithm Adam was used with an initial

learning rate of 1 x 10–4. During the training process, the training set was

randomly divided into mini-batches with a batch size of 64. When the average

MSE of all mini-batches in the current epoch was higher than that of the last

epoch, the learning rate was multiplied by an attenuation coefficient until a

minimum of 1 x 10–5 was reached to avoid training noise from excessively large

learning rates when the network converged to steady state. We randomly split

the training set and the validation set at a ratio of 8:2. Early-stopping strategy

was adopted to stop training when the validation error did not decrease for 10

epochs, and the model producing the best results on the validation set during

training was selected as the final model for prediction.

To evaluate the effect of the size of training data generated from the same

number of calibration samples on the deconvolution performance of DAISM-

DNN, we tested DAISM-DNN with different training data sizes ranging from

640 up to 32,000 simulated samples on three PBMC datasets (GSE59654,

GSE107990, SDY67), respectively. The performance of each model was

measured from 30 permutation tests. In each permutation test, 50 randomly

selected samples were held out as the test samples, and the remaining sam-

ples from the same dataset were used as calibration samples. The mean CCC

performance across cell types improved as the training data size increased on

all three datasets (Figure S18). However, the increment started to level off

when the training data size increased to 3,200 simulated samples for

GSE59654 and GSE107990, and about 12,800 simulated samples for

SDY67. Based on this result, we used 16,000 simulated samples as the default

size of training data in our experiments.

RNA-seq datasets of purified cells

For the RNA-seq data of purified immune cells to serve as augmentation data,

we used 1,533 purified cell samples of the eight immune cell types (B cells,

CD4 T cells, CD8 T cells, monocytes, NK cells, neutrophils, endothelial cells,

and fibroblast) in this study (Table S4). The raw FASTQ reads were down-

loaded from the NCBI website. Transcription and gene-level expression quan-

tification were performed using Salmon34 (version 0.11.3) with Gencode v29

after quality control of FASTQ reads using fastp.35 All the software tools

were used with their default parameters. Transcripts per million (TPM) normal-

ization was then performed on all the samples.

scRNA-seq datasets

For the scRNA-seq data of different immune cell types, two scRNA-seq data-

sets of PBMCs from patient blood samples were downloaded from the

103 Genomics website (https://support.10xgenomics.com/single-cell-gene-

expression/datasets, ‘‘8k PBMCs from a healthy donor’’ and ‘‘6k PBMCs
from a healthy donor’’), denoted as PBMC8k and PBMC6k respectively.

PBMC8k was sequenced on Illumina Hiseq4000 with approximately 92,000

reads per cell, and 8,381 cells were detected in total. We used PBMC8k data-

set for augmentation in both coarse-grained and fine-grained deconvolution

and PBMC6k dataset for generating artificial simulated mixtures to evaluate

error sensitivities of DAISM-DNN. The raw scRNA-seq reads were aligned to

the GRCh38 reference genome and quantified by Cell Ranger36 (103 Geno-

mics version 2.1.0). The resulting expression matrix was then processed using

Seurat37 (v3.1.1). First, cells with less than 500 genes or greater than 10%

mitochondrial RNA content and genes expressed in less than five cells were

excluded from analysis. Then, cells with abnormally high gene counts were

considered as cell doublets and were excluded from further analysis. The

raw unique molecular identifier (UMI) counts were log-normalized and the

top 2,000 highly variable genes were called based on the average expression

(between 0.0125 and 3) and average dispersion (>0:5). Principal component

analysis was performed on the highly variable genes to further reduce the

dimensionality of the data. Finally, clusters were identified using the shared

nearest neighbor (SNN)-based clustering algorithm on the basis of the first

20 principal components with an appropriate resolution.

The identified clusters were annotated on the basis ofmarker genes’ expres-

sion levels. The marker genes were obtained from the CellMarker database38

for the target cell types in peripheral blood, specifically, CD4 for CD4 T cells,

CD8A and CD8B for CD8 T cells, MS4A1 and CD79A for B cells, CD14 and

FCGR3A for monocytes, GNLY for NK cells, and FLT3 and FCER1A for den-

dritic cells. Cell types were identified manually by checking if the respective

marker genes were highly differentially expressed in each cluster. The clusters

without high expression on the selected marker genes or with high expression

on themarker genes of other cell types were grouped into the ‘‘unknown’’ type.

For fine-grained deconvolution, PBMC8k was further clustered into finer

groups based on themajor cell types and served as augmentation data. B cells

were subclustered into naive B cells and memory B cells. CD4 T cells and CD8

T cells were further grouped into naive CD4 T cells, memory CD4 T cells, naive

CD8 T cells, andmemory CD8 T cells, respectively. Myeloid dendritic cells and

monocytes came from monocyte lineages.

CITE-seq datasets

In deconvolving the in-house validation dataset, we used two CITE-seq PBMC

datasets that provide read counts of both mRNAs and cell surface proteins

as augmentation data. The datasets were downloaded from 103 Genomics

website (PBMC5k from https://support.10xgenomics.com/single-cell-

gene-expression/datasets/3.0.2/5k_pbmc_protein_v3, PBMC10k from https://

support.10xgenomics.com/single-cell-gene-expression/datasets/3.0.0/pbmc_

10k_protein_v3). ThePBMCs fromahealthydonorwerestainedwithTotalSeq-B

antibodies (BioLegend) in both datasets for identification of cell surface proteins

andwere sequenced by Illumina NovaSeq for scRNA-seq. FormRNA profiles in

CITE-seq, the same preprocessing steps for scRNA-seq data were applied for

quality control. The protein counts were pre-processed with the centered-log-

ratio normalization28 prior to clustering.

Datasets for benchmarking

We used 11 public bulk RNA-seq and microarray datasets to evaluate the per-

formance of different cell type proportion estimation methods, of which the

expression data and the corresponding ground truth cell fractions were pub-

licly available with reference to the original publications and used accordingly

in our benchmarking tests. The cell fractions for SDY67, GSE107990, and

GSE59654 were taken from the supplementary materials of the publication.21

Only samples that have the complete ground truth of coarse- or fine-grained

cell types were used for analysis. Details on all datasets including references

to the original publications can be found in Table S2.

We also generated three datasets of simulated mixtures using single

cell samples from PBMC8k, samples from bulk RNA-seq of purified cells,

and microarray, respectively, denoted as ‘‘simS’’, ‘‘simR,’’ and ‘‘simM’’.

Each dataset contains 50 samples.

In-house PBMC validation samples

To further evaluate the validity of our method, we generated an in-house vali-

dation dataset of human PBMCs under IRB approval from The First Affiliated

Hospital of Xiamen University.
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PBMC processing. A total of 36 PBMC samples were isolated from whole

blood by Ficoll density gradient centrifugation and stored in liquid nitrogen

with frozen solution (90% fetal bovine serum [FBS] and 10%DMSO). Cryopre-

served PBMCs were thawed with pre-warm complete RPMI 1640 medium

(RPMI1640, 10% FBS) containing 25 U/ml benzonase. Cells from each sample

were washed, counted, adjusted to 2 x 106 living cells/stain and transferred to

a new 5-mL polystyrene round-bottom tube. Simultaneously, 1 x 105 living

cells/sample were washed with PBS and quickly frozen in liquid nitrogen for

RNA-seq.

RNA extraction and library preparation. Total RNA from PBMC samples was

extracted using RNeasy Mini Kit (QIAGEN) according to the manufacturer’s in-

structions. Quantification of RNA concentration was performed by Quantus

fluorometer and Quantus RNA HS Assay Kit (Promega). Fragment length

was assessed using an Agilent 2100 Bioanalyzer and RNA HS Kit (Agilent).

During library preparation, RNA was first fragmented at 95�C for 0–15min ac-

cording to the DV200 value estimated by Agilent 2100 Bioanalyzer System,

then it underwent reverse-transcript, cDNA synthesis, and strand-specific li-

brary preparation using NEBNext Ultra II Directional RNA Library Prep Kit for

Illumina(NEB).

Hybrid capture and sequencing. RNA libraries were captured separately by

AmoyDxMaster Panel, which contains 2,396 genes for RNA expression detec-

tion and 44 genes for fusion detection. Captured products were amplified and

quantified by Quantus fluorometer. Library size was assessed using Agilent

2100 Bioanalyzer. After pooling, libraries were then sequenced on Illumina

NovaSeq 6000 instrument (Illumina) with PE150 strategy. Sequencing data

were analyzed and annotated with an in-house developed pipeline. A set of

experimental and data quality control parameters were set up. For processing

RNA-seq data, quality assessment was carried out using in-house script

FormatFastQ (v2.4.0). Alignment to targeted genes from Gencode hg37 was

performed using STAR (v2.7.2b) and gene counts were quantified using

RSEM (v1.3.3).

Mass cytometry of validation samples. Isotope-labeled antibodies were pur-

chased from PLT Tech (Hangzhou, China), where antibodies conjugation and

testing were performed. After thawing and preprocessing, PBMC samples

were stained by surface antibodies (see Table S5) to 2 x 106 cells for 30 min

at room temperature (RT). All samples were then washed with Maxpar Cell

Staining Buffer and incubated in Nuclear Antigen Staining Buffer for 30 min

at RT. Then, samples were washed and stained by intracellular antibody cock-

tail for 30–45 min at RT. Subsequently, cells were washed and incubated in Ir

intercalation solution overnight at 4�C. Immediately prior to data acquisition,

cells were washed, and Maxpar water with EQ beads was added to adjust

cell concentration to 2.5–5 x 104/ml. All samples were acquired on a CyTOF2

mass cytometer (Fluidigm, Helios) at an event rate of 200–500 cells per

second.

CyTOF data analysis. CyTOF data were normalized by EQ-bead normaliza-

tion in the CyTOF2 equipment and uploaded to Cytobank (https://community.

cytobank.org/) for data cleaning, doublets, and dead cell removal. We

removed EQ beads, used channel DNA2 and Event_length to exclude aggre-

gated cells, and used channels DNA2 and Rh103 to select alive cells. The

results were then exported as .fcs files for analysis. Data were scaled with arc-

sinh-transformation and further analyzed in R (v3.6.3). Single alive cells were

first clustered using FlowSOM39 (R package, v.1.18.0), which used self-orga-

nizing maps for high-dimensional data reduction. Subsequently, we used Phe-

nograph (R package, v0.99.1), a graph-based community detection method

using the Louvain algorithm, for second clustering on the groups from Flow-

SOM. After every single cell was assigned to a cluster, we manually annotated

each cluster based on its marker expression pattern compared with patterns

of known immune cell types.

Mapping between CyTOF and CITE-seq cell clusters

To find proper augmentation data for deconvolving the in-house validation da-

taset, we first performed clustering on normalized protein profiles of CyTOF

and CITE-seq, respectively, using both FlowSOM and Phenograph. Eleven

surface markers in common were used for clustering: CD3, CD4, CD8a,

CD14, CD16, CD56, CD19, CD25, CD45RA, CD45RO, and CD127. Then the

Pearson correlation between each cluster of CyTOF and CITE-seq data was

calculated based on the mean values of marker expressions. For each CyTOF

cluster, we identified the best-matching cluster of CITE-seq according to the
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correlation between two clusters. We allowed one-to-many mapping in pair-

wise linking. After building these pairwise constraints, we further manually an-

notated these clusters based on similar typical marker expression patterns

compared with patterns of known immune cell types. Only the clusters that

can be clearly annotated were used for further experiments. Finally, we

selected eight cell types (B cells, CD14 monocytes, NK cells, Treg, naive

CD4 T cells, naive CD8 T cells, CD4 T effector memory, and CD8 T effector

memory) to perform deconvolution validation.
Performance of DNN on different training datasets

We trained DNNs in DAISM-DNN on training datasets generated from expres-

sion data of purified cells to compare the performance of DNNwith andwithout

using real-life calibration samples. To this end, we first generated two training

datasets using DAISM with calibration data from SDY67 and further

augmented with scRNA-seq or RNA-seq data of purified samples. These

two training sets were denoted as ‘‘DAISM-scRNA’’ and ‘‘DAISM-RNA,’’

respectively. For each training set, 30 permutation tests were conducted. In

each permutation test, 50 sampleswere randomly drawn as hold-out test sam-

ples, and the remaining samples were candidates for calibration samples to

create augmented training data with DAISM mixing strategy.

In addition, we also generated two training datasets using only RNA-seq

expression profiles of sorted cells or scRNA-seq data and denoted them as

‘‘RNAonly’’ and ‘‘scRNAonly,’’ respectively. The generation of these training

datasets followed the same linear mathematical operation as defined previ-

ously, with the only exception that real-life samples with ground truth cell frac-

tions were not used in the mixing process. Briefly, for RNA-seq datasets, the

expression of a simulated sample e was calculated as

e =
XC
k = 1

pkεk ;

where C is the number of cell types involved in mixing, pk ðk = 1;.;CÞ are

random variables with Dirichlet distribution that determined the fractions of

different cells in the in silico mixed sample, and εk is the expression profile

of a randomly selected purified sample of cell type k from the respective

RNA-seq dataset. For scRNA-seq dataset, e is given by

e =
XC
k = 1

Xnk
j = 1

εkj ;

where nk = 500,pk is the number of cells of type k extracted randomly from

scRNA-seq datasets for mixing, and εkj denote their expression profiles.

Note that e were further TPM-normalized before being used for training.

As suggested in Scaden, we also generated five training datasets that

directly combined five different real-world bulk RNA-seq samples, namely

SDY67, GSE107011, GSE127813, GSE107572, and GSE130824, with simu-

lated mixtures respectively. For fair comparison, the same number of training

samples (16,000) were used in all training sets.

For t-SNE analysis, all 50 test samples of SDY67 and 500 randomly selected

artificial mixtures from each training dataset were plotted based on the com-

mon genes from SDY67 and the five training datasets. The parameter perplex-

ity was set to 30 and the other parameters were set to their default values.
Scaling and error sensitivity

To identify the impact of the number of calibration samples on the performance

of DAISM, we tested the cell type proportion estimation performance of

DAISM-DNN with respect to the number of calibration samples used in

creating the augmented training data on both RNA-seq dataset SDY67 andmi-

croarray dataset GSE59654. The experiments were started at zero calibration

samples, and we gradually increased the number of calibration samples to the

maximum available calibration samples at a step size of 10 samples. At each

step, 30 permutation tests were conducted. In each permutation test, we

randomly drew 50 samples as hold-out test samples, and the remaining sam-

ples were candidates for calibration samples to create augmented training

data with the DAISM mixing strategy. Pearson correlation coefficients, CCC

coefficients, and RMSE were used to measure the performance of the estima-

tion of each cell type.

https://community.cytobank.org/
https://community.cytobank.org/
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To test the sensitivity of DAISM-DNN to errors in ground truth cell type frac-

tion, we generated artificial simulated mixtures with permutations in ground

truth cell proportions tomimic potential measurement errors in real-life calibra-

tion samples.We used PBMC6k single cell reference data to generate 250 arti-

ficial bulk RNA-seq data with known cell type proportions as our test set. Thirty

permutation tests were conducted in each experiment condition. In each per-

mutation test, we randomly selected 50 samples as hold-out test samples, and

the remaining samples were used as candidates for calibration samples.

During the training, the ground truth proportions of all cell types of calibration

samples were further perturbed with random noises between � d% to d%

ðd˛f0; 5; 10; 15; 20gÞ of the original proportions. After that, the perturbed cali-

bration samples were augmented by usingDAISMwith PBMC8k single cell da-

taset as described previously to generate the training data.

Minimal detection fraction and background prediction levels

We followed the method proposed in Sturm et al.22 to evaluate the minimal

detection fraction and background prediction levels of DAISM-DNN. We

used a single cell dataset GSE115978 that contains cancer and immune cells

to create simulated bulk RNA-seq samples of different spike-in levels of cell

types of interest. For each cell type of interest, we generated five independent

samples of different spike-in levels. For each sample, we randomly drew i

ði˛f0; 5; 10;.; 50; 60;.; 100;120;.;200gÞ cells of cell type of interest and

1,000 background cells containing all cell types except for the cell type of in-

terest or only cancer cell types from the single cell dataset. The ratio of the cell

types of interest is then i=ði + 1000Þ. This results in five batches of 147 samples

each (21 spike-in levels 3 7 cell types). For calibration samples, we created

100 simulated samples that contained all cell types with random cell type pro-

portions from GSE115978, where the cell type proportions followed Dirichlet

distribution. Then we used PBMC8k as augmentation data to create a

16,000 DAISM-simulated training data for training DNN. We defined the mini-

mal detection fraction as the minimal i at which the predicted score of cell type

of interest is significantly different from the background prediction level (one-

sided Student’s t test, alpha = 0.05) and background prediction level of cell

type of interest as the predicted fraction of cell type of interest with i = 0.

Performance benchmarking

Since cell type abundances were resolved at different granularities in different

deconvolution methods, regularizing the cell types of all methods to the same

granularities had to be performed to facilitate a fair comparison. In this study,

we only tested the performance of the benchmarked methods on six specific

coarse-grained cell types (B cells, CD4 T cells, CD8 T cells, NK cells, mono-

cytes, neutrophils) for comparison. The fine-grained cell type results of some

methods weremapped to coarse-grained cell types according to the hierarchy

of cell types defined in Strum et al.22

CIBERSORT (CS) is a signature-based deconvolution algorithm that uses

n-SVR to estimate cell abundance. We obtained R code from the CIBERSORT

website (https://cibersort.stanford.edu/). We used CIBERSORT with different

signature matrices (LM22, IRIS, immunoStates, and TIL10) and denoted

them as four methods. The input data for CIBERSORT was in linear domain

and all parameters were set to their default values. CIBERSORTx (CSx) is an

extended version of CIBERSORT that generates a signature matrix from

scRNA-seq data and provides two batch correction strategies (B-mode and

S-mode) for cross-platform deconvolution. The B-mode was designed to re-

move technical differences between bulk profiles and signature matrices

derived from bulk sorted reference profiles, while S-mode was used for signa-

ture matrices derived from droplet-based or UMI-based scRNA-seq data. We

experimentedwith both B-mode and S-mode. For B-mode, LM22was used as

the signature matrix. For S-mode, the scRNA-seq dataset PBMC8k was used

to generate the signature matrix, which was applied in further deconvolution.

While testing the in-house PBMC dataset, PBMC10k was used to create the

signature matrix. We ran CIBERSORTx from its website (https://cibersortx.

stanford.edu/). Quantile normalization was disabled when input was RNA-

seq or scRNA-seq simulated mixture data.

We used the R package MuSiC (https://github.com/xuranw/MuSiC) for

MuSiC. MuSiC takes scRNA-seq data with cell type labels as reference. De-

convolution using MuSiC was performed with five coarse-grained cell types

(B cells, CD4 T cells, CD8 T cells, NK cells, and monocytes). The single cell

PBMC dataset PBMC8k was used as reference data.
ABIS enables absolute estimation of cell abundance from both bulk RNA-

seq and microarray data. Deconvolution was performed through an R/Shiny

app (https://github.com/giannimonaco/ABIS). The results output from ABIS

were absolute cell frequencies and were divided by 100 in our study for com-

parison with other methods on RMSE.

Scaden is a DNN-based deconvolution algorithm. We used the training

datasets provided by Scaden (https://github.com/KevinMenden/scaden),

which contain 32,000 artificial mixtures from four scRNA-seq PBMC datasets,

denoted as S4. Training was performed for 5,000 steps per model on each da-

taset as recommended in the original paper.

We ran quanTIseq, MCP-counter, EPIC, and xCell through R package

immunedeconv22, which provided an integrated inference to benchmark on

six deconvolution methods. The parameter tumorwas set to FALSE when per-

forming deconvolution on all PBMC datasets. As recommended in the original

paper, EPIC was run with BRef as the signature set on PBMC samples.

Statistical analysis

We used three evaluation criteria to compare the performance of DAISM-DNN

methods. Pearson correlation r was used to measure the linear concordance

between predicted cell type proportions and the FACS ground truth. Lin’s

CCC and the RMSE were further used to evaluate the performance for

methods that enable absolute cell type proportion estimation.

Differences in continuous measurements were tested using the two-tailed

Student’s t test. Two-sided p values were used unless otherwise specified,

and a p value less than 0.05 was considered significant. For comparisons be-

tween multiple groups, we used one-way ANOVA using the built-in function

aov in R. Ranking of the algorithms over multiple testing sets was determined

using Friedman test with post hoc two-tailed Nemenyi test.40 PRISMwas used

for basic statistical analysis and plotting (http://www.graphpad.com), and

the Python or R language and programming environment were used for the

remainder of the statistical analysis.
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