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Abstract: Doxorubicin (DOX) is still an important anticancer agent despite its tricky pharmacoki-
netics (PK) and toxicity potential. The advent of systems pharmacology enables the construction
of PK models able to predict the concentration profiles of drugs and shed light on the underlying
mechanisms involved in PK and pharmacodynamics (PD). By utilizing existing published data and
by analysing two clinical case studies we attempt to create physiologically based pharmacokinetic
(PBPK) models for DOX using widely accepted methodologies. Based on two different approaches on
three different key points we derived eight plausible models. The validation of the models provides
evidence that is all performing as designed and opens the way for further exploitation by integrating
metabolites and pharmacogenomic information.

Keywords: doxorubicin; physiologically based pharmacokinetic model; pharmacokinetics; simcyp
simulator; PBPK modelling

1. Introduction

Despite being an “old” drug, Doxorubicin (DOX) still remains an important and
valuable therapeutic agent in cancer therapy [1]. Its clinical use, however, is limited due
to safety issues. The latter is correlated to the cumulative dose used and is manifested
mainly as cardiotoxicity that could potentially lead to congestive heart failure (CHF) [2]
causing up to 50% mortality [3]. There are two proposed mechanisms that are correlated
to the plasma levels of its two metabolites doxorubicinol (DOXol) and doxorubicinone
(DOXone), although there is still a controversy, due to the pleiotropic pharmacological
effects of DOX at the molecular level and complex pharmacokinetic (PK) profile [4–6]. Both
metabolites produce reactive oxygen species (ROSs) intracellularly that trigger cytotoxicity
and programmed cell death [4–6]. Of special research interest is also the fact that the clinical
outcome shown by DOX exhibits a sex-related behaviour, an observation that remains
elusive and challenges the scientific community [7].

The pegylated liposomal DOX formulation (Doxil®, Caelyx®) that entered the market
in 1995 represents the first FDA-approved nanomedicine that successfully addressed the
problematic PK behaviour and specific safety profiles of DOX [8,9]. Specifically, it showed
enhanced circulation time of DOX as well as a better tumour accumulation profile [10,11].
Recently, quantitative systems pharmacology (QSP) is in the spotlight of modern phar-
macology by providing, through physiology-based pharmacokinetic (PBPK) modelling,
mechanistic insights on the PK processes towards achieving better efficacy and safety
profiles in the clinical setting [12]. PBPK models are based on in vitro-in vivo correlation
(IVIVC) procedures. Striving to be as mechanistic as possible in nature, they are based
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on the underlying anatomical, physiological, and biochemical characteristics of an organ-
ism [13]. In such models, the body is a multicompartment system with every compartment
representing a different organ connected to other compartments by blood or lymph circula-
tion, through a system of differential equations describing different phenomena, such as
blood flow, cardiac output, organ volumes, glomerular filtration rate etc. [14].

Such capability gives the advantage to PBPK models and leads to better identification
of the sources of PK variability allowing to extrapolate to different subpopulations [10].
In this context, precision medicine could be achieved in the clinical setting by connecting
PBPK models with pharmacodynamic (PD) prediction models and their capacity for popu-
lation simulation [i.e., the prediction of the effects of age, gender, comorbidities, genetic
polymorphisms, lifestyle factors (e.g., smoking) and more] [13].

Finally, an advantage of such models is their ability to simulate the drug concentration
profile on the site of action (e.g., targeted organ or tissue), allowing the refinement of dosage
schemes and the achievement of maximum safety and effectiveness profiles [15]. This can
be of great value in the case of advanced formulations, such as nanoformulations, as the
combination of knowledge about the structure and the function of target organs, with the
physicochemical properties of the nanocarriers, the individual parameters of each patient
and the drug properties could create favourable conditions for individualized treatment [16].

2. Materials and Methods

To address the issues related to therapeutic peculiarities related to DOX and its metabo-
lites in the body we attempt the development of a PBPK model capable of predicting the PK
profile of DOX in the plasma. This first step presented in our work, provides a solid basis
for further incorporation of DOX main metabolites [Doxorubicinol (DOXol) and Doxorubi-
cinone (DOXone)] kinetics in the future. With a working model at hand, adjustments will
be possible so that the potential application of such a PBPK model in various innovative
DOX nano-formulations, e.g., Doxil®, could be a useful clinical tool in treating cancer
patients. The ability of the clinicians to estimate, through such a PBPK model, the proper
dose of DOX to achieve the maximum efficacy and safety profiles in individual patients is
fundamental within the precision medicine concept.

There are several attempts in the literature trying to develop PBPK models for DOX;
however, with different end goals. Dubbelboer et al. created both PBPK and semi-PBPK
models for DOX attempting to incorporate intracellular binding as a distribution factor in
the latter one [17]. Gustafson et al. created a mouse PBPK DOX model with macromolecule-
specific binding as the main factor for distribution and organ-specific metabolism and
excretion. These authors believe their model has the potential to predict the magnitude of PK
interactions of DOX with other drugs, as well as more efficiently addressing various clinical
situations [18]. Hanke et al. developed a PBPK model for a DOX fusion molecule, namely
“zoptarelin doxorubicin”. To this end, they initially developed a DOX PBPK model (as DOX
is the metabolite of the fusion molecule). They also utilized DNA intracellular binding
to predict distribution. They had unspecified hepatic clearance and bile elimination [19].
He et al. created a PBPK model to assess DOX disposition at many levels (system, tissue
interstitial, cell and subcellular organelles) by analyzing mice data and scaling up for humans
thus gaining insights concerning toxicity [20]. In our approach, various relevant models
were created and validated using a middle-out approach. In this approach, existing clinical
observations are utilized in a reverse translation approach to combine any prior information
on the drug or system into the analysis of the clinical observations to project forward beyond
the scope of the initial observations. In such methodologies, the models comprise of three
different interacting components, the system data, the drug data, and the clinical trial data.
System data refers to the properties of the organism for which the model is created (e.g.,
blood flow or enzyme activity). Drug data refers to the physicochemical data and PK
information of the modelled drug (e.g., drug pKa, affinity for enzymes, etc.). Clinical trial
data refers to the administration settings (e.g., population age, female percentage, dosage
scheme, etc.) [21]. The interaction of these three components is summarized in Figure 1.
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2.1. Clinical Studies Used

To construct a model two types of datasets are needed: (a) a training dataset, utilized in
the development of the model and (b) a validation dataset, used for independent validation
of the model. For our models, we used the clinical study of Camaggi et al. as the training
dataset [22] and the clinical study of Speth et al. as the independent validation dataset [23].
The details of those clinical studies are summarized in Table 1.

Table 1. Details of the clinical studies used for the development and validation of DOX PBPK model.

Dose
(mg/m2) Administration N. 1 Women

(%)
Age

(Years)
Weight

(kg)
BSA
(m2) Dataset Reference

60 Single IV bolus 8 NA 57.63 ± 9.28
(42–72)

69.15 ± 14.86
(45.9–90.0)

1.72 ± 0.18
(1.40–1.92) Training [22]

30 Q24 h × 3 IV
bolus 7 44.5% 2 44 ± 17 2

(17–67)
NA NA Validation [23]

30 Q24 h × 3 IV
infusion over 8 h. 4 44.5% 2 44 ± 17 2

(17–67)
NA NA Validation [23]

1 Number of patients in the clinical study. 2 The study had a total of 18 patients that received different regiments
of which only the mentioned two were selected. The percentage of women refers to the population of all clinical
studies, since individual group values are not provided for each individual study.

2.2. Software

The Simcyp (version 19R1) simulator (Simcyp Ltd., Sheffield, UK) was used to simulate
the PK profile of DOX. The criteria for assessing the predictive performance of the models
were the predicted/observed ratio for the AUC and the Cmax of DOX. A perspective on
the qualification and verification of PBPK models, as well as examples of regulatory PBPK
submissions, can be found in the work of Shebley et al. [24].

2.3. Virtual Population Characteristics (System Data)

As both clinical studies utilized in this work (training and validation dataset) refer to a
cancer population, we opted for the cancer population (Sim-Cancer) that is included within
the Simcyp simulator. For this special population, many adjustments have been made to
better account for the specific changes that are expected to be found in the physiological
parameters of such a population.

2.4. Development of DOX PBPK Model (Drug Data)

To construct the models, we need to input the physicochemical properties of DOX,
values for DOX renal, metabolic, and biliary clearance and to select an appropriate model
for DOX distribution. The physicochemical properties of DOX were either calculated, found
by literature review or online database utilization. The pharmacokinetic parameters were
calculated based on the data from the training dataset. For the calculations, two patients of
the original case study were excluded from further analysis: (a) Patient 69 because of hepatic
metastases, extrahepatic obstruction, and percutaneous biliary drainage and (b) Patient 72
as the hepatic clearance exceeded the hepatic blood flow that was calculated. The calculated

http://creativecommons.org/licenses/by/4.0/
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pharmacokinetic parameters are included in Supplementary Materials Section S1. The
values are summarized in Table 2.

Table 2. DOX parameters.

Physicochemical Property Value Comments/References

MW (g/mol) 543.51 Calculated

LogPo:w 1.27 [23]

Drug Type Ampholyte [24]

pKa 1 9.53 [22]

pKa 2 8.94 [22]

B:P Ratio 1.15 [25] see limitations section

fu,p 0.25 drugbank.ca (accessed on 20 December 2021)
Supplementary Materials Section S2

Elimination Value (CV%) Comments/References

Renal Clearance
L/h

7.04 ± 2.10 (29.8%)
8.67 ± 2.85(32.86%)

Method A
Method B

Biliary excretion
µL/min/106 cells 24.80 ± 10.89 (43.93%) -

Metabolic Clearance - -
µL/min/106 cells (HEP) 30.38 ± 13.34(43.93%) Method C

µL/min/mg protein (HLM) 86.29 ± 38.12(44.17%) -
µL/min/mg protein (HLC) 38.74 ± 17.01(43.93%) -

Distribution of clearance See Section 2.4.2 Method D

Distribution Value Comments/References

Minimal PBPK - Method E
Vss (L/kg)
Vsac (L/kg)
Qsac (L/h)

31.923
P.E. tool

P.E.

U.I.
See Section 2.4.4
See Section 2.4.4

Full PBPK - Method F
Vss (L/kg)
Kp Scalar

34.831
P.E. tool

Predicted by Method 3
See Section 2.4.4

P.E. tool: parameter estimation tool (i.e., a Simcyp simulator tool); HEP: intrinsic metabolic clearance calculated
per 106 hepatocytes; HLM: intrinsic metabolic clearance calculated per mg of microsomal protein; HLC: intrinsic
metabolic clearance calculated per mg of cytosolic protein; Vss: Volume of distribution in steady state; Vsac:
volume of single adjusting compartment (see Supplementary Materials Section S12 for details); Qsac: single
adjusting compartment blood flow (see Supplementary Materials Section S12 for details); Kp Scalar: A scaling
value for the calculated Kp values of each tissue in a full PBPK model (see Supplementary Materials Section S12
for details).

2.4.1. Calculating DOX Renal Clearance

The Simcyp simulator requires renal clearance to be inputted as the renal clearance of
a healthy 20–30 y.o. male (refCLR). We calculated the refCLR based on the patient’s GFR and
the GFR values expected for 20–30 y.o. males as shown in Equation (1).

re f CLR,i =
CLR,i × GFRre f

eGFRi
(1)

where refCLR,i is the reference renal clearance for each patient i, CLR,i is the renal clearance
of each patient i, GFRref is the reference GFR for a 20–30 y.o. male and eGFRi is the expected
GFR for each patient i.

As GFR values per patient were not mentioned in the work of Camaggi et al. used as
a training dataset [22], we calculated those values based on two methods: Method A and
Method B.

drugbank.ca
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Method A

In this method, we used the approach of Davies and Shock [25] for calculating the
expected GFR (eGFR) for each patient i by utilizing expected GFR values per age group
(Equation (2)).

eGFRi =
GFRg,i × BSAi

1.73
mL
min

(2)

where eGFRi is the expected GFR for each patient i, GFRg,i is the expected GFR for the
group that each patient i belonged based on age, and BSAi is the is body surface area of
each patient i, a value that was recorded in the training dataset clinical study.

Method B

In this method, we used the approach of Wright et al. [26] and calculated the expected
GFR values based on the expected serum creatinine levels of each patient i (Equation (3)).

eGFRi =
(6580− 38.8× agei)× BSAi × (1− 0.168× SEXi)

SCri
(3)

where eGFRi is the expected GFR, agei is the age and SCri is the serum creatinine levels of
each patient i. The parameter SEXi takes two distinct values, 0 for males and 1 for females
based on the gender of each patient i.

However, as the gender of each patient i was not included in the study, an average
GFR value was calculated by averaging the GFR values assuming both male and female
gender (Equation (4)).

eGFRi,avg =
eGFRi,m + eGFRi, f

2
(4)

where eGFRi,m is the estimated GFR values for patient i if considered male and eGFRi,f if
considered female.

The calculated values of renal clearance of DOX for a 20–30 y.o. healthy male (refCLR)
are summarized in Table 2. For the values of each individual patient for each method, see
Supplementary Materials Section S3. It is noteworthy that the calculated renal clearance
for DOX exceeds the calculated GFR values, thus implicating the involvement of active
processes in renal excretion, a fact that is discussed below in the model limitations.

2.4.2. Calculating DOX Hepatic Clearance

The Simcyp simulator can calculate the hepatic clearance of a drug by scaling using
different in vitro systems based on the following method:

CLuint (in vitro system)
Scaling Factor 1−−−−−−−−−→ CLuint per gram liver

Scaling Factor 2−−−−−−−−−→ CLuint per liver

Hepatic metabolic clearance can be predicted using either hepatocyte, cytosolic frac-
tion, or microsomal fraction in vitro systems. Biliary excretion can be calculated using the
hepatocytes in vitro system. Thus, to be able to predict the hepatic clearance for a simulated
patient, we must calculate the hepatic intrinsic clearance first and then we must calculate
the intrinsic metabolic clearance and the intrinsic biliary excretion and correct them by the
appropriate scaling factors as seen in Table 3.

To calculate the hepatic intrinsic clearance, we can use Equation (5) which is based on
the well-stirred liver model.

CLH,b,i = QH,i × EH = QH,i ×
f ub × CLu int,H,b,i

QH,i + f ub × CLu int,H,b,i
(5)

where CLH,b,i is the hepatic blood clearance for each patient i, QH,i is the hepatic blood
flow of each patient i, fub is the unbound fraction of the drug in blood and CLuint,H,b,i is the
intrinsic hepatic clearance of the unbound drug for each patient i.
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By rearranging Equation (5), we obtain Equation (6) and thus the intrinsic clearance of
the unbound drug can be calculated.

CLuint,H,b,i =
QH,i × CLH,b,i

f ub × (QH,i − CLH,b,i)
(6)

From the above, it is obvious that there are three parameters that need to be calculated
in order to calculate the hepatic intrinsic unbound clearance of a drug, namely the (1) hepatic
blood flow of each patient i, QH,i,, (2) the unbound fraction of a drug in blood, fu,b and
(3) the hepatic blood clearance for each patient i, CLH,b,i.

Table 3. Simcyp in vitro-in vivo scaling for hepatic clearance.

System Prediction CLuint Measuring Unit Scaling Factor 1 Scaling Factor 2

Hepatocytes Metabolic clearance
Biliary excretion µL/min per 106 cells HPGL

Liver weightCytosolic fraction Metabolic clearance µL/min per mg of protein CPPGL

Microsomal fraction Metabolic clearance µL/min per mg of protein MPPGL

HPGL: hepatocytes per gram liver, CPPGL: cytosolic protein per gram liver, MPPGL: microsomal protein per
gram liver.

Calculating the Hepatic Blood Flow for Each Patient i

Blood is supplied to the liver via two paths: (a) through the hepatic artery and
(b) through the portal vein. In the virtual population we selected for our models (i.e., cancer
population), the liver receives a predefined percentage of the cardiac output ( fCOL) via the
above-mentioned methods, different for each gender. As the clinical study used as the
training dataset did not include gender, the average percentage for the two genders was
used, as shown in Table 4.

Table 4. Percentage of CO for liver via hepatic artery and portal vein based on gender.

Gender Through Hepatic Artery Through Portal Vein Total

Males 6.5% 19.0% 25.5%

Females 6.5% 21.5% 28.0%

Average for both genders 26.75%

In the cancer population used for the models, the formula for calculating the cardiac
output for each patient i is a function of body surface area (BSA) and age as shown in
Equation (7).

COi = BSAi × 60×
(

3− agei − 20
100

)
(7)

where COi is the cardiac output of each patient i, BSAi is the body surface area of each
patient i and agei is the age of each patient i.

Thus, the hepatic blood flow for each patient i (QH,i) can be calculated using Equa-
tion (8).

QH,i = COi × fCOL = COi × 0.2675 (8)

For the values of the cardiac output calculated for each individual patient, see Sup-
plementary Materials Section S4. fCOL represents the percentage of CO for the liver and is
calculated in Table 4.
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Calculating Unbound Fraction in Blood

We know that for the unbound fraction of a drug in blood, Equation (9) applies.

fu × Cp = fu,b × Cb ↔ fu,b = fu ×
Cp

Cb
= fu × Rp:b (9)

As we mentioned earlier, the unbound fraction of DOX in blood was 0.25 and the B:P
ratio (RB:P) was calculated to be 0.87 (see Supplementary Materials Section S5). Thus, for
DOX, fu,b was calculated to be 0.2175 as shown here: fu,b = 0.25× 0.87 = 0.2175 .

Calculating Hepatic Blood Clearance

Hepatic blood clearance (CLH,b) can be calculated for each patient i by utilizing Equa-
tion (10):

CLH,b,i =
CLH,i

RB:P
(10)

where CLH,i is the hepatic plasma clearance for each patient i and RB:P is the ratio of DOX
concentration in blood vs. plasma. Thus CLH,B was calculated for each patient i. For the
values of each individual patient, see Supplementary Materials Section S6.

Calculating Intrinsic Hepatic Clearance

Using the values for the hepatic blood flow for each patient i, the unbound fraction
of DOX in blood and the values of hepatic blood clearance calculated for each patient i in
Equation (6), we calculated CLuint,H,b for each patient i.

Separating Hepatic Clearance to Hepatic Metabolic Clearance and Biliary Excretion

Based on the literature [27], approximately 40% of DOX is excreted in the bile as
unchanged drug while 5–12% of DOX and its metabolites are excreted in urine. In the
training datasets, the patient had an average plasma clearance (CLP) of 51.75 L/h, an
average renal clearance (CLR) of 5.59 L/h, and thus an average fraction excreted in urine
(fe) of 11.07%. (For detailed calculations see Supplementary Materials Section S7). Based on
the above, the fractions that are eliminated via different routes used for the construction of
the model are presented in Table 5.

Table 5. Fractions of DOX excreted via different paths.

Way of Elimination Percentage

fbile (%) 40%

fmet (%) 49%

fe (%) 11%

Thus, the biliary excretion can be calculated to be 44.94% of the hepatic clearance
( fCL,H,bile) by using Equation (11) and the values from Table 5.

fCL,H,bile =
fbile

1− fe
(11)

where fbile is the percentage of DOX excreted in bile and fe is the percentage of DOX excreted
in urine as unchanged drug.

By assuming that the ratio of biliary clearance to hepatic clearance is the same as
intrinsic biliary clearance to intrinsic hepatic clearance, we can calculate the intrinsic biliary
clearance and intrinsic metabolic clearance by the intrinsic hepatic clearance we calculated
before for each patient i. For the values of each patient, see Supplementary Materials
Section S8.
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Correction of Intrinsic Biliary Clearance for In Vitro System Scaling Factors

Intrinsic biliary clearance must be corrected for Scaling Factor 2 (i.e., liver weight—LW)
and Scaling Factor 1 (in this case, hepatocellularity per gram liver—HPGL). The correction
is carried out using Equation (12).

CLuint(Bile),i =
CLuint,bil,b,i

LW × HPGLi
(12)

where CLuint(Bile),i the biliary excretion per million hepatocytes for each patient i, CLuint,bil,b,i
the intrinsic biliary excretion for each patient i and HPGLi the hepatocellularity per gram
liver for each patient i. The individual values calculated and information about calculating
HPGL for each patient can be found in Supplementary Materials Section S9. The average
value of unbound intrinsic metabolic clearance per million hepatocytes is summarized in
Table 2.

Calculating Intrinsic Metabolic Clearance

As was the case with intrinsic biliary excretion, again in the case of intrinsic metabolic
clearance, we must correct the values for both Scaling Factor 2 (i.e., LW) and Scaling Factor
1 (i.e., HPGL, MPPGL or CPPGL). Here, one can follow two approaches: either assign
all metabolic clearance to be predicted using HPGL (Method C) or by considering the
metabolic pathway of DOX, try to distribute it to different in vitro systems based on the
location of the actual metabolizing enzymes (Method D). The latter will be useful as it can
be utilised to simulate the formation of the different DOX metabolites in the future.

The following equations are used for the calculation of each in vitro system:

CLuint(Met),HEP,i =
CLuint,met,b,i

LW × HPGLi
(13)

CLuint(Met),HLM,i =
CLuint,met,b,i

LW ×MPPGLi
(14)

CLuint(Met),HLC,i =
CLuint,met,b,i

LW × CPPGLi
(15)

The values for correcting the entire intrinsic metabolic clearance for the three in vitro
systems are summarized in Table 2. Values for MPPGL and HPGL come from the litera-
ture [28,29] while the Simcyp simulator calculates values for CPPGL. Details of calculating
individual HPGL, MPPGL and CPPGL values as well as the values for each patient are in
Supplementary Materials Section S9. Individual patient values for biliary excretion are in
Supplementary Materials Section S10. The corrected values for intrinsic metabolic clearance
for each patient are in Supplementary Materials Section S11.

Table 6 shows the final values of intrinsic metabolic clearance for each in vitro system
when considering the expected relative contribution of each based on the DOX metabolic
pathway. This distribution was performed by considering the following facts [27]:

• The enzymes that participate in the primary metabolic pathway, which is the two-
electron reduction, mainly aldoketoreductases (AKRs) and carbonylreductases (CBRs)
are located in the cytoplasm and are expected to be found in the cytoplasmic fraction
after centrifugation.

• The enzymes that participate in the secondary metabolic pathway, which is the one-
electron reduction, are located mainly in mitochondria and sarcoplasmic reticulum
and are expected to be found in the microsomal fraction after centrifugation.

• The enzymes that participate in the minor metabolic pathway, which is the deglycosy-
lation, are not specified, contribute only 1–2% of the total metabolism and thus their
contribution can be attributed per 106 hepatocytes.
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Table 6. Relative contribution of metabolic clearance per 106 hepatocytes, per mg of microsomal
protein and per mg of cytoplasmic protein.

Pathway Approximate Relative
Contribution CLint Measuring Unit CV %

HLM 37% 31.929 µL/min/mg 44.17%

HLC 60% 23.241 µL/min/mg 43.93%

HEP 3% 0.911 µL/min/106 cells 43.93%

2.4.3. Selecting a Distribution Model for DOX

To simulate DOX distribution, either the minimal PBPK (mPBPK) model or the full
PBPK (fPBPK) models can be used. Both are models provided by the Simcyp simulator
to predict the distribution of drugs. In the case of the mPBPK, the Vss value for DOX was
user-inputted based on the values of the training dataset. In the case of the fPBPK model,
Vss was calculated in silico. The Vss values are summarized in Table 2. Thus, there are two
methods for calculating DOX distribution, either using the mPBPK model (Method E) or
the fPBPK model (Method F).

By using the Simcyp parameter estimation (PE) tool, the appropriate parameters were
calculated (i.e., the Vsac volume (L) and Vsac blood flow (L/h) in the case of mPBPK and
the Kp scalar in the case of fPBPK). The calculated values are summarized in Table 7. For
more information on distribution models utilized by Simcyp, see Supplementary Materials
Section S12.

2.4.4. Generating DOX Models

Summarizing all the above, we have two different approaches on three key calculations
thus resulting in eight possible DOX models. The models are presented in Table 7.

Table 7. Different possible DOX models based on two different approaches on three key points.

Model CLR
(L/h) CLmet

Distribution
Model

P.E.
Kp Scalar

P.E.
Vsac (L/Kg)

P.E.
Qsac (L/h)

1 7.04 HEP mPBPK NA 31.5495 151.3618

2 7.04 HEP fPBPK 5.3119 NA NA

3 7.04 DIST mPBPK NA 31.3833 212.3364

4 7.04 DIST fPBPK 5.3119 NA NA

5 8.67 HEP mPBPK NA 31.2603 237.3875

6 8.67 HEP fPBPK 5.237 NA NA

7 8.67 DIST mPBPK NA 31.3827 211.6487

8 8.67 DIST fPBPK 5.3119 NA NA

NA: not applicable; CLmet: represents the metabolic clearance for each model calculated either by 106 hepatocytes
(HEP) or using our custom distribution (DIST) of metabolic clearance on in vitro systems (see Table 6).

2.5. Virtual Patient Demographics for the Development of the Model Based on the Training Dataset
(Clinical Settings Data)

The age of the virtual patients was set from 42 to 72 years to match the age of the
patients in the training dataset. The proportion of females to males was set to 0.5 as
there was no mention of gender in the clinical study. All simulations run for 10 groups
of 10 persons each to study the population PK. The virtual study ran for 168 h. Patients
received 60 mg/m2 of DOX via IV bolus infusion over 2 min at time 0 in accordance with
the conditions of the clinical study. Finally, we opted to record 10,000 virtual plasma
samples over the course of 168 h.
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2.6. Results Based on Training Dataset

Figure 2A represents the predicted mean, 95th percentile and 5th percentile concentra-
tion versus time course of DOX for model 8, presented as a sample, for the virtual patient
population. Figure 2B shows the mean concentration vs. time values for all 8 models. For
the plots of the remaining seven models, see Supplementary Materials Section S13.
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Figure 2. (A) Mean, 95th percentile and 5th percentile of the concentration versus time of DOX for
model 8 based on the works of Camaggi et al. DOX was given as a single IV bolus injection of
60 mg/m2 at 0 h. (B) Comparative mean concentration vs. time for all 8 DOX models.

2.7. Observed Concentration Values for the Trainind Dataset

Table 8 summarizes the AUC and Cmax for the different models. The observed mean
value for AUC0–168 was reported by the authors in their clinical study and was calculated
after the exclusion by us of two patients (see Section 2.4). The predicted population mean
AUC0–168 for each model was calculated by the Simcyp simulator. The observed mean Cmax
value was calculated for time 0 h based on the triexponential equations the authors of the
clinical study suggested for DOX resulting from their measurements. The predicted mean
Cmax of the population for each model was calculated by the simulator.
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Table 8. Comparison of observed vs. predicted values of Cmax and AUC for the 8 possible DOX
models based on the training dataset.

Parameters Cmax (mg/L) AUC0–168 (mg·h/L)

Model CLR (L/h) CLmet Dist. * Pred. Obs. Diff. Pred. Obs. Diff.

1 7.04 HEP mPBPK 6.085

5.474

11.2% 1.976

1.939

1.90%

2 7.04 HEP fPBPK 9.048 65.3% 1.942 0.16%

3 7.04 DIST mPBPK 4.963 −9.3% 1.970 1.59%

4 7.04 DIST fPBPK 9.048 65.3% 1.940 0.07%

5 8.67 HEP mPBPK 4.582 −16.3% 1.950 0.56%

6 8.67 HEP fPBPK 9.027 64.9% 1.909 −1.56%

7 8.67 DIST mPBPK 4.957 −9.4% 1.934 −0.24%

8 8.67 DIST fPBPK 9.022 64.8% 1.904 −1.79%

* This term (Dist.) refers to DOX distribution model. CLmet: represents the metabolic clearance for each model
calculated either by 106 hepatocytes (HEP) or using our custom distribution (DIST) of metabolic clearance on
in vitro systems (see Table 6). For the origin of observed values, see Section 2.7.

3. Results-Validation of Models
3.1. Patient Demographics for the Development of the Model Based on the Validation Dataset

As mentioned earlier, the clinical study of Speth et al. was used as the validation
dataset. In their work, Speth et al. studied the pharmacokinetic behaviour of DOX, by
analysing its concentration both in plasma and at a cellular level [23]. Eighteen patients
with leukaemia participated in the study. Their age ranged from 17 to 67 y.o. and there
were 8 females and 10 males. All patients had normal renal and hepatic function.

3.2. Administration and Sample Retrieval

The patients were administered Vincristine on day 2 (dose of 1 mg/m2), and Cytara-
bine each day for days 1 to 7 (dose 200 mg/m2). In sixteen patients, DOX was administered
on days 1, 2 and 3 (dose of 30 mg/m2) and seven patients received DOX as an IV bolus
injection, five as a 4 h IV infusion, four as an 8 h IV infusion. In two patients, DOX was
administered on day 1 as a 72 h IV infusion. Blood samples were taken from 5 to 240 min
after administration from at least 2 patients per therapeutic scheme. For the rest of the
patients in each therapeutic scheme, blood samples were taken when DOX is expected to
reach its maximum and minimum concentration. After centrifuging for 10 min, plasma was
kept at −20 ◦C. Two of the therapeutic schemes were selected for independent validation
of the models. Specifically, the IV bolus and the 8 h IV infusion of DOX.

3.3. Analytical Method and Pharmacokinetic Analysis

The samples were analysed via high-performance liquid chromatography (HPLC). The
sensitivity of the analytical methodology was 1 ng/mL. DOX plasma concentrations were
described by biexponential equations. Cmax values (at 5 min after the third administration)
and AUC for each therapeutic scheme are summarized in Table 9.

Table 9. Validation dataset pharmacokinetic parameters of patients.

Therapeutic
Scheme Dose N. of

Patients
Cmax

(ng/mL)
AUC0–120

(mg × h/L)
Vss
(L)

IV bolus 30 mg/m2

Q24 h × 3
7 1640 ± 470

(9980 at 90 s) 2.3 ± 0.5

1450 ± 84
8 h infusion 30 mg/m2

Q24 h × 3
4 85 ± 50 2.0 ±1.3
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3.4. Clinical Settings of Virtual Patients for Validation Dataset

Again, the simulated cancer population was selected for the simulation, as it better
represents the clinical study population of Speth et al., used as a validation dataset. As
the Simcyp simulator requires a minimum age of 20 for this specific population, the
age of the virtual patients was set from 20 to 67 years. The female analogy was set at
44.5% in accordance with the study. Ten groups of 10 patients each were simulated. The
study duration was set at 168 h. The dose was set at 30 mg/m2, based on the selected
therapeutics schemes.

3.5. PBPK Models Performance

Figure 3A represents the predicted mean, 95th percentile and 5th percentile concentra-
tion versus time course of DOX for model 8, presented as a sample, for the virtual patient
population for the IV bolus injection trial (administration of 30 mg/m2 on days 1, 2 and 3).
Figure 3B shows the mean concentration vs. time values for all 8 models. For the plots of
the remaining seven models, see Supplementary Materials Section S14.
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Figure 4A represents the predicted mean, 95th percentile and 5th percentile concentra-
tion versus time course of DOX for model 8, presented as a sample, for the virtual patient
population for the DOX IV infusion trial (administration over 8 h of 30 mg/m2 on days 1, 2
and 3). Figure 4B shows the mean concentration vs. time values for all 8 models. For the
plots of the remaining seven models, see Supplementary Materials Section S15.

Pharmaceutics 2022, 14, x FOR PEER REVIEW 14 of 19 
 

 

 
Figure 4. (A) Mean, 95th percentile and 5th percentile of the concentration versus time of DOX for 
model 8 based on the works of Speth et al. DOX was given as a 3-day IV Infusion over 8h of 30 
mg/m2 every 24h. (B) Comparative mean concentration vs. time for all 8 DOX models for the above-
mentioned administration. 

3.6. Observed Concentration Values for the Validation Dataset 
Tables 10 and 11 summarize the AUC and Cmax values (observed vs. predicted) for 

the eight different models for the two validation trials (IV bolus and IV infusion accord-
ingly).  

Table 10. Comparison of observed vs. predicted values of Cmax and AUC0–168 for the 8 possible DOX 
models based on the validation dataset and IV bolus administration. 

 Parameters Cmax (mg/L) AUC0–120 (mg∙h/L) 

Model CLr (L/h) CLmet Dist.* Pred Obs Diff Pred Obs Diff 
1 7.04 HEP mPBPK 4.331 

9.980 

−56.6% 2.542 

2.300 

10.51% 
2 7.04 HEP fPBPK 6.896 −30.9% 2.574 11.89% 
3 7.04 DIST mPBPK 3.787 −62.1% 2.560 11.32% 
4 7.04 DIST fPBPK 6.896 −30.9% 2.563 11.45% 
5 8.67 HEP mPBPK 3.560 −64.3% 2.528 9.90% 
6 8.67 HEP fPBPK 6.884 −31.0% 2.538 10.33% 
7 8.67 DIST mPBPK 3.784 −62.1% 2.522 9.64% 

Figure 4. (A) Mean, 95th percentile and 5th percentile of the concentration versus time of DOX
for model 8 based on the works of Speth et al. DOX was given as a 3-day IV Infusion over 8 h of
30 mg/m2 every 24 h. (B) Comparative mean concentration vs. time for all 8 DOX models for the
above-mentioned administration.

3.6. Observed Concentration Values for the Validation Dataset

Tables 10 and 11 summarize the AUC and Cmax values (observed vs. predicted) for the
eight different models for the two validation trials (IV bolus and IV infusion accordingly).

The observed mean values for AUC0–120 were reported by the authors in their clinical
study. The predicted population mean for AUC0–120 for each model was calculated by the
simulator. This applies to both validation approaches (IV bolus and IV infusion).

In the multiple IV bolus administration, the authors of the clinical study used as the
validation dataset reported for DOX, a t1/2 a (distribution half-life) of 4 ± 2 min. The
injection was administered over 1 min. However, the first sampling time was 5 min. Based
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on these facts, we believe that if the biexponential equations the authors suggested based
on their observations are used for the calculation of Cmax values, then they would be
underestimated. To this end, and since as noted in the study, the authors measured the
concentration of DOX for one patient every 30 s after the administration and found the
Cmax value to be 9.98 mg/L at 90 s, we elected to use this value as the observed Cmax for
the multiple IV bolus administration, as we consider it to be more accurate. The predicted
Cmax values were calculated by the simulator. In the multiple IV infusion administration,
the mean observed Cmax value is directly reported by the authors. The predicted Cmax
values were calculated by the simulator.

Table 10. Comparison of observed vs. predicted values of Cmax and AUC0–168 for the 8 possible DOX
models based on the validation dataset and IV bolus administration.

Parameters Cmax (mg/L) AUC0–120 (mg·h/L)

Model CLR (L/h) CLmet Dist. * Pred. Obs. Diff. Pred. Obs. Diff.

1 7.04 HEP mPBPK 4.331

9.980

−56.6% 2.542

2.300

10.51%

2 7.04 HEP fPBPK 6.896 −30.9% 2.574 11.89%

3 7.04 DIST mPBPK 3.787 −62.1% 2.560 11.32%

4 7.04 DIST fPBPK 6.896 −30.9% 2.563 11.45%

5 8.67 HEP mPBPK 3.560 −64.3% 2.528 9.90%

6 8.67 HEP fPBPK 6.884 −31.0% 2.538 10.33%

7 8.67 DIST mPBPK 3.784 −62.1% 2.522 9.64%

8 8.67 DIST fPBPK 6.882 −31.0% 2.521 9.59%

* This term refers to DOX distribution model. CLmet: represents the metabolic clearance for each model calculated
either by 106 hepatocytes (HEP) or using our custom distribution (DIST) of metabolic clearance on in vitro systems
(see Table 6).

Table 11. Comparison of observed vs. predicted values of Cmax and AUC0–168 for the 8 possible DOX
models based on the validation dataset and IV infusion over 8 h administration.

Parameters Cmax (µg/L) AUC0–120 (mg·h/L)

Model CLR (L/h) CLmet Dist. * Pred. Obs. Diff. Pred. Obs. Diff.

1 7.04 HEP mPBPK 32.316

85.000

−62.0% 2.518

2.000

25.91%

2 7.04 HEP fPBPK 34.521 −59.4% 2.566 28.31%

3 7.04 DIST mPBPK 30.411 −64.2% 2.532 26.62%

4 7.04 DIST fPBPK 34.441 −59.5% 2.556 27.79%

5 8.67 HEP mPBPK 29.439 −65.4% 2.502 25.08%

6 8.67 HEP fPBPK 34.223 −59.7% 2.531 26.56%

7 8.67 DIST mPBPK 30.080 −64.6% 2.494 24.71%

8 8.67 DIST fPBPK 34.077 −59.9% 2.513 25.67%

* This term refers to DOX distribution model. CLmet: represents the metabolic clearance for each model calculated
either by 106 hepatocytes (HEP) or using our custom distribution (DIST) of metabolic clearance on in vitro systems
(see Table 6).

4. Discussion

To accomplish the goals, the development of all DOX models followed the middle-
out approach as presented above. The data regarding DOX physicochemical properties
were collected from the literature or calculated, and two independent clinical studies
were selected. The first served as the training dataset (clinical study by Camaggi et al.)
and the second as the validation dataset (clinical study by Speth et al.) for the models.
In particular, the training dataset was used for the calculation of DOX clearance. DOX
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distribution was calculated using data from the training dataset as well as utilizing the
Simcyp parameter estimation tool (P.E. tool). The validation dataset was used to validate
the models’ performance. There were three key points where different approaches could be
used, thus leading to eight different possible models each of which was validated against
the validation dataset. The validation was performed comparing the observed versus the
predicted values for AUC and Cmax of DOX.

4.1. Discussion of the Performance of the Different DOX Models
4.1.1. Model Performance Based on Training Dataset

Based on values from Table 8, the best performance based on Cmax was observed on
models 3 and 7 [−9.3% and −9.4% (relative difference between predicted and observed
values), respectively] followed by that of models 1 and 5 (+11.2% and−16.3%, respectively).
It seems that models based on the minimal PBPK distribution model better predict Cmax,
while models using the full PBPK model seem to overestimate Cmax by approximately 60%.
This is an intriguing result; however, by considering that: (a) in the clinical case study used
as the training dataset the authors measured the first concentration value at 15 min, (b) the
observed Cmax value was calculated based on the triexponential equations the authors
calculated and (c) the first half-life of DOX is approximately 5 min, then one could assume
that the authors probably had underestimated Cmax.

The best-performing models when using AUC0–168 as the criterion seem to be models
4, 2, 7 and 5 (+0.07%, +0.16%, −0.24% and +0.56%, respectively), without significant
differences for the rest. The results were satisfying, ranging from −1.79% to +1.9%. Overall,
as expected, the generated DOX models fit the data of the training dataset.

4.1.2. Model Performance Based on IV Bolus Validation

The first validation of the models was performed using the IV bolus methodology
described in the validation dataset clinical study. As seen in Table 10, when using Cmax
as the criterion, the best performing models are 2, 4, 6 and 8 (−30.9%, −30.9%, −31.0%
and −31.0%, respectively). In fact, it seems that the most accurate models are those using
full PBPK model for distribution. It must be noted, however, that the observed Cmax
value corresponds to one patient whose plasma DOX concentration was measured at 90 s
after administration, while the predicted values correspond to approximately 60 s after
administration. For that reason, we elected to utilise the AUC predicted/observed ratio for
the selection of the most appropriate model.

Utilizing AUC0–120 as the criterion, models 8, 7, 5 and 6 (+9.59%, +9.64%, +9.90% and
+10.33%, respectively) seem to be most accurate. Among them, the best performance was
by models using the approach by Wright et al. when predicting renal clearance (models 8
and 7 versus models 5 and 6). Considering all the above, it seems that the best modelling
approach would be to use the full PBPK model for distribution (Method F), combined
with the approach based on the work by Wright et al. when calculating renal clearance
(Method B).

4.1.3. Model Performance Based on IV Infusion Validation

The second validation of the models was performed using the IV infusion methodology
described in the validation dataset clinical study. As seen in Table 11, when using Cmax
as the criterion, the best-performing models are 2, 4, 6 and 8 (−59.4%, −59.5%, −59.7%
and −59.7%, respectively), thus also indicating that the models using the full PBPK model
for distribution tend to better predict the Cmax; however, the rest of the models show a
similarly good prediction for Cmax (values ranging from −62.0% to −65.4%).

On the other hand, using AUC0–120 as the criterion, the best-performing models seem
to be 7 and 5 followed by 8 and 1 (24.71%, 25.08%, 25.67% and 25.91% respectively). Thus
three (5,7,8) out of four best-performing models use Method B for the calculation of renal
clearance, also three (1,5,7) use the mPBPK model for distribution and two of the best
performing models calculate hepatic metabolic clearance by each method (C and D).
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It is noteworthy, however, that the differences between observed and predicted values
are relatively small and well within the two-fold ratio for acceptance set by the industry as
a performance standard [30–32].

4.2. Limitations of the Models Based on Procedure

During the procedure followed for the development of the different models, there
were three fundamental limitations that were knowingly ignored at this point but will be
thoroughly investigated in the future.

The first limitation was that as can be observed from the training dataset data the
renal clearance of the drug exceeds the expected GFR of the patients thus indicating the
participation of active procedures in renal excretion. Despite that, we calculated the renal
clearance of a 20–30 y.o. male solely based on the expected GFR rate.

The second limitation is about the calculated blood to plasma ratio of DOX. The
value used refers to rats. Thus, it is possible that it slightly differs in humans. The future
development of our model will consider this factor as well.

The third and last limitation is the distribution of metabolic clearance into its different
components. Based on qualitative descriptions, we attempted to quantify the relative
percentage of each path. This will also be further investigated as we expand our models.

5. Conclusions

Based on the data presented in this work, all generated DOX models perform quite
well according to the two-fold standard that is widely considered the acceptable measure
for the performance of PBPK models.

However, depending on the relevant application where the model might provide
insights (e.g., whether the prediction of plasma or specific tissue concentration is in ques-
tion), one should choose the appropriate model. In the case that DOX nanoformulation
pharmacokinetics is under consideration, the selection of a model utilizing full PBPK for
distribution is probably most appropriate. The latter also applies if the purpose of the
model is the prediction of DOX metabolites or DOX toxicokinetics as more accuracy is
needed in the prediction of concentration at the tissue level. To further investigate the
above-mentioned problematic PK behaviour of DOX (relating to gender among other phar-
macogenomic factors), more clinical data are needed to refine and validate the model for
also predicting DOX and its metabolites in various tissues. Overall, we believe that the
developed models form a solid basis for further development of even more informative
models expanding to new formulations and pharmacogenomic investigations for DOX.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/pharmaceutics14030541/s1. Section S1: Pharmacokinetic data of DOX from the training
dataset. Section S2: Plasma Protein Binding. Section S3: Calculating Renal Clearance for each
patient. Section S4: Calculating liver blood flow for each patient. Section S5: DOX blood to plasma
ratio. Section S6: Hepatic Blood clearance (CLH.B) of each patient. Section S7: Calculating mean
fraction excreted in urine for the patients. Section S8: Intrinsic Hepatic Clearance (CLuint,H,b), Intrinsic
Biliary Excretion (CLubile,b) and Intrinsic Metabolic Clearance (CLuint,met,b) for each patient. Section S9:
Calculating Liver Weight, HPGL, MPPGL and CPPGL for each patient. Section S10: Biliary excretion
per 106 of patient hepatic cells. Section S11: Calculating the corrected intrinsic metabolic clearance of
each patient based on the three different in vitro systems. Section S12: Explaining Simcyp distribution
models. Section S13: Figures of DOX population concentration vs time for the 8 models based
on the Training dataset. Section S14: Figures of DOX population concentration vs time for the
8 models based on the Validation dataset multiple IV Bolus administration. Section S15: Figures of
DOX population concentration vs time for the 8 models based on the Validation dataset multiple
IV Infusion administration. Table S1: Pharmacokinetic data of DOX from the training dataset.
Table S2: Calculated Renal clearance values based on the work of Davies and Shock for each patient.
Table S3: Calculated Renal clearance values based on the work of Wright et al. for each patient.
Table S4: Calculated liver blood flow values for each patient. Table S5: Calculated hepatic blood
clearance values for each patient. Table S6: Calculated mean fraction excreted in urine for each

https://www.mdpi.com/article/10.3390/pharmaceutics14030541/s1
https://www.mdpi.com/article/10.3390/pharmaceutics14030541/s1
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patient. Table S7: Intrinsic Hepatic Clearance (CLuint,H,b), Intrinsic Biliary Excretion (CLubile,b) and
Intrinsic Metabolic Clearance (CLuint,met,b) for each patient. Table S8: Calculated Liver Weight, HPGL,
MPPGL and CPPGL for each patient. Table S9: Calculated biliary excretion per 106 of patient hepatic
cells. Table S10: Calculated corrected intrinsic metabolic clearance of each patient based on the three
different in vitro systems. Figures S1–S7: Mean, 95th percentile and 5th percentile of the concentration
versus time of DOX for models 1–7 based on the works of Camaggi et al. DOX was given as a single
IV bolus injection of 60 mg/m2 at 0 h. Figures S8–S14: Mean, 95th percentile and 5th percentile of the
concentration versus time of DOX for models 1–7 based on the works of Speth et al. DOX was given
as a 3-day IV bolus injection of 30 mg/m2 every 24 h. Figures S15–S21: Mean, 95th percentile and 5th
percentile of the concentration versus time of DOX for model 1–7 based on the works of Speth et al.
DOX was given as a 3-day IV Infusion over 8 h of 30 mg/m2 every 24 h. (References [22,28,29,33–35]
are cited in the Supplementary Materials).
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