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The regeneration of nerve tissue after spinal cord injury is a complex and poorly understood
process. Medication and surgery are not very effective treatments for patients with spinal
cord injuries. Gene therapy is a popular approach for the treatment of such patients. The
delivery of therapeutic genes is carried out in a variety of ways, such as direct injection of
therapeutic vectors at the site of injury, retrograde delivery of vectors, and ex vivo therapy
using various cells. Recombinant adenoviruses are often used as vectors for gene transfer.
This review discusses the advantages, limitations and prospects of adenovectors in spinal
cord injury therapy.
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INTRODUCTION

Spinal cord injury (SCI) is serious medical condition, often leading to disability and a significant
decrease in patients’ quality of life. Unfortunately, existing therapies for SCI are ineffective and do
not lead to complete or significant functional recovery (Tator, 2006; Bydon et al., 2014; Tsintou et al.,
2015). Numerous ascending and descending nerve pathways are interrupted after SCI, causing a
partial or complete impairment of sensory and motor functions below the injured spinal cord (Lin
et al., 2016). The recovery of large regions of damaged tissue in the spinal cord or brain requires the
growth of axons either by compensatory growth of preserved fibers or by the regeneration of
damaged axons (Maier and Schwab, 2006). The inability of the central nervous system to regenerate
is explained by the presence of inhibitory molecules, the lack of supporting molecules, the presence of
cell barriers, and the inability of adult neurons to support axonal growth over long distances (Silver
and Miller, 2004). SCI therapy aims to prevent neuronal death and stimulate axonal regeneration
(Blits et al., 2000).

The use of neurotrophic factors is an actively developing direction for the treatment of SCI, since
they are able to suppress neuronal apoptosis and support atrophic, hypofunctional neurons. These
factors quickly degrade after direct administration. Gene transfer that permits the stable production
of neurotrophic factors is being actively studied (Betz et al., 2016). Recombinant adenoviruses
(rAdVs), adeno-associated viruses (AAVs) and lentiviruses are the main vectors being studied for
transgene delivery; each one has its own advantages and disadvantages. The use of AAVs and rADVs
is safer due to episomal transgene expression (Lee et al., 2017). Furthermore, an important difference
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between them is that AAVs and lentiviruses cause constant
expression of a transgene, while rAdVs provide only
temporary expression (Tosolini and Morris, 2016).
Neurotrophic factors can alter the dendritic architecture,
synaptic density and plasticity (Horch, 2004; Kuipers and
Bramham, 2006; Parrish et al., 2007; Rodger et al., 2012).
There is scanty of data on how the long-term expression of
secreted neurotrophic factors affects the structure and function of
neurons. For instance, the transplantation of an autologous
peripheral nerve graft transduced with AAV producing brain-
derived neurotrophic factor (BDNF) or ciliary neurotrophic
factor (CNTF) led to significant changes in dendritic
architecture in both transduced and non-transduced
populations of regenerating retinal ganglion cells after
5–8 months (Rodger et al., 2012). The long-term expression of
BDNF was found to induce spasticity and hyperexcitability
(Fouad et al., 2013), while its transient expression was
sufficient to maintain the regenerated axons for long periods
of time at the sites of SCI (Blesch and Tuszynski, 2007). This
review discusses the preclinical data on the use of rAdVs as
vectors to deliver therapeutic transgenes after SCI.

THREE GENERATIONS OF RECOMBINANT
ADENOVIRAL VECTORS

Vectors based on adenovirus serotype 5 (AdV5) have found a
broad range of applications in the field of gene therapy,
including the transfer of various therapeutic transgenes for
the treatment of SCI. rAdVs have several advantages over
other viruses used for gene transfer. They are able to
transduce almost any cell type, including postmitotic cells
such as neurons while providing a high level of transgene
production when strong promoters such as CMV or CAG are
used. In addition, rAdV5 has a high packing capacity, which
may reach up to 36 kb with the removal of viral genes, and
highly purified adenoviral preparations can be obtained at a
high titer (Liu et al., 1997; Danthinne and Imperiale, 2000;
Alba et al., 2005; Blits and Bunge, 2006).

There are three generations of rAdVs. First-generation
adenoviral vectors lack the E1 and often the E3 regions of the
genome with a packaging capacity up to 8 kb. Removal of the
E1 region leads to almost complete prevention of viral
replication and cell lysis, which makes these vectors
relatively safe for gene therapy (Hermens and Verhaagen,
1998; Danthinne and Imperiale, 2000; Blits and Bunge, 2006).
However, first-generation rAdVs elicit a significant immune
response in vivo, mainly due to leaky production of viral
proteins in association with a relatively rapid decline in
transgene expression (after approximately 2 weeks)
(Hermens and Verhaagen, 1998; Danthinne and Imperiale,
2000; St George, 2003; Blits and Bunge, 2006; Crystal, 2014;
Lee et al., 2017). Despite this, first-generation rAdVs remain
an invaluable gene transfer tool. Their packing capacity is
sufficient in most cases, and they are easy to design and
produce in large quantities. Most researchers in the field of

SCI therapy use first-generation rAdVs, and much of this
review will be based on the data regarding these vectors.

Second-generation rAdVs have deletions in the E2 and E4
regions, along with deletions in the E1 and E3 regions of the
genome. These modifications increase the packing capacity to
14 kb and reduce cytotoxicity. Deletion of the E2A region
increases the expression time of transgenes up to several
months by preventing the synthesis of late viral proteins (St
George, 2003; Crystal, 2014). However, second-generation rAdVs
also trigger immune responses that lead to a decrease in the
number of transduced cells (Crystal, 2014).

Third-generation rAdVs, also known as “gutless” or “helper-
dependent” adenoviruses, have most of the viral genes removed.
They retain only the cis-elements necessary for the replication of
viral DNA and the packaging of DNA into a capsid. The
development of such vectors requires the presence of helper
viruses in the cell, which ensure the presence of virus-specific
proteins necessary for viral replication and the assembly of
adenoviral vector particles. Theoretically, third-generation
rAdVs can contain several transgenes with a total size of
approximately 36 kb. The injection of third-generation rAdVs
into the body does not cause a significant adaptive immune
response (Alba et al., 2005) correlated with the long period of
transgene expression (up to 2–3 years) after a single injection
(Toietta et al., 2005; Brunetti-Pierri et al., 2009). However, the
production of third-generation rAdVs is complex and requires
optimization (St George, 2003; Crystal, 2014; Lee et al., 2017).

DELIVERY ROUTES FOR RECOMBINANT
ADENOVIRUSES

There are several ways of delivering rAdVs with therapeutic
transgenes into the damaged spinal cord. For example, there
are direct methods of delivery, such as injection of rAdVs into
the site of damage to the spinal cord or nearby
intracerebroventricular, intraparenchymal or intrathecal
administration using a catheter, minipump or syringe.
Transgene expression was detected in several segments
rostral and caudal to the injection site (2–6 mm) in both
white and gray matter upon direct injection of rAdV5
carrying different reporter transgenes into the spinal cord
after injury (Hermens and Verhaagen, 1997; Liu et al., 1997;
Huber et al., 2000; Tai et al., 2003; Wang J. M. et al., 2011;
Povysheva et al., 2017). Although these methods result in
transgene expression, they are quite invasive. There are risks
of spreading traumatic damage and worsening the nervous
damage, including necrosis and apoptosis (Hendriks et al.,
2004; Nakajima et al., 2005; Tosolini and Morris, 2016). In
addition, these methods do not promote targeted
synaptogenesis between severed axons and motor neurons.

There are also indirect delivery methods. For example,
targeted retrograde gene delivery by rAdVs through the
peripheral nervous system or through intramuscular injection
is used to reduce invasiveness in rodent models. The
intramuscularly injected rAdVs are captured by the
neuromuscular junction via the presynaptic axon and are
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retrogradely transported along peripheral nerves to the
corresponding motor neurons of the spinal cord (Tosolini and
Morris, 2016). Upon retrograde delivery of an rAdV expressing
GFP, the transgene was distributed along the rostral spinal cord in
motor neurons of the anterior horns and was found in
interneurons within the gray matter near the central canal of
the injured spinal cord (Zhou and Shine, 2003). The locations of
the motor end plates for the major muscle groups of the forelimbs
and hindlimbs have been mapped in rats and mice (Tosolini and
Morris, 2012; Tosolini et al., 2013; Mohan et al., 2014, 2015).
Thus, targeted delivery of genes through the peripheral nerves or
target muscles may be less invasive than direct injection and has
the advantage of allowing repeated administration (Romero et al.,
2000; Nakajima et al., 2005).

Ex vivo gene therapy is another class of indirect gene
transfer techniques. This gene therapy includes obtaining
the cells from the host organism, genetically modifying
these cells in vitro, determining the expression level of the
transgene in the modified cells, and then transplanting the
cells back to the host. Different types of cells, such as
fibroblasts, Schwann cells, and various stem cells, may be
used for gene therapy aimed at restoring the nervous system.
The risk of immunological rejection is reduced through the
use of autologous cells. Thus, this approach has the ability to
provide localized delivery of therapeutic transgenes to the site
of injury and long-term, high-level expression of those genes
at the target site (Jones et al., 2001; Hendriks et al., 2004).

THE TRANSDUCTION EFFICIENCY OF
RECOMBINANT ADENOVIRUSES

A direct injection of rAdV into the spinal cord leads to the
transduction of neurons (Hermens and Verhaagen, 1997; Liu
et al., 1997, 2010; Huber et al., 2000; Miura et al., 2000; Koda et al.,
2004); astrocytes (Liu et al., 1997; Huber et al., 2000; Miura et al.,
2000; Tai et al., 2003), including reactive astrocytes (Huber et al.,
2000; Chen et al., 2016); oligodendrocytes (Hermens and
Verhaagen, 1997; Huber et al., 2000; Tai et al., 2003; Liu et al.,
2010); macrophages; lymphocytes; and microglia (Liu et al., 1997;
Abdellatif et al., 2006). At the same time, several studies have
shown that the main pool of transduced cells is represented by
astroglial cells (Hermens and Verhaagen, 1997, 1998; Tai et al.,
2003; Abdellatif et al., 2006; Liu et al., 2010). Peak expression was
observed after 7–10 days (Huber et al., 2000; Koda et al., 2004;
Povysheva et al., 2017), while practically no stained cells remained
at the injection site after 2 months. Expression of a reporter
transgene at a distance from the injection site persisted in neurons
for at least 2 months (Liu et al., 1997). In contrast, other works
have shown that long-term transgene expression is maintained by
glial cells (Hermens and Verhaagen, 1998; Tai et al., 2003).

The cells transduced in the healthy spinal cord by the
retrograde administration of rAdV were observed mainly in
the gray matter and included motor neurons and
interneurons, with peak transgene expression occurring on
the seventh day after administration; a decrease in transgene
expression was observed after 2 weeks (Nakajima et al., 2005,

2007). In the injured spinal cord, cells transduced by an rAdV
expressing β-galactosidase were found in both gray and white
matter (Baumgartner and Shine, 1998; Nakajima et al., 2005,
2007). A high level of transgene expression was observed in
neural cells for 3 weeks (Zhou and Shine, 2003). In twy/twy
mice with spontaneous chronic mechanical compression,
retrograde delivery of rAdV to the spinal cord led to
transduction of both neurons and glial cells, including
oligodendrocytes (Uchida et al., 2008, 2012). Data on the
cellular tropism of adenoviral vectors on base Ad5 after direct
and retrograde administration healthy animals or after SCI
are presented in Table 1.

The efficacy of rAdV-mediated gene transfer ex vivo has
been investigated in various cell lines used to treat SCI (Lin
et al., 2016). Transduction efficiency in different cells using
for ex vivo gene transfer is presented in Table 2.
Transplantation of mesenchymal stem cells (MSCs) is the
most frequently used treatment approach for SCI, and the
positive effects of these cells have been documented
(Hofstetter et al., 2002; Matyas et al., 2017). The highly
efficient transduction of human MSCs with rAdV5 at
multiplicity of infection (MOI) of 50–100 has been
repeatedly demonstrated (Koda et al., 2007; Pu et al., 2017;
Shi et al., 2019). The efficiency of adenoviral transduction of
rat MSCs at an MOI of 300 was 90%, with 95% cell viability
after 48 h rAdV transduction did not affect cell proliferation
or potency, and transgene expression in cells was maintained
for at least 21 days in vivo (Deng et al., 2004). In another
work, the rat MSCs were transduced with rAdV5 at an MOI of
100 with an efficiency of 20%, which increased to 60% at an
MOI of 1,000 without affecting the morphology of cells or
their ability to differentiate (Rooney et al., 2008). In contrast,
another study reported that peak transduction efficiency
(50%) occurred at an MOI of 300, and cytotoxicity was
observed if the MOI was over 300 (Zhang et al., 2006).

Despite the fact that many studies have demonstrated the
highly efficient transduction of human and rat MSCs with
vectors based on adenovirus serotype 5 (Deng et al., 2004;
Kawamura et al., 2005; Li et al., 2006; Zhang et al., 2006;
Klöpper et al., 2008; Xu et al., 2009; Marasini et al., 2017; Pu
et al., 2017; Shi et al., 2019), there have also been reports
showing the opposite results (Park et al., 2010; Kuroki et al.,
2017). The low transduction efficiency was attributed to the
low expression of coxsackievirus–adenovirus receptor (CAR),
a molecule that enables adenovirus serotype 5 to bind to the
host cell surface. For human MSCs, it was demonstrated that
CAR is expressed in only a small fraction of cells, while there
is abundant expression of αvβ3 and αvβ5 integrins (Conget
and Minguell, 2000), which play a role in the endocytosis of
Ad5 (Lyle and McCormick, 2010). Although AdV5-based
vectors have a high potential to transduce a wide range of
cells, there are approaches to change the tropism of AdV5 and
increase its transduction efficiency by capsid modifications.
rAdVs with modified tropism were investigated as resources
to increase the efficiency of gene transfer in MSCs. A modified
rAdV with an RGD motif–containing peptide inserted in the
HI loop of the knob domain of the Ad5 fiber (rAd5F/RGD)

Frontiers in Pharmacology | www.frontiersin.org January 2022 | Volume 12 | Article 7776283

Sosnovtseva et al. Adenotherapy for Spinal Cord Injury

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


was studied. rAd5F/RGD may exploit the integrin complexes
αvβ3 and αvβ5 in addition to CAR as its primary receptors.
rAd5F/RGD was 12 times more efficient than rAdV5 with the

wild-type fiber in transducing MSCs (Tsuda et al., 2003). The
fiber chimeric rAdVs Ad5F50, Ad5F35, and Ad5F16, with
fiber domains derived from adenoviruses of serotypes 50, 35,

TABLE 1 | Cellular tropism of adenoviral vectors on base Ad5 after direct and retrograde administration in spinal cord.

Delivery routes Tropism Model of SCI Animals Reference

Direct injection Neurons Non-injured Rat Liu et al. (1997), (2010); Hermens and Verhaagen, (1997)
Contusion Rat Liu et al. (2010); Chen et al. (2016)
Transection Rat Huber et al. (2000); Miura et al. (2000); Koda et al. (2004)

Astrocytes Non-injured Rat Liu et al. (1997), (2010); Hermens and Verhaagen, (1997)
Contusion Rat Tai et al. (2003); Liu et al. (2010); Chen et al. (2016)
Transection Rat Huber et al. (2000); Miura et al. (2000)

Oligodendrocytes Non-injured Rat Liu et al. (1997), (2010); Hermens and Verhaagen, (1997)
Contusion Rat Liu et al. (2010)
Transection Rat Huber et al. (2000)

Retrograde delivery Neurons Non-injured Rat Nakajima et al. (2007), (2010)
Compression Rat Nakajima et al. (2005), (2007), (2010)
Transection Rat Zhou and Shine, (2003)
Spontaneous chronic mechanical compression twy/twy mouse Uchida et al. (2008), (2012)

Astrocytes Compression Rat Nakajima et al. (2010)
Spontaneous chronic mechanical compression twy/twy mouse Uchida et al. (2008), (2012)

Oligodendrocytes Compression Rat Nakajima et al. (2010)
Spontaneous chronic mechanical compression twy/twy mouse Uchida et al. (2008), (2012)

TABLE 2 | Transduction efficiency in various cell lines using for ex vivo gene transfer after SCI.

Cells Adenoviral vector Transduction efficiency Reference

rat MSCs rAdV5 80% at an MOI of 50 PFU/cell Pu et al. (2017)
80% at an MOI of 100 PFU/cell Koda et al. (2007)
90% at an MOI of 300 PFU/cell Deng et al. (2004)
60% at an MOI of 1000 PFU/cell Rooney et al. (2008)
50% at an MOI of 300 PFU/cell Zhang et al. (2006)

human MSCs rAdV5 85% at an MOI of 200 PFU/cell Marasini et al. (2017)
<5% at an MOI of 5000 VP/cell Kuroki et al. (2017)
5–8% at an MOI of 100 PFU/cell Park et al. (2010)

AdV5FRGD 30% at an MOI of 3000 VP/cell Tsuda et al. (2003)
AdV5pK7 40% at an MOI of 5000 VP/cell Kuroki et al. (2017)
AdV5F35 100% at an MOI of 1000 VP/cell Olmsted-Davis et al. (2002)

90% at an MOI of 90 IU/cell Knaän-Shanzer et al. (2005)
AdV5F50 90% at an MOI of 90 IU/cell Knaän-Shanzer et al. (2005)

rat SCs rAdV5 100% at an MOI of 250 PFU/cell Shy et al. (1995)
90–95% Guo et al. (2007)
90–95% at an MOI of 300 PFU/cell Zhang et al. (2007)

mice NSPCs rAdV5 68% at an MOI of 161 PFU/cell, but altered differentiation was observed Falk et al. (2002)
Resistant at an MOI of 1000 PFU/cell Schmidt et al. (2005)

human NSPCs AdV5pk7 (conditionally replicating
adenovirus)

the more effective than AdV5 Tyler et al. (2009)

rat OECs rAdV5 100% at an MOI of 100 PFU/cell Ruitenberg et al. (2002), (2003)

MOI, multiplicity of infection; PFU, plaque forming unit; IU, infection unit; VP, viral particle.
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and 16, respectively, were more efficient than rAdV5 with
wild-type fiber (Olmsted-Davis et al., 2002; Knaän-Shanzer
et al., 2005). However, the high efficiency of transduction of
human MSCs by these chimeric rAdVs has not been
explained. It is known that group B adenoviruses,
including adenoviruses of serotypes 50, 35 and 16, interact
with the CD46 receptor as their primary receptor (Pearse
et al., 2004), which was shown to be expressed at a low level on
human MSCs (Knaän-Shanzer et al., 2005).

Schwann cells (SCs) also showed good results in SCI
therapy. Many experiments using rAdV5 as a vehicle for
gene transfer have demonstrated the high efficiency of rat
SC transduction (Shy et al., 1995; Dijkhuizen et al., 1997;
Guénard et al., 1999; Watanabe et al., 2006; Guo et al., 2007;
Zhang et al., 2007). rAdV5 transduced SCs with almost 100%
efficiency at an MOI of 250–300 (Shy et al., 1995; Guo et al.,
2007; Zhang et al., 2007). At these MOIs, cytotoxicity was not
observed, cells retained their native morphology, and
transgene expression in vitro was observed for at least
2 weeks with no decrease in the percentage of infected
cells (Shy et al., 1995). In another study, rAdV5 infected
only 30% of SCs (Golden et al., 2007). To increase the
efficiency of SC transduction, one study modified the fiber
of rAdV5 by adding a peptide analog of transferrin to the
C-terminus of the protein, which allowed rAdV to penetrate
into cells through the transferrin receptor. This significantly
improved the transduction and expression of a transgene in
neuroglial cells, including SCs (Joung et al., 2005).

Another commonly used cell type is neural stem/
progenitor cells (NSPCs) (Lu et al., 2003; Karimi-
Abdolrezaee et al., 2006; Ziv et al., 2006; Hwang et al.,
2019). It was reported that the efficiency of NSPC
transduction by rAdV5 was 68%, but spontaneous
differentiation was observed in some cases (Falk et al.,
2002). However, in another study, infection with rAdVs
did not affect the morphology, survival, proliferation, or
differentiation of NSPCs (Hwang et al., 2019). There is
also conflicting evidence that NSPCs have a wide range of
receptors for various adenoviruses, such as CAR, αvβ3, αvβ5,
CD46 and syndecan. For example, NSPCs were shown to lack
CAR and αvβ5 on the surface, resulting in their complete
resistance to rAdV5 transduction even at an MOI of 1,000
(Schmidt et al., 2005). In contrast, it was also reported that
the most effective vectors were those based on the AdV5
serotype and a vector AdV5pk7 containing a poly-L-lysine
(pk7) peptide in the fiber knob domain (Tyler et al., 2009).

Olfactory ensheathing cells (OECs) have also demonstrated
success in the therapy of experimental SCI (Mayeur et al., 2013;
Stepanova et al., 2019). OECs were susceptible to infection with
rAdV5, reaching 100% transduction efficiency at an MOI of 100
without observable changes in their cellular phenotype or
expression of cell markers. Transgene expression was observed
for approximately 30 days after OEC transplantation into the
damaged spinal cord (Ruitenberg et al., 2002, 2003).

Thus, adenovectors based on AdV5 and fiber-modified
derivatives may have relatively high efficiency in transducing
the cell types conventionally used for SCI therapy.

THE IMMUNE RESPONSE TO
RECOMBINANT ADENOVIRUSES IN THE
CONTEXT OF SCI THERAPY
The ability of viral vectors to activate the immune system is a
serious limitation the use of such delivery systems,
particularly rAdVs. One possible outcome of immune
activation is the rapid plateauing of the expression of a
therapeutic transgene. In addition, immune activation can
lead to damage to healthy cells and the development of
unwanted inflammation. This is especially true for SCI
therapy, since inflammation may lead to disruption of the
regenerative processes. Replication-incompetent rAdVs are
capable of causing acute inflammation in infected tissues by
activating the innate immune system and stimulating the
expression of multiple chemokines and cytokines in
transduced target cells (Zaiss et al., 2002; Muruve, 2004;
Ghosh et al., 2006). As noted above, the use of second-
and third-generation rAdVs avoids the negative impact of
immune activation. Since most studies of rAdVs have
explored only the first generation of vectors, an important
consideration in applying rAdVs is to understand the
mechanisms of the immune system response.

When AdV5-LacZ was directly injected into the injured
spinal cord of rat, an early immune response was observed at
the injection site. One week later, a dense accumulation of
OX-42-positive cells (macrophages, lymphocytes, microglia)
was observed at the injection site, and some of these cells
expressed the transgene (Liu et al., 1997). β-Galactosidase-
positive cells were surrounded by a large number of activated
microglia. After 1 month, most of the cells expressing the
transgene disappeared, and only a few cells along the needle
track surrounded by the zone of dense immunoreactivity
were weakly stained. The immune response ceased when
the β-galactosidase-positive cells disappeared after
2 months. In contrast, no immune response was observed
at the site of distant expression of the transgene, even though
transgene expression continued throughout the observation
period (2 months). No strong immune response and no
significant decrease in the number of β-galactosidase-
positive cells at the site of virus injection were observed in
animals treated with cyclosporin A (Liu et al., 1997).
Regarding the immune response evoked by the direct
injection of an rAdV or lentiviral vector, an intense
immune response was observed only after rAdV injection,
and this response could be blocked the intraperitoneal
injection of monoclonal antibodies against lymphocytic
receptors CD4 and CD45 (Abdellatif et al., 2006).
Infiltration of CD8+ lymphocytes was noted at the
injection site of rAdV5 at an MOI of 5 × 106 pfu, while at
the low doses, there were no differences in comparison with
the control rats regarding the level of the inflammatory
response associated with the presence of macrophages,
reactive astrocytes, and microglia (Hermens and
Verhaagen, 1997; Huber et al., 2000).

Immunohistological analysis of the damaged spinal cord
after a retrograde injection of an rAdV did not reveal any
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differences in the number of macrophages compared to the
control animals, suggesting that retrograde rAdV delivery did
not cause widespread inflammation (Zhou et al., 2003). In
addition, the time of transgene expression was increased after
a retrograde injection compared to a direct injection,
indicating a lower immune response (Baumgartner and
Shine, 1998). In contrast, there is data indicating equal
expression time of transgenes after direct and retrograde
injections, in association with equal numbers of axons
(Zhou and Shine, 2003). Thus, it is possible that the
inflammation around neuronal cell bodies in association
with direct rAdV5 injection neither inhibited nor amplified
axonal regrowth (Zhou and Shine, 2003).

Host immune response directed against the transgene
product and/or virus proteins triggers clearance of the
transplanted cells after ex vivo gene therapy. A significant
reduction in the survival rate of transduced cells after
transplantation can indirectly indicate the activation of the
immune response. MSCs transplanted into the damaged
spinal cord may maintain viability for 4–8 weeks
(Hofstetter et al., 2002; Jung et al., 2009; Hu et al., 2010;
Pal et al., 2010; Torres-Espín et al., 2015; Hakim et al., 2019).
The average survival time of MSCs transduced with various
rAdVs is 4–5 weeks (Sasaki et al., 2009; Mukhamedshina
et al., 2016; Islamov et al., 2017a; Hei et al., 2017; Shi
et al., 2019). Additionally, the expression of an EGFP
transgene by MSCs was detected on the 14th day
(Mukhamedshina et al., 2016; Islamov et al., 2017b), while
only individual EGFP-positive cells were found on the 21st
day (Mukhamedshina et al., 2016). Similarly, the expression
of a neurotrophin 3 (NT-3) transgene in MSCs was observed
for only 14 days, while transplanted cells were detected even
on the 67th day (Zhang et al., 2010).

SCs implanted into the spinal cord after contusion damage
showed a very long survival time of up to 24 weeks after
injection, and the implanted cells were able to proliferate
within 12 weeks after transplantation (Wang and Xu, 2014).
Similar results were found by other authors, who reported
that SCs were detected for 3 months after transplantation
(Biernaskie et al., 2007; Pearse et al., 2007; Patel et al., 2010).
The transduced SCs transplanted into the damaged spinal
cord survived for at least 2 months (Golden et al., 2007; Guo
et al., 2007; Zhang et al., 2007). Moreover, the expression of
the LacZ transgene was sustained throughout the entire
period of SC survival (Zhang et al., 2007). On the other
hand, it was reported that the expression of the EGFP
transgene was decreased (Golden et al., 2007).

Long-term cell survival (8–11 weeks) was also observed
upon NSPC implantation (Ziv et al., 2006; Biernaskie et al.,
2007; Hwang et al., 2019), and transduction of NSPCs by
rAdVs did not change the duration of cell survival after
implantation (Biernaskie et al., 2007; Hwang et al., 2019).
Long-term survival (spanning several months) has also been
shown for OECs used for SCI therapy (Ruitenberg et al., 2002,
2003; Mayeur et al., 2013; Stepanova et al., 2019). rAdV-
mediated expression of a transgene also did not decrease OEC
survival after implantation, but transgene expression

gradually decreased between the 7th and 30th days after
implantation (Ruitenberg et al., 2002).

Thus, the immune response seems to be a minor obstacle
to the use of rAdVs for gene transfer in SCI therapy with
indirect methods of injection, such as the retrograde
administration of rAdVs and the implantation of
transduced cells. However, none of the studies discussed
above determined the role of preexisting immunity to
rAdVs in determining the therapeutic effect of gene
therapy, although it is known that neutralizing antibodies
against AdV5 are present in 60–90% of the human population
(Nwanegbo et al., 2004; Yu et al., 2012).

THE USE OF RECOMBINANT
ADENOVIRUSES EQUIPPED WITH
NEUROTROPHIC FACTORS FOR SCI
THERAPY

A large amount of research in the field of SCI therapy is
focused on using various neurotrophic factors that regulate
the survival of damaged neurons, the regeneration of axons,
synaptic plasticity, and neurotransmission (Boyce and
Mendell, 2014). NT-3, BDNF, and GDNF are the major
neurotrophic factors. Neurotrophic factors contribute to
the survival of damaged cells and the regeneration of
axons (Boyce and Mendell, 2014). Many studies have
shown that gene delivery of neurotrophins during SCI
therapy may contribute to morphological (Zhou and Shine,
2003; Koda et al., 2004; Nakajima et al., 2005, 2007; Uchida
et al., 2008; Zhao et al., 2012; Wang and Xu, 2014) and
functional spinal cord recovery (Koda et al., 2004; Zhao
et al., 2012; Wang and Xu, 2014; Mukhamedshina et al.,
2016; Nejati et al., 2020) after injury.

The retrograde administration of rAdV5-NT-3 to rats with
a dissected corticospinal tract led to the growth of axons
(Zhou and Shine, 2003). An increase in the axon length and
branching of neurons was observed with the retrograde
administration of rAdV5-NT-3 to mice with spontaneous
chronic mechanical compression of the spinal cord (Uchida
et al., 2008). The implantation of retinoic acid–treated MSCs
producing NT-3 into the severed spinal cord of rats resulted
in a reduced volume of cystic cavities, stimulation of axon
regeneration, increased neuron survival, and improved motor
function of the hind limbs (Wang and Xu, 2014).
Cotransplantation of SC-NT-3 and NSPC expressing the
TrkC receptor for NT-3 increased the level of neuronal
differentiation of NSCs, stimulated synaptogenesis,
induced the formation of myelin SCs, promoted
neuroprotection and proliferation of serotonergic fibers in
the affected spinal cord, led to a decrease in the main
inhibitors of axon growth and neuroplasticity, and resulted
in a significant improvement in the retransmission of cortical
evoked motor responses and cortical somatosensory evoked
potentials as well as a reduction in hindlimb deficits (Wang X.
et al., 2011).
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The direct injection of rAdV5 expressing BDNF into the
dissected spinal cord of rats caused regeneration of descending
rubrospinal axons and significant restoration of hindlimb
locomotor function (Koda et al., 2004). The retrograde
administration of rAdV-BDNF to rats with compression-
induced SCI resulted in suppression of neuronal death
(Nakajima et al., 2005, 2007; Zhao et al., 2012) and
oligodendrocyte death (Nakajima et al., 2005) as well as
improvement of behavioral function (Zhao et al., 2012).
Similar results were obtained in genetically modified mice with
chronic spinal cord compression (Uchida et al., 2012).

Improved recovery of the musculoskeletal systemwas found in
rats with a dissected corticospinal tract that received injections of
MSC-BDNF, which promoted axon germination and cortical
neuron survival (Sasaki et al., 2009). The implantation of a
graft containing Matrigel with rAdV-BDNF-infected MSCs
into a completely severed spinal cord resulted in axon
regeneration (Koda et al., 2007). The implantation of MSCs-
BDNF into rats with a damaged sciatic nerve also led to
regeneration of peripheral nerves and improved functional
parameters (Hei et al., 2017). The treatment of cervical SCI in
rats using OECs infected with rAdV-BDNF reduced the lesion
volume, enhanced the regenerative growth of the rubrospinal
tract, and improved the recovery of hindlimb function
(Ruitenberg et al., 2003).

The direct injection of rAdV-GDNF into the spinal cord after
concussion injury or electrolytic damage preserved neuronal
fibers and contributed to the restoration of motor function in
the hindlimbs (Tai et al., 2003; Tang et al., 2004). Both direct
administration of rAdV-GDNF and implantation of MSCs
infected with rAdV-GDNF resulted in improved motor
function in rats with SCI (Mukhamedshina et al., 2016). The
implantation of rAdV-GDNF-transduced NSPCs after spinal
cord contusion significantly reduced the volume of lesions and
the formation of glial scars, promoted the regeneration of axons
and of neurites in general, increased myelination due to increased
SC migration, and led to improved recovery of the
musculoskeletal system (Hwang et al., 2019). The implantation
of a polycaprolactone/collagen scaffold loaded with emu oil and
seeded with adipose tissue–induced MSCs infected with rAdV-
GDNF at the site of spinal cord injury in rats decreased lesion
cavity size and axon demyelination, and a significant recovery of
motor function on the was recorded BBB scale (Nejati et al.,
2020).

CONCLUSION

The natural tropism of rAdV5-based vectors allows
transduction of both nerve and glial cells, providing a high
level of transgene expression. In addition, rAdV5-based

vectors with modified tropism may infect various cells used
for SCI therapy. AdV5 is considered to have significant
immunogenicity, which can place limits on its successful
use. Although this problem is less substantial for second-
and especially third-generation AdVs, nevertheless, research
has focused mostly on the therapeutic potential of the first-
generation rAdVs. The immunogenicity of first-generation
rAdVs significantly limits direct administration of these
rAdVs to the injury site. In contrast, retrograde
administration of rAdVs and implantation of rAdV-
transduced cells may not provoke an immune response.
However, due to high seropositivity rates for rAdV5 in the
human population, further research on animals with
preexisting anti-AdV5 antibodies is necessary to confirm
this immune-sparing effect. Moreover, it is unclear how
preexisting antibodies will affect the efficacy of adenoviral
SCI therapy due to the presence of a blood-cerebrospinal
fluid barrier. It was shown that preimmunization of animals
with AdV5 prior to the delivery of first-generation rAdVs into
the brain significantly reduced the expression of a transgene
while not affecting “gutless” rAdVs (Barcia et al., 2007). The
third generation rADVs is widely studied for gene delivery to
the central nervous system after some neurological disease
(Ricobaraz et al., 2020), but we could not find published data
on using the third generation rADVs for SCI treatment. It is
also notable that first-generation rAdVs provide relatively
short periods of transgene expression; these expression
periods may be sufficient to achieve a positive therapeutic
effect in SCI models, but it remains unclear whether such
short-term expression of therapeutic genes will be sufficient
for SCI therapy in humans. Based on the available preclinical
data, SCI therapies using rAdVs are promising and should be
investigated further.
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