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Simple Summary: Heat stress (HS) has become a great challenge for poultry production in tropical
and subtropical regions. HS results in the intestinal dysfunction of broilers, which seriously affects
their productivity. Our previous study suggested that dietary supplementation of algae-derived
polysaccharides (ADP) could promote the intestinal barrier function in broilers, but the effect of
dietary ADP supplementation on the intestinal health of broilers under HS remains unclear. The
present study showed that dietary ADP supplementation improved the duodenal tight junction
expression of broilers under HS, and found that dietary ADP mitigated HS-induced oxidative stress
and inflammation response by regulating Nrf2 and NF-κB signaling pathways. These findings reveal
the potential application of ADP as an HS-alleviating agent to maintain gut health in broilers.

Abstract: To evaluate the ameliorative effect of algae-derived polysaccharide (ADP) supplementation
on duodenal injury caused by heat stress (HS) in broilers, a total of 144 male yellow-feathered broilers
(56-day-old) were randomly allocated into three groups: The TN group (thermoneutral zone, broilers
were raised at 23.6 ± 1.8 ◦C); HS group (heat stress, broilers were exposed to 33.2 ± 1.5 ◦C 10 h/day,
8:00 a.m.–18:00 p.m., the temperature in the remaining period was consistent with the TN group);
HSA group (heat-stressed broilers were fed with ADP supplemented diet at 1000 mg/kg). There
were six replications in each treatment, and eight broilers in each replication. The feeding trial
lasted four weeks. The results showed that dietary ADP supplementation tended to increase the
villus height (p = 0.077) and villus width (p = 0.062), and decrease the apoptosis rate (p = 0.081)
in the duodenum of broilers under HS. Furthermore, dietary ADP increased the relative mRNA
and protein (based on immunofluorescence) expression levels of occludin and zonula occludens-1
(ZO-1) in the duodenum of broilers under HS (p < 0.05). In addition, dietary ADP enhanced the total
antioxidation capacity (T-AOC) and activity of glutathione-S transferase (GST), while reducing the
malondialdehyde (MDA) concentration of the duodenum in broilers under HS (p < 0.05). Moreover,
dietary ADP supplementation upregulated the duodenal nuclear factor erythroid 2-related factor 2
(Nrf2), heme oxygenase-1 (HO-1), glutathione peroxidase 1 (GPx1) and glutathione S-transferase theta
1 (GSTT1) mRNA expression levels in heat-stressed broilers (p < 0.05). Furthermore, compared with
the HS group, broilers fed with an ADP supplemented diet had a higher relative mRNA expression
of inhibitor kappa B alpha (IκBα) (p < 0.05) and a lower relative mRNA expression of tumor necrosis
factor-α (TNF-α) and interleukin-1β (IL-1β) in the duodenum (p < 0.05). In summary, dietary ADP
supplementation had an ameliorative effect on HS-induced impairment of tight junctions, antioxidant
capacity and the immune response of the duodenum in broilers. These beneficial effects might be
related to the modulation of Nrf2 and NF-κB signaling pathways.
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1. Introduction

Heat stress (HS) is a great challenge for broiler production in tropical and subtropical
regions [1]. HS results in a reduction of feed consumption, degradation of growth rate,
abnormalities of metabolism, imbalance of electrolytes, and disorders of the endocrine
system in broilers [2–6]. As one of the most important digestive organs, the gut is not only
the place for digestion and absorption of nutrients, but also plays a crucial role in barrier
function, and it is highly sensitive to HS [7]. HS exposure causes intestinal dysfunction,
impairs gut barrier integrity and induces an intestinal oxidative stress and inflammation
response in chickens [8–11]. Therefore, using a protective approach against HS-induced
impairment of intestinal health is important for broiler production. It is currently believed
that nutritional regulation is an effective strategy to protect the broilers against HS-induced
intestinal injury [12,13]. In this regard, a variety of natural phytochemicals were used
as gut health promoters in broilers, and they showed potential stress-alleviating effects
because of the multiple biological activities [14–16].

Polysaccharides, as natural active polymers, are widely present in plants and microor-
ganisms. In recent years, polysaccharides have attracted great attention in investigating
alternative growth promoters in animals [17]. For instance, numerous studies observed
that dietary medicinal plant-derived polysaccharides could enhance immune function [18],
elevate antioxidant capacity [19], improve intestinal barrier function [20–22], thus promot-
ing the growth performance of broilers. In addition, previous studies found that dietary
natural polysaccharides extracted from Atractylodes could mitigate HS-induced multi-
ple organ dysfunction of broilers by suppressing apoptosis and oxidative stress [23,24].
Marine polysaccharides have received extensive attention because of their biological activi-
ties [25,26]. Enteromorpha prolifera is a kind of wild marine green algae, which belongs to
the Ulvaceae family and Enteromorpha genus. It is widely distributed in various offshore
areas. E. prolifera has good edible and medicinal values, showing anti-inflammatory and
detoxifying effects [27]. E. prolifera contains abundant polysaccharides that exhibit many
biological properties, including antioxidant, antiviral, antitumor, anti-inflammatory, im-
munomodulatory and antibacterial properties [28,29]. In our previous studies, the dietary
inclusion of algae (E. prolifera)-derived polysaccharides (ADP) improved the intestinal
barrier function of laying hens [30] and broilers [31]. Furthermore, dietary ADP supple-
mentation showed mitigating effects on oxidative stress and apoptosis in broilers under HS
or after aflatoxin B1 exposure [32,33]. However, little is known about the effects of dietary
ADP supplementation on the intestinal health of broilers under HS conditions. Therefore,
the present study aimed to evaluate the ameliorative effect of ADP supplementation on
HS-induced duodenal injury of broilers and explore the underlying molecular mechanism.

2. Materials and Methods
2.1. Birds, Diet, and Trial Design

One hundred and forty-four 56-day-old male Chinese indigenous, yellow-feathered
broilers were used for a four-week feeding trial. The broilers were purchased from a
local chicken hatchery (Maoming, Guangdong, China) The age selection was based on the
fact that broilers are more sensitive to HS during the growth and finishing period, and
56–84 days are known as the growing−finishing stages for Chinese indigenous, yellow-
feathered broilers [6]. Broilers were randomly assigned to three groups: TN group (ther-
moneutral zone, broilers were raised at 23.6 ± 1.8 ◦C); HS group (heat stress, broilers were
exposed to 33.2 ± 1.5 ◦C 10 h/day, 8:00 a.m.–18:00 p.m., the temperature in the remaining
period was consistent with the TN group); HSA group (heat-stressed broilers were fed with
ADP at 1000 mg/kg). The relative humidity of all groups was maintained at 55–75%. There
were six replications and eight broilers/replication in each treatment. The temperature
and relative humidity of three different locations in the chicken house were detected six
times per day, and the final temperature and relative humidity were the average data
recorded daily. The initial body weight (average initial body weight, 682.59 ± 7.38 g)
between the three treatments had no significant difference. The chickens were fed with
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corn-soybean meal-based diet, and the feed formulation was the same as described in
our previous literature [33]. The ADPs were enzymatically extracted from E. prolifera, and
the detailed information of the ADP was mentioned in our previously studies [30,31,33].
Briefly, the ADPs are water-soluble sulfated polysaccharides (purity ≥ 48%). The composi-
tion of monosaccharide is rhamnose (Rha, 40.6%), glucose (Glc, 38.2%), glucuronic acid
(GlcA, 9.3%), xylose (Xyl, 6.3%) and galactose (Gal, 5.6%).

2.2. Collection of Duodenal Samples

At the end of the feeding experiment, one broiler from each replicate was randomly
selected and euthanized, and then the duodenal segments were separated. About 2 cm seg-
ment of the duodenal middle section was carefully collected and put into 4% paraformalde-
hyde for morphology, apoptosis and immunofluorescence analyses (n = 6 per treatment).
Subsequently, the remaining segments of the duodenum were cut. Then, the digesta was
rinsed with phosphate-buffered (PBS) solution at 4 ◦C, and then the duodenal mucosal
samples were scraped with a glass slide (n = 6 per treatment). All duodenal mucosal
samples were put into liquid nitrogen, transported to the laboratory and stored at −80 ◦C
for antioxidant and molecular analyses.

2.3. Determination of Morphology and Apoptosis in Duodenum

The detection and analysis of duodenal morphology were based on our previous
studies [6,33]. Briefly, the duodenal segments were fixed in 4% paraformaldehyde for 48 h,
then the duodenal segments were embedded in paraffin and cut into 5 µm sections, and
stained with hematoxylin and eosin (H & E). The section figures and the villus height, villus
width and crypt depth of the duodenum were collected and measured using TCapture
Imaging Application 4.3 software, then villus height/crypt depth ratio was calculated.

The apoptosis of duodenal epithelial cells was detected and analyzed by paraffin
section TdT-mediated dUTP Nick-End Labeling (TUNEL) method. The assay kit and
detection details as described previously [33]. Briefly, add the TdT and dUTP reagents
from TUNEL kit into the slices to cover the duodenal samples, then incubate at 37 ◦C for
2 h, and wash the slices with PBS (pH 7.4). After removing the PBS, drip 4′,6-diamidino-
2-phenylindole (DAPI) staining solution on the slices, and incubate at room temperature
for 10 min. Finally, TUNEL slices were observed and analyzed under 100×magnification
using Image-Pro Plus 6.0 software (Media Cybernetics, Inc., Rockville, MD, USA). The
apoptosis rate was calculated as per the following formula:

Apoptosis rate (%) = (positive apoptotic cells/total cells) * 100%

2.4. Barrier Function-Related Molecular Analysis

The mRNA expression levels of intestinal barrier function-related genes (Cadherin,
Occludin, Claudin-1, Claudin-4, ZO-1 and Mucin-2) were examined by quantitative real-time
PCR (qRT-PCR). The total RNA extraction of duodenal mucosal samples was done. qRT-
PCR reaction conditions and operation details were the same as described in our former
studies [32,33]. Briefly, the qPCR reaction was performed using the CFX-96 real-time PCR
detection system (BioRad, Irvine, CA, USA). The total reaction volume was 20 µL. The PCR
program was 95 ◦C for 30 s, and 40 cycles of 95 ◦C for 10 s, 60 ◦C for 30 s and 72 ◦C for 15 s.
The internal reference gene was β-actin, and the details of the primers were presented in
our earlier study [9].

The immunofluorescence of duodenum was conducted to detect the expression of
selected barrier function-related molecules. The selection of molecules was based on the
qRT-PCR results. The immunofluorescence detection and analysis information were given
as follows: firstly, the diluted fluorescently labeled (green) target protein primary antibodies
(rabbit polyclonal antibody against occludin: Servicebio, Wuhan, China, GB111401, dilution
ratio: 1:200; rabbit polyclonal antibody against ZO-1 (zonula occludens-1): Proteintech,
Wuhan, China, 21773-1-AP, dilution ratio: 1:100) were added into the duodenal sections,
incubated overnight at 4 ◦C and rinsed with PBS. Then, the diluted secondary antibodies
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(goat polyclonal secondary antibody to rabbit IgG, Alexa Fluor 488, Servicebio, Wuhan,
China, GB25303, dilution ratio: 1:400) were added into the duodenal sections, and the
DAPI was used to label the cell nucleus, then incubated at room temperature for 1 h in
the dark and rinsed with PBS. Upright fluorescence microscope (Nikon Eclipse, C1, Japan)
was used to observe the sections and collect images (Nikon, DS-U3). Image-Pro Plus 6.0
(Media Cybernetics, Inc., Rockville, MD, USA) software was used to analyze and calculate
the areal density (AD) value. The analysis method was presented as follows: three fields of
view for each slice were selected to take photos under 100×magnification for converting
the fluorescent monochrome photos into black and white images using Image-Pro Plus
6.0 software. The same black image was selected as the unified standard, and then the
integrated optical density (IOD) of positive expression and the pixel area of the tissue
(AREA) for each positive photo was obtained. The AD value was calculated as follows:
AD = IOD/AREA. The AD value indicates the expression level of the target protein.

2.5. Antioxidant Capacity Analysis

The antioxidant parameters of duodenal mucosal samples, including total anti-oxidation
capacity (T-AOC), activities of the total superoxide dismutase (T-SOD), glutathione per-
oxidase (GSH-Px), catalase (CAT), glutathione-S transferase (GST), and malondialdehyde
(MDA) levels, which were detected according to our earlier study [33].

The relative mRNA expression of antioxidant signaling pathway-related genes, in-
cluding Nrf2 (nuclear factor erythroid 2-related factor 2), HO-1 (heme oxygenase-1), SOD1
(superoxide dismutase-1), SOD2 (superoxide dismutase-1), GPx1 (glutathione peroxidase-
1), GPx3 (glutathione peroxidase-3), CAT1 (catalase-1), GSTT1 (glutathione S-transferase
theta-1) and GSTO1 (glutathione S-transferase omega-1) were analyzed using qRT-PCR.
The qRT-PCR conditions were the same as described previously [32,33]. The internal
reference gene was β-actin, the details of primers were described in our previous study [33].

2.6. Immune Response Analysis

To analyze the immune response of duodenal mucosal samples, mRNA expression of
immune-related signaling pathway genes was performed, using qRT-PCR and the detection
method as described previously [32,33]. β-actin was used as the internal reference gene,
the primer information was presented in our former report [33]. The genes contained
IκBα (inhibitor kappa B alpha), NF-κB p65 (nuclear factor-kappa B p65), TNF-α (tumor
necrosis factor-α), IFN-γ (interferon-γ), IL-1β (interleukin-1β), IL-2 (interleukin-2), IL-4
(interleukin-4), IL-6 (interleukin-6) and IL-10 (interleukin-10).

2.7. Statistical Analysis

The mixed model procedure was used to analyze the data by SAS 9.4 (SAS, 2013. SAS
Institute Inc., Cary, NC, USA). The model was used as follows: Yijk = µ + ti + rk + eijk,
where Yijk is an observation on the dependent variable ij, µ is the overall population mean,
ti is the fixed effect of treatments, rk is the individual bird as a random effect, and eijk is the
random error associated with the observation ijk. The individual bird as the experimental
unit. Data were expressed as means. Tukey’s test (multiple comparison) was performed
to analysis the differences between treatments. p < 0.05 was considered to be statistically
significant, and 0.05 ≤ p < 0.10 was considered to be a significant trend.

3. Results
3.1. Duodenal Morphology and Apoptosis

As shown in Figures 1 and 2, HS reduced the duodenal villus height and villus width
(p < 0.05), while it increased the duodenal apoptosis rate (p < 0.05). In addition, ADP
supplementation tended to improve the duodenal villus height and villus width (p < 0.10),
and decrease the duodenal apoptosis rate in heat-stressed broilers (p < 0.10).
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Figure 1. Duodenal sections showing the influence of algae-derived polysaccharides (ADP) on
morphology (A) and cell apoptosis (B) in heat-stressed broilers. Note: TN group (thermoneutral
zone, broilers exposed to 23.6 ± 1.8 ◦C); HS group (heat-stress, broilers exposed to 33.2 ± 1.5 ◦C
for 10 h/day); HSA group (heat-stressed broilers were fed with ADP at 1000 mg/kg); TUNEL,
TdT-mediated dUTP Nick-End Labeling; DAPI, 4′,6-diamidino-2-phenylindole. The scale bar for
morphology (A, 40×) and cell apoptosis (B, 100×) is 100 µm.
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Figure 2. Influence of algae-derived polysaccharide (ADP) supplementation on villus height (A),
villus width (B), crypt depth (C), villus height/crypt depth (D) and apoptosis rate (E) in heat-stressed
broilers. Note: TN group (thermoneutral zone, broilers exposed to 23.6 ± 1.8 ◦C); HS group (heat
stress, broilers exposed to 33.2± 1.5 ◦C for 10 h/day); HSA group (heat-stressed broilers were fed with
ADP at 1000 mg/kg). The data were expressed as means ± standard error (n = 6). a,b The significant
differences between groups were expressed as different superscript letters in the Figures (p < 0.05).
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3.2. Duodenal Barrier Function Related Molecular Expression

As illustrated in Figure 3, compared with the TN group, a lower relative mRNA
expression of occludin and ZO-1 of the duodenum was observed in HS group (p < 0.05).
Compared with the HS group, a higher relative mRNA expression of occludin and ZO-1
of the duodenum was observed in HSA group (p < 0.05). According the results of im-
munofluorescence (Figures 4 and 5), HS exposure reduced duodenal occludin and ZO-1
expression (p < 0.05), and ADP supplementation improved the duodenal occludin and
ZO-1 expression in broilers under HS (p < 0.05).
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Figure 3. Influence of algae-derived polysaccharide (ADP) supplementation on relative mRNA
expression of duodenal barrier function related genes in heat-stressed broilers. Note: TN group
(thermoneutral zone, broilers exposed to 23.6 ± 1.8 ◦C); HS group (heat stress, broilers exposed to
33.2 ± 1.5 ◦C for 10 h/day); HSA group (heat-stressed broilers were fed with ADP at 1000 mg/kg).
The data were expressed as means ± standard error (n = 6). a,b The significant differences between
groups were expressed as different superscript letters in the Figures (p < 0.05).
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Figure 4. Influence of algae-derived polysaccharide (ADP) supplementation on duodenal occludin
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3.3. Antioxidant Capacity of Duodenum

The results of the antioxidant enzyme activities and the MDA content of the duodenum
are presented in Table 1. HS exposure decreased the T-AOC and activity of GST, but
increased the MDA levels of the duodenum (p < 0.05). Dietary ADP improved the T-AOC
and activity of GST, while reducing the MDA concentration of the duodenum in heat-
stressed broilers (p < 0.05).

Table 1. Influence of algae-derived polysaccharide (ADP) supplementation on duodenal antioxidant
capacity in heat-stressed broilers.

Items TN HS HSA SEM p-Value

T-AOC, mmol/mg protein 88.32 a 47.81 b 69.26 c 6.25 0.004
T-SOD, U/mg protein 282.35 285.18 273.19 8.78 0.619

GSH-Px, U/mg protein 70.23 59.76 69.35 4.79 0.228
CAT, U/mg protein 4.15 3.09 2.99 0.44 0.178
GST, U/mg protein 27.46 a 17.88 b 25.87 a 1.38 0.001

MDA, nmol/mg protein 1.37 a 2.28 b 1.55 a 0.22 0.033
Note: TN group (thermoneutral zone, broilers exposed to 23.6 ± 1.8 ◦C); HS group (heat stress, broilers exposed
to 33.2 ± 1.5 ◦C for 10 h/day); HSA, heat-stressed broilers were fed with ADP at 1000 mg/kg. SEM, standard
error of mean. a,b,c The significant differences between groups were expressed as different superscript letters in
the same row (p < 0.05).

As shown in Figure 6, the relative mRNA expression of Nrf2, HO-1, GPx1 and GSTT1
of the duodenum were downregulated by HS exposure (p < 0.05). However, the duodenal
relative mRNA expression of Nrf2, HO-1, GPx1 and GSTT1 in heat-stressed broilers was
upregulated by ADP supplementation (p < 0.05).
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mRNA expression of antioxidant signaling-pathway-related genes in heat-stressed broilers. Note: TN
group (thermoneutral zone, broilers exposed to 23.6± 1.8 ◦C); HS group (heat stress, broilers exposed
to 33.2 ± 1.5 ◦C for 10 h/day); HSA group (heat-stressed broilers were fed with ADP at 1000 mg/kg).
The data were expressed as means ± standard error (n = 6). a,b,c The significant differences between
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3.4. Immune Response of Duodenum

As presented in Figure 7, the duodenal relative mRNA expression of IκBα was down-
regulated by HS (p < 0.05), while the duodenal relative mRNA expression of NF-κB p65,
TNF-α, and IL-1β was upregulated by HS (p < 0.05). In addition, dietary ADP upregulated
the duodenal relative mRNA expression of IκBα (p < 0.05) and downregulated the duode-
nal relative mRNA expression of TNF-α, and IL-1β (p < 0.05). There were no significant
differences in the duodenal relative mRNA expression of NF-κB p65 between TN and HSA
groups (p > 0.10).
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4. Discussion
4.1. Duodenal Morphology and Apoptosis

The broilers often suffer from a variety of stressors, and the gut health of broilers is
severely influenced by HS due to global warming and high-density farming [7,34]. In this
study, the results showed that a four-week HS exposure reduced the duodenal villus height
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and width, and increased the epithelial cell apoptosis of the duodenum in yellow-feathered
broilers. Consistently, Liu et al. [6] found that 5 weeks of HS decreased the duodenal
villus height of yellow-feathered broilers. He et al. [35] suggested that 14 d of HS exposure
induced a reduction in jejunal villus height of yellow-feathered broilers. Zhang et al. [14]
reported that the Cobb broilers subjected to 21 d of HS resulted in a lower villus height and
ratio of villus height to crypt depth. He et al. [36] also demonstrated that 14 d heat exposure
increased the apoptosis cells in the jejunal villus of male Arbor Acres broilers. The pe-
ripheral blood flow of broilers increased to accelerate heat dissipation, causing insufficient
blood supply to the digestive tract and resulting in intestinal epithelial cell injury under
HS [10], which may be the reason for the impairment of morphology and apoptosis in the
duodenal epithelial cells by HS. In recent years, numerous studies have tried to alleviate the
intestinal morphological damage of heat-stressed broilers by natural polysaccharide dietary
supplementation, which has been suggested to exert beneficial effects [20,21,37]. Mean-
while, our previous studies demonstrated that the ADP could act as a gut health promoter
and improve the small intestinal villus height in Arbor Acres broilers [31] and late-phase
laying hens [30] under thermoneutral conditions. However, the present study only showed
a trend of a mitigation effect on morphological injury and apoptosis rate in the duodenum
of heat-stressed broilers fed with an ADP-supplemented diet. These inconsistencies are
probably due to the HS duration, broiler breeds and polysaccharide types.

4.2. Tight Junctions in Duodenum

The physical intestinal barrier plays an important role in preventing harmful bacteria
and endotoxins from entering the blood circulation [38]. The junction complex composed of
tight junctions, adhesion junctions and desmosome between adjacent cells of the intestinal
epithelium is the main physical barrier. The physical intestinal barrier-related molecules
include cadherin, occludin, claudins, ZOs, mucins, etc., [7,39]. In this study, based on
the analysis of selected physical gut barrier function-related molecular expression, four-
week HS exposure decreased the tight junction protein expression of the duodenum,
including occludin and ZO-1, and their absence could be responsible for an increase
in intestinal permeability. Similar findings were also obtained by Liu et al. [9] and He
et al. [35]. Meanwhile, the present study evaluated the mitigation effects of dietary ADP
supplementation on duodenal barrier function-related molecular expression of broilers
under HS. As expected, the dietary inclusion of ADP improved the tight junction (occludin
and ZO-1) expression levels in the duodenum of broilers under HS. In agreement, Sandner
et al. [40] demonstrated that dietary ginseng extract (enriched polysaccharides) improved
the occludin expression of the jejunum in Cobb broilers under HS conditions (d 22–42).
According to Tellez [41], dietary Morinda Citrifolia polysaccharides could upregulate the
expression levels of ZO-1 and ZO-2 genes in the small intestine of Cobb broilers exposed
by HS for one week.

4.3. Antioxidant Capacity in the Duodenum

Improving the antioxidant capacity can maintain the redox balance and normal phys-
iological functions of intestinal epithelial cells. According to the available literature, HS
has a negative influence on the antioxidant capacity and leads to oxidative stress, which
can damage the cells and tissues in broilers [10,12,13]. Meanwhile, the Nrf2-mediated
antioxidant signaling pathway plays a key role in mitigating oxidative stress [42]. As an
important cytoprotective transcription factor, Nrf2 is associated with the promotion of
antioxidant capacity by regulating phase II detoxifying and antioxidant enzyme expression,
such as HO-1, GSH-Px, CAT, GST, and SOD [43]. Nrf2 overexpression and nuclear translo-
cation can promote the expression of downstream antioxidant genes, thereby improving
the antioxidant capacity [44]. It has been suggested that broilers under HS conditions
showed lower antioxidant capacity, which is related to the suppression of Nrf2 expression
in broilers [33,45–47]. This study found that HS exposure decreased the antioxidant enzyme
activities and elevated the MDA content in the duodenal mucosa, which is a biomarker
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of lipid peroxidation. Furthermore, HS exposure downregulated the duodenal mucosal
expression levels of antioxidant enzyme genes and Nrf2. Because of the antioxidant effect
of natural polysaccharides in poultry [19,30,31,48], the alleviation effects of dietary sup-
plementation of ADP on oxidative stress of the duodenal mucosa in broilers under HS
should be explored. The results showed that dietary ADP supplementation improved the
antioxidant capacity in the duodenum of broilers under HS, which was connected with
the modulation of the Nrf2 signaling pathway. Similar to our study, heat-stressed broilers
fed with natural polysaccharides (mannan oligosaccharides) had improved intestinal ox-
idative status [49]. Liu et al. [31] suggested that dietary ADP supplementation enhanced
the intestinal antioxidant capacity of broilers. The enhanced antioxidant capacity in the
duodenum by ADP supplementation could explain the improvement of tight junctions in
this study.

4.4. Immune Response in Duodenum

It has been reported that HS causes a gut inflammation response in broilers [13], and
NF-κB has an activation effect on the inflammation response in broilers under HS [50]. The
NF-κB p65 is responsible for controlling the transcription of some specific genes, especially
the inflammatory cytokines. Under normal conditions, NF-κB p65 is bound with IκBα and
present in the cytoplasm inactively. When heat and cellular stress occur, IκBα is degraded,
NF-κB p65 is activated immediately and then enters into the nucleus to regulate expressions
of downstream inflammatory cytokines [11,44,51]. TNF-α and IL-1β are both secreted by
activated macrophages, which have been considered proinflammatory cytokines [52], and
the increased expression of the proinflammatory cytokines is another important mechanism
of intestinal mucosal injury [53]. In this study, HS exposure downregulated IκBα expression
and elevated NF-κB p65, TNF-α and IL-1β expression of duodenal mucosa. Suggesting that
HS triggered the degradation of IκBα and the activation of NF-κB p65, thus promoting the
transcription of proinflammatory cytokines in the duodenum. Similar results were found by
Wu et al. [53] and Liu et al. [54]. The ADP has been suggested to have immunomodulatory
properties [27,55,56], and the current study showed that the addition of ADP ameliorated
the elevation of proinflammatory cytokine (TNF-α and IL-1β) expression and inhibited
IκBα degradation and NF-κB p65 activation. Supporting findings were reported by Zhang
et al. [57], who found that dietary ADP could improve the immune response of heat-
stressed broilers. Previous studies also demonstrated that natural dietary polysaccharides
decreased proinflammatory cytokine expression and suppressed IκBα/NF-κB p65 signaling
activation in heat-stressed broilers [33] and model animals [58]. In the present study, the
relieved duodenal inflammation response by supplementation of ADP indicated that there
was a decreasing risk of inflammatory bowel disease in broilers exposed to HS, which also
contributed to the enhancement of duodenal tight junctions.

5. Conclusions

In conclusion, the current results demonstrated the beneficial roles of ADP in im-
proving duodenal tight junctions in heat-stressed, yellow-feathered broilers, and dietary
supplementation of ADP could ameliorate HS-induced oxidative stress and the inflamma-
tion response in the duodenal mucosa via modulating Nrf2 and NF-κB signaling pathways.
These findings indicate that dietary ADP supplementation is an effective nutritional ap-
proach to mitigate the detrimental effects of HS on gut health in broilers.
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