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ABSTRACT
Knowledge of similarities among diseases can contribute to uncovering common
genetic mechanisms. Based on ranked gene lists, a couple of similarity measures were
proposed in the literature. Notice that they may suffer from the determination of
cutoff or heavy computational load, we propose a novel similarity score SimSIP
among diseases based on gene ranks. Simulation studies under various scenarios
demonstrate that SimSIP has better performance than existing rank-based similarity
measures. Application of SimSIP in gene expression data of 18 cancer types from
The Cancer Genome Atlas shows that SimSIP is superior in clarifying the genetic
relationships among diseases and demonstrates the tendency to cluster the
histologically or anatomically related cancers together, which is analogous to the
pan-cancer studies. Moreover, SimSIP with simpler form and faster computation
is more robust for higher levels of noise than existing methods and provides a basis
for future studies on genetic relationships among diseases. In addition, a measure
MAG is developed to gauge the magnitude of association of anindividual gene with
diseases. By using MAG the genes and biological processes significantly associated
with colorectal cancer are detected.
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INTRODUCTION
Exploring the common genetic basis of complex human diseases is often useful for
understanding the disease relationships drawing on their genetic mechanisms. A similarity
measure is a central component in detecting the common genetic basis among different
diseases. Several common metrics have been proposed to measure similarities between
diseases, such as Pearson, Spearman correlation coefficient, Euclidean distance, Manhattan
distance, and Jaccard correlation coefficient (Antosh et al., 2013; Dennis et al., 2003; Serra,
Romualdi & Fogolari, 2016; Shi, Yi & Ma, 2014). However, with the technological
developments in molecular biology, large-scale gene expression profiling datasets
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produced from diverse technological platforms necessitate new and adaptive similarity
measures to reveal meaningful genetic relationships across multiple platform types.
Ranking genes according to their contribution to each disease can convert heterogeneous
data into platform-independent rank lists, and a recent study (Serra, Romualdi & Fogolari,
2016) suggested that the discrimination ability of the similarity/distance measures
based on ranked gene lists perform well or better than traditional measures (such as
Euclidean distance and correlation coefficient), particularly for gene expression datasets
produced with different biotechnologies (microarray, RNA-seq, etc.). Therefore, the
genetic overlaps among diseases can be detected by integrating multi-platform datasets
using similarity measures based on ranked gene lists, which can help us gain further insight
on understanding disease etiology.

A review of related studies in similarity measures based on ranked gene lists showed that
most of them depend on either a fixed cutoff position to consider overlaps between the top
part of ranked gene lists or variational cutoffs to select the one that generates the most
significant results (Chen, Zhou & Sun, 2015; Dennis et al., 2003; Von Mering et al., 2006).
To avoid the uncertainty of results owing to arbitrariness in cutoff settings, global
rank-based similarity measures have been developed. For example, the algorithm of
GOrilla is a tool to discover and visualize the enrichment of GO terms that ranks genes by
fold-change (Eden et al., 2009). The algorithm of gene set enrichment analysis (GSEA)
allows all genes to contribute to overlapping signals in proportion to their degree of
differential expression and can detect the weak signals that would be discarded by
“threshold” approaches (Efron & Tibshirani, 2007; Subramanian et al., 2005).
The algorithm of CORaL estimates the significant set size using the overlaps between
sections of the ranked gene lists by maximizing statistical likelihood (Antosh et al., 2013).
The algorithm of R2KS particularly emphasizes finding the same items near the top of
the ranked gene list (Ni & Vingron, 2012). Plaisier et al. (2010) presented a popular
“threshold-free” approach in neuroscience and biomedicine named rank-rank
hypergeometric overlap (RRHO), which identifies and visualizes regions of significant
overlap between two ranked gene lists and determines the statistical significance of
enrichment by hypergeometric distribution.

Moreover, a similarity measure OrderedList that focuses on evaluating whether there
is significant overlap between two ranked gene lists was proposed (Yang et al., 2006).
The OrderedList is the weighted sum of the number of overlapping genes with an
exponentially decaying weight, where a parameter β is introduced to determine how deep
to go in the ranked gene lists. There are many studies on statistics-based improvement
from similarity measures OrderedList. For example, Serra, Romualdi & Fogolari (2016)
introduced similarity measure FESβ (fraction enrichment sum) and set the exponentially
decaying parameter β as 0, 0.001, and 0.01. Chen, Zhou & Sun (2015) adopted the
default series of β values in the R package OrderedList and proposed a robust statistic
minimum p value: min

b
pb, where parameter β can be calculated by setting a minimum

weight and a default series of positions. To avoid arbitrariness and manual intervention of
parameter β selection, Chen, Zhou & Sun (2015) finally found a parameter-free similarity
measure WeiSumE� with good performance to detect overlaps among ranked gene lists
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in simulations, which is the weighted sum that normalizes the number of overlapping
genes on the top genes of two ranked gene lists by its expectation. Generally, existing
rank-based similarity measures are mostly based on the overlaps among ranked gene lists
and may lead to information loss owing to fixed cutoff positions in the ranked gene lists,
the uncertainty of results because of the arbitrariness of the cutoff position, or heavy
computational burden.

In this study, we propose MAG based on the transformation of gene ranks to measure
the magnitude of association of the individual gene with two diseases. By exploring the
summation ofMAG over all genes, we develop a novel similarity score SimSIP with simpler
form and light computation burden to gauge genetic overlap among diseases based on gene
ranks instead of intersections between the top part of ranked gene lists. To show the
superiority of SimSIP, we firstly conduct a series of simulation studies to demonstrate
the performance of SimSIP compared to some existing similarity measures based on
ranked gene lists (WeiSumE� (Chen, Zhou & Sun, 2015), OrderedList (Yang et al., 2006),
FES0.001, FES0.01(Serra, Romualdi & Fogolari, 2016)) and Euclidean distance EucD under
various scenarios. Secondly, we apply SimSIP to analyze the gene expression data of
cancers in The Cancer Genome Atlas database and find that it sheds light on the genetic
relationships among cancers. Thirdly, we arrange the significantly similar cancer pairs
among the 18 cancer types detected by SimSIP into a disease network in which the
tendency to cluster the histologically or anatomically related cancers provides basic
support for pan-cancer studies. Finally, for the most significantly similar cancer pair,
colon adenocarcinoma (COAD) and rectum adenocarcinoma (READ), found by SimSIP,
we use MAG to measure the magnitude of association of each gene both with COAD
and READ and find the important oncogenes of colorectal cancer which are associated
with COAD and READ and regulated in the same pattern. Moreover, biological processes
highly associated with colorectal cancer are detected.

MATERIALS AND METHODS
MAG and SimSIP
Let us assume that there are n genes for disease 1 and disease 2. For gene i, 1 ≤ i ≤ n, let ai
be its rank among the n genes for disease 1, and bi is defined similarly for disease 2.
Now we intend to gauge the genetic similarity or genetic relationship between these
two diseases based on gene rank lists faigni¼1 and fbigni¼1. The gene rank usually represents
the strength of association with the disease, in the sense of small rank meaning strong
association and big rank meaning weak association. For example, the rank can be
assigned for each gene by the magnitude of p value reported in the study of detecting
differentially expressed genes, which is the routine work in the literature. To facilitate
the construction of the similarity score, we transform the ranks ai and bi to their reciprocal
1/ai and 1/bi, whose values fall in the interval (0, 1] and can be treated directly as the
magnitude of association of gene i with diseases 1 and 2, respectively. Further, we employ
the geometric mean

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=ai � 1=bi

p
of 1/ai and 1/bi and call itMAG, which is a compromise

between 1/ai and 1/bi as the magnitude of association of gene i with both diseases 1
and 2. Intuitively, a small value ofMAGmeans a weak association of gene i with these two
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diseases, a big value means a strong association of gene i with these two diseases. Note the
value of MAG is between n−1 and 1.

Now let us explore the summation
Pn

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=ai � 1=bi

p
ofMAG over all genes, that is, the

total magnitude of association for all n genes with diseases 1 and 2. Note that this
summation is actually the inner product of vectors f1= ffiffiffiffi

ai
p gni¼1 and f1= ffiffiffiffi

bi
p gni¼1 with

positive components. It is easy to check that the length of each of these two vectors isffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 1=i

p
, which depends only on n and is independent of genes’ concrete ranks. So the

summation is proportional to the Angle cosine between the two vectors mentioned above.
Recall that the inner product in algebra or geometry theory is sometimes called the
scalar product or dot product and is the projection of one vector on another in geometry
space, which is a symmetric measure of closeness of two vectors. So the similarity score by
inner product

SimSIP ¼
Xn

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=ai � 1=bi

p

is an appropriate candidate for measuring similarity between contributions of all n
genes to diseases 1 and 2, and it can be further taken as a similarity score between two
diseases derived from the corresponding gene rank lists. Considering one extreme case
in which ai = bi for every gene i, which means the rank of every gene for disease 1 is exactly
equal to the rank of same gene for disease 2, these two diseases are the most similar in
terms of these n genes and SimSIP attains its maximum

Pn
i¼1 1=i. Considering the other

extreme case in which the gene ranking top for disease 1 would always rank bottom for
disease 2, and gene ranking bottom for disease 1 would always rank top for disease 2,
these two diseases are the most dissimilar in term of these n genes and SimSIP attains its
minimum. So a big value of SimSIP would imply that two diseases are similar.

Assessment of significance
It is easily observed from the expression of SimSIP that the more identically ranked
genes associated with diseases 1 and 2 there are, the more similar two diseases are, and the
larger SimSIP is. Therefore, an observed SimSIP larger than expected under the null
hypothesis that two diseases have non-overlapping genes means significant. When we say
that two diseases have no overlapping genes in the genetic perspective, we mean that
the two gene rank lists are two random shufflings of 1∼ n. Based on the expression of
SimSIP, we describe a procedure to generate the empirical distribution of SimSIP under
the null hypothesis, which is used to evaluate the significance of the similarity score.
Without loss of generality, we fix the first gene rank list as figni¼1 and random permutate
1∼ n as fbigni¼1 for S times, then we obtain the corresponding SimSIPs, s = 1,2,…,S.
The p value of SimSIP is computed as

p ¼
PS

s¼1
IðSimSIPs � SimSIPÞ

S
; (1)
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where I(·) is the indicator function assigning the value 1 or 0 relying on whether the
condition within brackets is met. Let pr denote the p value and r = 1,2,…, R for R
replications, and the power under the alternative hypothesis or the type I error under the
null hypothesis for a given significance level a is

Power ¼
PR

r¼1
Iðpr � aÞ
R

: (2)

Regarding MAG, we can employ a similar procedure to evaluate the significance of an
observed MAG. Under the null hypothesis that two diseases having non-overlapping
genes, the two gene ranks ai and bi involved in are randomly drawn from {1,2,…, n} with
replacement, and it is not difficult to get the distribution of MAG under the null
hypothesis. The significance of the observed MAG can then be calculated.

RESULTS
Simulation study
Parameter setting

We carry out simulations to evaluate the performance of SimSIP and the existing
rank-based methodsWeiSumE� (Chen, Zhou & Sun, 2015), OrderedList (Yang et al., 2006),
FES0.001, and FES0.01 (Serra, Romualdi & Fogolari, 2016), which are weighted sum of the
number of overlapping genes between the top part of ranked gene lists, and Euclidean
distance EucD between the original values, which is a method without ranking.

As done in Chen, Zhou & Sun (2015), we set the number of genes n = 6,000, 11,000, and
25,000 and randomly choose two sets of d genes from the n genes as the associated genes
with diseases 1 and 2, respectively. We fix the d = 1, 5, 10, and 20 in the simulation.
The number o of overlapping associated genes in the two sets is taken as 0 for evaluating
the type I error rate and positive for evaluating the power. For convenience, genes 1 to
d are assumed to be associated with disease 1 and genes d − o + 1 to 2d − o are associated
with disease 2, where d ≥ o. As performed by Chen, Zhou & Sun (2015), two normal
distributions N(0,σ2) and N(1,σ2) are employed to generate the rank of each gene.
Specifically, N(1,σ2) is for the associated genes and N(0,σ2) for the remaining n − d
non-associated genes, in either disease 1 or 2. The gene rank is from the value of normal
distribution. The variance σ2 in the normal distribution is taken as 0.01, 0.05, 0.1, 0.5
when o = 0; 0.07, 0.09, 0.11, 0.13 when o = 1; 0.1, 0.15, 0.2, 0.25 when o = 5; 0.2, 0.25,
0.3, 0.35 when o = 10; and 0.3, 0.35, 0.4, 0.45 when o = 20. The variance σ2 plays an
important role in discerning the associated genes. The number of replications R is set
to 1,000 in the computation of powers/type I error rates, and the nominal significance level
is set to 0.05. We set S = 1,000 in the simulation study and S = 10 millions in real
data analysis of The Cancer Genome Atlas (TCGA). As an illustration, the empirical
distribution of SimSIP for total genes number n = 6,000, 11,000, 25,000 are given in
Figs. S1–S3 and the empirical distribution of MAG for n = 6,000, 11,000, 25,000 are given
in Figs. S4–S6.
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Type I error
We firstly show the simulation results under the null model in evaluating the type I error
rates of SimSIP and five existing methods under various scenarios. For the null setting, the
empirical p values of existing rank-based methods (WeiSumE�, OrderedList, FES0.001,
FES0.01) are computed by permutating ranked gene lists from the value of the normal
distribution, and the null distribution of EucD is obtained by permutating the value of the
normal distribution generated. All empirical sizes shown in Table S1 are around the
significance 0.05 and are well controlled.

Power comparison

In the second set of simulations, the performance of SimSIP is compared with five
other existing measures in terms of power. The results show that the powers of six
measures are all monotonic decreasing for higher noise (variance σ2) and monotonic
increasing for a bigger ratio of o to d. The findings are shown in Fig. 1. Firstly, for the same
total gene number n, the smaller the number of associated genes d becomes, the more
obvious the advantage of the SimSIP is. For example, in the scenarios of d = 1 (in Figs. 1A,
1E and 1I), the power of SimSIP has almost a 10% increase compared with that of
WeiSumE� (Chen, Zhou & Sun, 2015) and OrderedList (Yang et al., 2006), is more than
two times the powers of FES0.01 (Serra, Romualdi & Fogolari, 2016), and almost more
than 8 times the powers of FES0.001 (Serra, Romualdi & Fogolari, 2016) and EucD.
The scenario of d = 5 is analogy to the scenario of d = 1. However, in the scenarios of
increasing d up to 10 and 20, the advantage of SimSIP is no longer obvious. Secondly, for
the same d, the larger the number of genes (n) becomes, the more obvious the advantages
of SimSIP is. For example, in the scenarios of n = 6,000 and n = 11,000, the similarity
measure WeiSumE� is the most powerful when the number of associated genes d = 20;
however, SimSIP becomes superior when compared with the other five measures when
n increases to 25,000. Thirdly, when the number of associated genes d is relatively large,
SimSIP gradually manifests certain advantages with the increase in noise (variance σ2),
which can be observed in Figs. 1C, 1D, 1G, 1H, 1K and 1L (in the scenarios of d = 10
and d = 20). When increasing the number of overlapping associated genes o up to 5,
SimSIP always maintains the superiority compared with the other five methods, and its
power has obvious advantages for the larger ratio of o to d with a fixed n and for the
larger n with a fixed d (see Fig. 2). When the number of overlapping associated genes
o increases from 5 to 10 or 20, the advantages of SimSIP are much more significant
(see Figs. S7 and S8).

As shown in Figs. 1 and 2 and Figs. S7 and S8, the similarity measure WeiSumE�

performs better than other measures when there are less but significant overlap between
two diseases with lower noise (variance σ2), and our method SimSIP performs better in
all the other scenarios. Especially for n = 25,000, which approximates the number of
genes in the full human genome, the performance of SimSIP is always the best. Thus,
compared with other measures, SimSIP is more appropriate for detecting genetic similarity
between longer gene lists and works well when more overlapping genes occur among
diseases. Most importantly, our method SimSIP is more robust for higher noise than the
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other five methods. Therefore, SimSIP is more suitable for the study of human diseases
than the existing methods, especially for the study of cancers in which there are more
genetic overlaps.

Furthermore, the similarity measure OrderedList has a higher power with fewer
overlaps (for o = 1) and FES0.01 has a higher power with more overlaps (for o > 1).
Their performances are superior to those of similarity measure FES0.001 and Euclidean
distance EucD, which always have low power in all scenarios. We also find that the
rank-based measures always perform better than Euclidean distance EucD, which uses the

Figure 1 Powers of EucD, FES0.001, FES0.01, OrderedList, SimSIP andWeiSumE
�
when o¼ 1 with 12 scenarios. (A) n¼ 6000, d¼ 1; (B) n¼ 6000,

d ¼ 5; (C) n ¼ 6000, d ¼ 10; (D) n ¼ 6000, d ¼ 20; (E) n ¼ 11000, d ¼ 1; (F) n ¼ 11000, d ¼ 5; (G) n ¼ 11000, d ¼ 10; (H) n ¼ 11000, d ¼ 20;
(I) n ¼ 25000, d ¼ 1; (J) n ¼ 25000, d ¼ 5; (K) n ¼ 25000, d ¼ 10; (L) n ¼ 25000, d ¼ 20. The arrangement of variance s2 on x axis is a series
(0.07, 0.09, 0.11, 0.13) on which the power of six measures can be ranged from 0.1 to 0.95. Full-size DOI: 10.7717/peerj.10576/fig-1
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value of the normal distribution rather than gene ranks. These results demonstrate that the
rank of a gene can provide additional information on its contribution to each disease upon
converting real data to ranks. In general, compared with existing similarity measures,
SimSIP performs better in almost every simulation, which indicates that it is feasible to
construct similarity measure by replacing overlaps between top ranked gene sets with gene
ranks.

Figure 2 Powers of EucD, FES0.001, FES0.01,OrderedList, SimSIP andWeiSumE
�
when o¼ 5 with nine scenarios. (A) n¼ 6000, d¼ 5; (B) n¼ 6000,

d ¼ 10; (C) n ¼ 6000, d ¼ 20; (D) n ¼ 11000, d ¼ 5; (E) n ¼ 11000, d ¼ 10; (F) n ¼ 11000, d ¼ 20; (G) n ¼ 25000, d ¼ 5; (H) n ¼ 25000, d ¼ 10;
(I) n ¼ 25000, d ¼ 20. The arrangement of variance s2 on x axis is a series (0.1, 0.15, 0.2, 0.25) on which the power of six measures can be ranged
from 0.1 to 0.95. Full-size DOI: 10.7717/peerj.10576/fig-2
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TCGA data analysis
The Cancer Genome Atlas is a combined effort by multiple research institutes, in which
tumor and normal samples from more than 11,000 patients are publicly available,
comprising 37 types of (epi)genetic and clinical data for 33 types of cancer. We download
gene expression datasets (whose gene expression profiles were determined experimentally
using the Illumina HiSeq 2000 RNA Sequencing platform) of 33 types of cancer using
the UCSC Xena functional genome browser (https://xenabrowser.net/datapages/).
Expression data of 20,530 genes are available for each cancer, and 18 types of cancer are
selected (see details in Table 1) based on the criteria that the sample size of the control
group is not smaller than 5. We rank all genes by their p values derived from the R package
LIMMA for differential expression analysis and apply our proposed method to gauge the
genetic similarity among the 18 types of cancer in TCGA. In this section, we choose
WeiSumE� (Chen, Zhou & Sun, 2015), which performs only second to SimSIP under all
simulation scenarios, to compare with SimSIP.

For the (18 × 17)/2 = 153 cancer pairs among 18 cancers, we compute their
similarity scores by using SimSIP and WeiSumE� respectively and standardize them by
normalization method T�Tmin

Tmax�Tmin
. The normalized similarity scores about SimSIP are in

[0.11, 0.77] with mean 0.24 and variance 0.015, and that about WeiSumE� are in
[0.064, 0.53] with mean 0.13 and variance 0.005. Obviously, the normalized similarity
scores about SimSIP are generally bigger and more spread than those about WeiSumE�.

Table 1 Sample sizes of control group and case group per cancer type in TCGA

Abbreviation Cancer typea n0
b n1

BLCA Bladder urothelial carcinoma 19 407

BRCA Breast invasive carcinoma 114 1,097

CHOL Cholangiocarcinoma 9 36

COAD Colon adenocarcinoma 41 286

ESCA Esophageal carcinoma 11 184

GBM Glioblastoma multiforme 5 154

HNSC Head and neck squamous cell carcinoma 44 520

KICH Kidney chromophobe 25 66

KIRC Kidney renal clear cell carcinoma 72 533

KIRP Kidney renal papillary cell carcinoma 32 290

LIHC Liver hepatocellular carcinoma 50 371

LUAD Lung adenocarcinoma 59 515

LUSC Lung squamous cell carcinoma 51 502

PRAD Prostate adenocarcinoma 52 497

READ Rectum adenocarcinoma 10 94

STAD Stomach adenocarcinoma 35 415

THCA Thyroid carcinoma 59 505

UCEC Uterine corpus endometrial carcinoma 24 176

Notes:
a From 33 types of cancer in TCGA, 18 types of cancer with control group sample size being five or more are selected.
b n0 is sample size of control group and n1 is sample size of case group for a given cancer.
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So SimSIP is more discriminative than WeiSumE� in quantifying the relationships among
diseases.

Significant cancer pairs in TCGA
To illustrate the application of SimSIP and WeiSumE� in exploring significant
relationships among 18 cancers, we compute the empirical p values of SimSIP and
WeiSumE� based on the null distribution (shown in Figs. S9 and S10) for the 153 cancer
pairs among 18 cancers. Given the nominal significance level of 0.05, the Bonferroni
adjustment of empirical p values 0.05/153 is employed to detect significant similar cancer
pairs. A total of 91 significant similar cancer pairs are detected by SimSIP, 82 pairs by
WeiSumE�, with 81 pairs in their intersection (see Table S2; Fig. S11). For the 81
cancer pairs detected both with SimSIP and WeiSumE� (Chen, Zhou & Sun, 2015), Fig. 3
displays the empirical p values of the two methods for the same cancer pair. Clearly,
the empirical p values of SimSIP are generally smaller than that of WeiSumE� (except for
cancer pair KIRP and LUAD with index 63 in Fig. 3), which is consistent with the results
given in the simulation.

As shown in Fig. S11, SimSIP finds more possibly significant cancer pairs which include
almost all the significant cancer pairs found with WeiSumE�. Among the 10 significant
cancer pairs (shown in red in Table S2) found with SimSIP, not WeiSumE�, five cancer
pairs can be explained in pan-cancer studies: For cancer pair COAD and UCEC, the
diversity of high antigen-specific TCR repertoires correlates with the improved prognostic
progression-free interval in COAD and UCEC (Thorsson et al., 2018); the expression of
TMEM173 in tumor tissues is significantly upregulated and hypomethylated in cancer
pair COAD and THCA but significantly downregulated and hypermethylated in cancer
pair LUSC and PRAD (An et al., 2019). Furthermore, there are high mutations rates for

Figure 3 The empirical p values of SimSIP (black dot) andWeiSumE� (red square) for 81 cancer pairs
found with both SimSIP and WeiSumE�. Full-size DOI: 10.7717/peerj.10576/fig-3
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TBK1 in cancer pair COAD and UCEC, and the expression of TMEM173 is positively
associated with the infiltration of immune cells in cancer pair BRCA and THCA
(An et al., 2019). A high IRF3 expression yields a poor prediction of prognosis in
patients with KIRC and PRAD (An et al., 2019). In addition, cancer pair COAD and UCEC
depends on components of the EGFR pathway at similar frequencies (Wormald, Milla &
O’Connor, 2013).

Genetic similarity among 18 types of cancer

Depicting the 91 significant similar cancer pairs found with SimSIP in a disease network by
using software Cytoscape (https://cytoscape.org/) as in Fig. 4, the following observations
could be addressed:

1. The vertex HNSC has the largest degree, 15, which shows that the HNSC has significant
similarity with the other 15 cancers, except for KICH and KIRC. The degrees of vertices
such as BLCA and UCEC reach 14; READ, ESCA, LUSC, and HNSC reach 13; and
LUAD and LIHC reach 12. There are close intrinsic genetic relationships among the
18 cancers. The seven types of cancers ESCA, LUSC, HNSC, BLCA, BRCA, STAD,
and UCEC ( their vertices with deeper color and bigger size) with a higher degree are
closer to each other and tend to form a pivotal hub of the disease network of 18 cancer
types.

Figure 4 The diseases network of 18 cancer types. Taking Bonferroni adjustment of empirical p values
given nominal significance 0.05 as a threshold, we select 91 significantly similar cancer pairs found with SimSIP
to demonstrate the genetic relationships among cancers by software Cytoscape (https://cytoscape.org/).
The width, length and color of the edge in the network are determined by the magnitude of SimSIP, the
size and color of the vertex in the network is determined by the degree of vertex (the number of cancers
which is significantly related to this cancer). Full-size DOI: 10.7717/peerj.10576/fig-4
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2. Cancers originating from the same organ or tissue tend to co-cluster, such as cancer
pair READ and COAD or KIRP and KIPC with the most similar relationship.
In addition, cancers with proximity also tend to group together, such as LIHC and
CHOL with a highly significant relationship. These provide evidence that tumors
with closer physical distance in human organs have similar sources of endoderm
development or exposure to a common cancer-causing environmental factor
(Sell & Dunsford, 1989). Further, for the three types of kidney tumors, KICH, KIRP, and
KIPC, the similarity between KIRP and KIPC is more significant than KICH and KIPC
or KIRP and KIPC, which may be explained by the fact that KIRC and KIRP are
cancers of the proximal tubule segments, whereas KICH is a cancer of the distal tubule
segments (Chen et al., 2016; Davis et al., 2014; Lee, Chou & Knepper, 2015). Compared
to other cancer pairs from the same tissue, the degree of similarity between the two
types of lung tumor LUSC and LUAD is not so significant, which may be due to the
derivation of cell types of the two types of lung tumors: LUSC originates from squamous
epithelial cells in the respiratory tract and alveoli, whereas LUAD originates from a
large number of glandular or alveolar cells (Li et al., 2015; Mainardi et al., 2014;
Sutherland et al., 2014).

3. There are significant similarities among gastrointestinal tumors (READ, COAD, STAD,
and ESCA), which is consistent with the results of integrative clustering across data
types in the miRNA, mRNA, and RPPA platforms (Hoadley et al., 2018). In the disease
network (Fig. 4), squamous cell carcinomas (BLCA, ESCA, HNSC, and LUSC) are
also co-clustered, and the similarity score of the cancer pair ESCA and LUSC is the
top three and has more significant similarity. Hoadley et al. (2018) reported a similar
discovery based on a multi-platform dataset (including miRNA, mRNA, RPPA,
aneuploidy, and DNA methylation data) in TCGA, and Abrams et al. (2018) also
suggested that regardless of the tissue types of squamous cell carcinoma, potential
similarities were detected among the transcription factor expression profiles of BLCA,
ESCA, HNSC, and LUSC. In addition, the gynecologic tumors UCEC and BRCA are
also close to each other in the network, which is consistent with the results of previous
studies (Hoadley et al., 2018).

4. Finally, similar to previous studies (Abrams et al., 2018;Hoadley et al., 2018), three types
of cancer, PRAD, THCA, and GBM, are relatively independent in the network, the
relationships among them and other cancers are relatively weak. In addition, instead of
squamous cancers being clustered together, adenocarcinomas (PRAD, COAD, LUAD,
STAD, and READ) appear to be scattered around the edge of the network.

From the above observations of the disease network (Fig. 4) obtained with SimSIP,
we find them to be analogous to those of previous pan-cancer studies (Abrams et al., 2018;
Hoadley et al., 2018): histologically or anatomically related cancers tend to cluster together,
which provide basic support for analyses of pan-gastrointestinal, pan-squamous,
pan-kidney, and pan-gynecological cancers.
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Associated genes with colorectal cancer
For the most significantly similar cancer pair COAD and READ found with SimSIP, we try
to explore the common underlying genetic mechanisms by sorting MAG values of
genes in descending order. The significance of the difference of expression level of the
top 5 genes in COAD and READ are shown in Table S3, which are obtained from the
TCGA data mining website UALCAN (http://ualcan.path.uab.edu/). Table S3 provides
evidence that the top 5 genes are associated with COAD and READ and they are regulated
in the same pattern (either up-regulated or down-regulated). It is worth mentioning
that, for the top 500 genes associated with COAD and READ and the top 500 genes
associated with KICH and STAD, which are the most similar and the least similar
cancer pairs found with SimSIP respectively, the proportion of genes regulated in the same
pattern is 1 and 0.648 respectively. Furthermore, we compute the correlation coefficient
between the logarithmic transformation of SimSIP and the proportion of genes
regulated in the same pattern in the top N (N = 500, 1,000, 1,500, 2,000) genes associated
with each of 153 cancer pairs (shown in Fig. S12). Obviously, there is a significant
relationship between the degree of overlap between diseases and the proportion of genes
regulated in the same pattern. These findings suggest that the associated genes of highly
overlapping cancers may be regulated in the same pattern. Through gene annotation
by using Metascape (http://metascape.org/) and literature review, among the top 5 genes,
one gene (CDH3) is associated with multiple cancers (shown in Fig. S13), and two
genes (ETV4, KRT24) are associated with colorectal cancer; the remaining genes can
be considered as candidate susceptibility genes of colorectal cancer (Table S4). CDH3,
the top 1 gene detected by MAG, is located in a region on the long arm of chromosome
16. Paredes et al. (2012) advised that genetic or epigenetic changes in this gene or changes
in its protein expression often lead to tissue disorders, cellular dedifferentiation, and
enhanced invasiveness of tumor cells. This gene is associated with intestinal infections
(Van Marck et al., 2011) and colon cancer (Van Marck et al., 2011; Sun et al., 2011).
In addition, its over-expression is also associated with tumor progression and low survival
in non-small-cell lung cancer (Imai et al., 2018) and in the loss of heterozygous events for
breast and prostate cancer (Royo et al., 2016; Sousa et al., 2014; Vieira et al., 2017).
Moreover, CDH3 is significantly associated with liver cancer, gastric cancer, bladder
cancer, and cervical adenocarcinoma (Bauer et al., 2014; Paredes et al., 2012; Sun et al.,
2011; Van Marck et al., 2011). Searching for CDH3 in the CancerMine database
(https://www.mycancergenome.org/) reveals that 12 cancers are associated with the
over-expression of CDH3. This gene is therefore very important in the genetic mechanism
of cancer. The top 3 gene ETV4 is strongly linked to metastasis of colorectal cancer
(Dumortier et al., 2018) and enriched in pathway transcriptional misregulation in cancer
(Table S4). The top 5 gene KRT24 is over-expressed in patients with colorectal cancer and
is a susceptibility gene for early onset of colorectal cancer (Hong et al., 2007).

Associated signaling pathway with colorectal cancer
Calculating empirical p values of MAG for each gene by its null distribution (described
in Fig. S14), 1,838 genes significantly associated with colorectal cancer are obtained.
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By DAVID (https://david.ncifcrf.gov/tools.jsp), these 1,838 genes associated with
colorectal cancer are clustered in diverse functional categories.

As shown in Table 2, of 21 functional categories, 3 are associated with cancer (cAMP
signaling pathway (Akgul, 2009; Myklebust et al., 1999), fatty acid degradation (Currie
et al., 2013), and nitrogen metabolism (Sanchez-Vega et al., 2018)) and 11 appear in
colorectal cancer studies, including calcium signaling pathway (Dallol et al., 2003),
circadian entrainment (Lévi et al., 2010), ribosome biogenesis in eukaryotes
(Lafontaine, 2015), cGMP-PKG signaling pathway (Li et al., 2013), dopaminergic synapse
(Xu et al., 2010), retrograde endocannabinoid signaling (Proto et al., 2012), cholinergic
synapse (Frucht et al., 1999), insulin secretion (Giovannucci, 2001), gastric acid
secretion (Morton, Prendergast & Barrett, 2011), morphine addiction (Jin et al., 2012),
and nicotine addiction (Shureiqi et al., 2003; Yang & Frucht, 2001). The remaining
signaling pathways can be considered as candidates for studies on biological processes
associated with colorectal cancer. In detail, the circadian entrainment pathway closely
interacts with the cell division cycle and pharmacological pathways in the treatment of
metastatic colorectal cancer and accelerates or slows down cancer growth through
modifications of host and tumor circadian clocks, which drives 24 h changes in drug
metabolism, cellular proliferation and apoptosis, cell cycle events, DNA repair, and
angiogenesis (Lévi et al., 2007, 2010). For the insulin secretion pathway, because insulin

Table 2 The result of pathway enrichment analysis of colorectal cancer

ID KEGG pathway Benjamini

hsa04713 Circadian entrainment 2.30E−04

hsa04024 cAMP signaling pathway 2.97E−04

hsa03008 Ribosome biogenesis in eukaryotes 3.68E−04

hsa04080 Neuroactive ligand-receptor interaction 7.92E−04

hsa04020 Calcium signaling pathway 0.003328211

hsa04723 Retrograde endocannabinoid signaling 0.006342379

hsa04724 Glutamatergic synapse 0.006620968

hsa04911 Insulin secretion 0.010800326

hsa04728 Dopaminergic synapse 0.011092804

hsa04725 Cholinergic synapse 0.017964832

hsa04022 cGMP-PKG signaling pathway 0.021342644

hsa04970 Salivary secretion 0.023476401

hsa04261 Adrenergic signaling in cardiomyocytes 0.024338123

hsa00071 Fatty acid degradation 0.029045641

hsa05032 Morphine addiction 0.036794268

hsa04978 Mineral absorption 0.038043761

hsa04971 Gastric acid secretion 0.045576

hsa04726 Serotonergic synapse 0.045974199

hsa00910 Nitrogen metabolism 0.047420936

hsa05033 Nicotine addiction 0.047658725

hsa05031 Amphetamine addiction 0.048006097
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and insulin-like growth factor axes are major determinants of cell proliferation and
apoptosis, an increase in their circulating concentrations is associated with a high risk of
colonic neoplasia. However, the dietary pattern with high saturated fatty acid intake can
stimulate insulin resistance or secretion (Giovannucci, 2001), and cellular proliferation
requires fatty acids to synthesize cell membranes and signaling molecules (Currie et al.,
2013). In addition, the growth of colon tumor cells is selectively inhibited by nonsteroidal
anti-inflammatory drugs that activate the cGMP/PKG pathway to suppress Wnt/β-catenin
signaling (Li et al., 2013). Up to 15% of colorectal cancers are distinguished by DNA
microsatellite instability and manifested by the presence of DNA replication errors (Jass
et al., 1998).

DISCUSSION
SimSIP is a novel similarity score that measures the genetic relationships among diseases
by (1) introducing a suitable transformation of gene ranks that converts gene ranks into
the magnitude of association of gene with the disease; and (2) comparing the similarity
between gene rank lists in geometric space instead of comparing the overlaps between
the top part of ranked gene lists. In this study, three additional tasks are also fulfilled:
constructing a disease network of 18 cancers and offering some support for pan-cancer
studies; developing a measureMAG to gauge the magnitude of association of an individual
gene with two diseases (note that MAG can be generalized to multiple diseases); and
finding some important genes and signaling pathways associated with colorectal cancer.

Extensive simulations show that SimSIP has better performance than existing
methods in scenarios with larger numbers of overlapping associated genes (o) and larger
number of genes (n), whereas in scenarios with smaller o and smaller n, such as o = 1,
n = 6,000 or 11,000, WeiSumE� performs better. It is desirable that SimSIP can clearly
identify the differences among diseases with more overlapping associated genes. Thus,
in real data application, we use SimSIP to measure genetic similarities among cancers
based on the differential expression analyses of multiple datasets in TCGA with the
R package LIMMA. The results show that SimSIP can find more significant cancer pairs
than WeiSumE�, such as cancer pair COAD and UCEC, COAD and THCA, LUSC and
PRAD, BRCA and THCA, or KIRC and PRAD demonstrating the usefulness of SimSIP.
Furthermore, for the 81 cancer pairs found with both SimSIP andWeiSumE�, the p value of
SimSIP is smaller than WeiSumE�, therefore, the SimSIP may be more powerful than
WeiSumE� in detecting the significant cancer pairs.

Overall, SimSIP has a simpler form and faster computation (time consumption for six
measures is shown in Table S5), is more robust for higher levels of noise, and is more
suitable for the study of human diseases than existing methods, especially for the study
of cancers in which there are more genetic overlaps. In order to make this conclusion
considerably stronger, we extend the range of the simulations to cover bigger number of
overlapping associated genes, such as o = 50, 100 and 200. As shown in Figs. S15–S17,
SimSIP still performs well or better in the scenarios with bigger ratio of o to d when o = 50,
100 and 200, which is analogous to previous simulations.
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CONCLUSIONS
This article proposes a similarity score based on the list of gene ranks to measure the
genetic relationships among diseases from gene expression data. Our method SimSIP gives
a new perspective to detect the genetic relationships among diseases that does not depend
on a threshold as fraction enrichment (Serra, Romualdi & Fogolari, 2016) nor on the
weighted sum of overlaps between ranked gene lists as OrderedList (Yang et al., 2006).

Similar to other rank-based measures, our method relies on the correctness and
scientific quality of the gene ranking. If gene ranking does not reflect the contribution
of the gene to each disease, the rank-based measure is not necessarily superior to the
commonly used measures. There are many common methods for ranking genes in
practice, such as by the magnitude of p values of t-test, of marginal regression analysis and
of some methods for detecting differentially expressed genes (such as LIMMA, edgeR and
DESeq2 et al.). Although p values derived from the R package LIMMA for differential
expression analysis were used in this paper to rank the gene, different researchers can
choose different ranking methods based on their specific needs. In summary, in contrast
to existing measures that are all based on the number of overlapping genes in top
ranked gene lists among diseases, we creatively describe the genetic relationships among
diseases from the spatial similarity between the transformation of gene ranks, which
provides a new research direction for studies of similarity measures to reveal genetic
relationships among diseases.
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