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Postpartum breast cancers are a highly metastatic subset of young women’s breast 
cancers defined as breast cancers diagnosed in the postpartum period or within 5 years 
of last child birth. Women diagnosed with postpartum breast cancer are nearly twice 
as likely to develop metastasis and to die from breast cancer when compared with 
nulliparous women. Additionally, epidemiological studies utilizing multiple cohorts also 
suggest that nearly half of all breast cancers in women aged <45 qualify as postpar-
tum cases. Understanding the biology that underlies this increased risk for metastasis 
and death may lead to identification of targeted interventions that will benefit the large 
number of young women with breast cancer who fall into this subset. Preclinical mouse 
models of postpartum breast cancer have revealed that breast tumor cells become 
more aggressive if they are present during the normal physiologic process of postpartum 
mammary gland involution in mice. As involution appears to be a period of lymphatic 
growth and remodeling, and human postpartum breast cancers have high peritumor 
lymphatic vessel density (LVD) and increased incidence of lymph node metastasis (1, 2), 
we propose that novel insight into is to be gained through the study of the biological 
mechanisms driving normal postpartum mammary lymphangiogenesis as well as in the 
microenvironment of postpartum tumors.
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inTRODUCTiOn TO POSTPARTUM BReAST CAnCeR

Postpartum breast cancer is an under-recognized and highly metastatic subset of young women’s 
breast cancer, which we define as breast cancers diagnosed within 5 years of a women’s most recent 
child birth (3, 4). The distinction of postpartum cases from the various interactions of breast cancer 
and pregnancy, or pregnancy-associated breast cancer (PABC), arose from epidemiologic studies 
indicating that women diagnosed with breast cancer in the postpartum years are nearly three times 
as likely to develop metastasis and to die from breast cancer in comparison with nulliparous women 
(3–6). Importantly, this research highlighted the need to clearly separate breast cancer cases as nul-
liparous, pregnant, or postpartum, as opposed to defining PABC as cancers diagnosed both during 
and in the 1–2 years after parturition as one entity, to avoid diluting the risk signal (5). Epidemiological 
studies utilizing multiple cohorts also identify that ~45% of all breast cancers in Caucasian women 
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aged ≤45 are diagnosed within 5–6 years of childbirth (5). More 
recently, it was identified that a breast cancer diagnosis of up to 
10  years postpartum confers an ongoing measure of increased 
risk for metastasis, which would represent 60% or more of all 
young onset diagnosis in the US (7). Ideally, understanding the 
biology that underlies this epidemiologic risk for metastasis and 
death will lead to identification of targeted interventions that will 
benefit the large number of young women with breast cancer who 
fall into this subset (8).

To define the mechanisms of increased risk for metastasis, pre-
clinical mouse models of postpartum breast cancer have revealed 
that tumors become more aggressive if they are exposed to the 
normal physiologic process of postpartum mammary gland 
involution. The process of postpartum breast or mammary gland 
involution is when the mammary epithelium regresses from the 
lactational state, undergoes a period of significant tissue remod-
eling, and resets to the pre-pregnant state. Multiple hallmarks 
of cancer are identified as also being important aspects of the 
involution process (9–37). Moreover, increased tumor growth, 
invasion, and metastasis are all identified when either human 
breast cancer or murine mammary tumors cells are implanted 
into postpartum hosts during involution compared with nul-
liparous controls (1, 36, 38–40). Mechanisms underlying this 
aggressive tumor promotional phenotype of involution include 
the induction of immunosuppression and lymphangiogenesis in 
the tumor microenvironment. Focusing on lymphangiogenesis, 
involution appears to be a period of significant lymphatic growth 
and remodeling, and human postpartum breast cancers have 
high peritumor lymphatic vessel density (LVD) and increased 
incidence of lymph node metastasis (2, 38, 41). Thus, we believe 
lymphangiogensis is an important pathway in the metastasis of 
postpartum breast cancer. Deeper understanding of the biological 
mechanisms driving normal postpartum mammary lymphangi-
ogenesis offers potential novel insight into tumor-associated 
lymphangiogenesis.

inTRODUCTiOn TO THe LYMPHATiC 
SYSTeM AnD LYMPHAnGiOGeneSiS

Lymphangiogenesis is the outgrowth of new lymphatic vessels, 
which is required for development of the immune system, fluid 
homeostasis, trafficking of lymphatic cells, normal wound heal-
ing, and tissue regeneration (42–47). Differential expression of 
lymphatic markers, which distinguish lymphatic vessels from 
blood vessels, has been described in detail over the past decade 
and has aided the field by allowing researchers to distinguish 
between newly formed neo- and mature lymphatics (43, 48–57). 
The adult lymphatic system consists of initial lymphatics, also 
known as lymphatic capillaries, which drain lymph fluid into 
pre-collecting lymphatics, followed by drainage into collecting 
lymphatics that then lead to the lymph node where foreign 
bodies can be trapped, immune reactions occur, and lymph 
fluid is concentrated (42, 44). While the lymphatic endothelial 
marker Lyve-1 is absent in the collecting lymphatics, it is highly 
expressed for the initial lymphatics or lymphatic capillaries (58). 
Furthermore, both the lymphatic capillaries and the collecting 

vessels exhibit high expression levels of Prox-1, VEGFR-3, and 
podoplanin (48–55, 59). These results suggest that Lyve-1 may be 
a marker that can be used to specifically measure new lymphatic 
formation or neo-lymphangiogenesis.

Neo-lymphangiogenesis occurs in adult tissues as an active 
normal response to infection, inflammation, and wound healing. 
Neo-lymphangiogenesis can be stimulated by the local produc-
tion of the vascular endothelial growth factors VEGF-C, and -D 
within the damaged tissue and subsequent binding to VEGFR-2 
and VEGFR-3 on nearby lymphatic endothelial cells (LECs), 
resulting in the expansion of lymphatics via sprouting from pre-
existing lymphatic vasculature (50, 51, 59–69). Primary sources 
of VEGF-A, -C, and -D include fibroblasts, inflammatory cells, 
and macrophages (70–74). An alternative theory has emerged 
whereby bone marrow-derived cells, specifically macrophages, 
may also be recruited to contribute to lymphangiogenesis (75–77). 
In support of this theory, bone marrow transplanted from GFP+ 
mice into GFP− recipients revealed GFP+ cells localized and/
or incorporated into new lymphatics during inflammation, and 
additional lineage tracing experiments support these findings (75, 
76, 78). Furthermore, tissue-resident and bone marrow-derived 
macrophages express lymphatic markers, such as Lyve-1, Prox-1, 
and podoplanin (78–80), and the presence of macrophages at 
sites of neo-lymphangiogenesis during inflammation has been 
reported (78, 80). Thus, macrophages appear to be involved in 
neo-lymphangiogenesis. As macrophages are also an important 
part of the normal program of involution (19), we believe there is 
a role for macrophages in facilitating the neo-lymphangiogenesis 
seen during postpartum mammary involution.

PRO-LYMPHATiC PROGRAMS OBSeRveD 
DURinG POSTPARTUM MAMMARY 
invOLUTiOn

Postpartum mammary involution has been extensively character-
ized using rodent mammary glands with more recent preliminary 
confirmation in human tissues (11, 12, 17, 19, 20, 26, 32, 35, 36, 
40, 81–89). Postpartum mammary gland involution occurs in two 
distinct phases. During the first phase, which is reversible and 
lasts for 48 h (days 1–2 post weaning), apoptosis of the epithelium 
occurs and repopulation of the gland with adipocytes is observed. 
During the second phase (days 3–14), a remodeling program is 
initiated which results in additional cell death, increased expres-
sion of matrix remodeling proteases, degradation and remodeling 
of extracellular matrix components, and re-differentiation of 
adipocytes. Recently, we observed that neo- lymphangiogenesis 
occurs during postpartum mammary gland involution; however, 
the functional significance of these increased lymphatics has yet 
to be described (38, 41). Prior to our studies only a few reports 
had focused on mammary lymphatics, which are described below.

Expression of the VEGF family members has been character-
ized during the pregnancy/lactation/involution cycle, with a goal 
of understanding regulation of angiogenesis in the mammary 
gland. In these studies, VEGF-A expression was observed as 
increased during pregnancy and lactation where it likely drives 
angiogenesis and vascular permeability, which are important 

http://www.frontiersin.org/Oncology/
http://www.frontiersin.org
http://www.frontiersin.org/oncology/archive


FiGURe 1 | (A) Pro-lymphangiogenic growth factor gene expression, as measured by qPCR is increased during early and late involution in whole rat mammary 
tissues [adapted from Lyons et al. (38)]. (B) Lyve-1+ lymphatic vessels per area (left axis) is increased during pregnancy and again during involution in mouse 
mammary tissues with peak levels observed at day 6. (Right axis) A previous study showing a similar increase in Prox-1+ lymphatic vessels during pregnancy as well 
as levels at involution day 10 [adapted from Betterman et al. (91)].
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for milk production. In contrast, pro-lymphangiogenic VEGFC 
expression levels were overall lower over the course of pregnancy 
and lactation, remained extremely low during the first phase of 
involution (days 1 and 2), and then increased nearly twofold in 
the second phase (days 3 and 7); this provides evidence that pro-
lymphangiogenic programs may be activated during postpartum 
mammary involution (90). Consistent with these findings, we 
have observed upregulation of pro-lymphangiogenic VEGF-C 
and VEGF-D mRNA expression, along with their receptors, 
VEGFR2/3, during postpartum involution in rat mammary tis-
sues (38) (Figure 1A). Additional studies have utilized elegant 
high-resolution imaging of sectioned and/or whole mounted 
mouse mammary glands to better understand lymphatic 
development during the pregnancy/lactation/involution cycle 
of the mammary gland. These studies revealed that VEGF-C 
and -D are produced locally by the mammary epithelium and 
myo-epithelium and that Prox-1-positive lymphatic vessels were 
intimately associated with the mammary epithelium and the 
blood vasculature.

These studies, by Betterman et  al., also examined Prox-
1-positive lymph vessels per area to determine density. 
Interestingly, they observed peak LVD during pregnancy, which 
decreased during lactation and involution (91). However, their 
analysis included only a single timepoint during involution, 
involution day 10, which is near the end of the involution pro-
cess in mice. In contrast, while our results also reveal that the 
number of Lyve-1 positive vessels per area in rodent mammary 
glands similarly drops from pregnancy to lactation, we observe 
that this drop is accompanied by a subsequent rise in LVD 
during the early phases involution, which peaks at involution 
day 6 in mouse and at day 10 in rat mammary tissue (38, 41) 
(Figure 1B). These results suggest that neo-lymphangiogenesis 
occurs during the active phase of mammary remodeling in 
rodents. Importantly, we also analyzed podoplanin positive 
vessels in normal breast tissue from women who were biopsied 

within 10 years postpartum to determine whether the increase 
in lymph vessels is also evident and whether the increase per-
sisted over time, as has been suggested by a gene signature that 
contains pro-angiogenic molecules angiopoietin and VEGF-A 
(9). The results from our study showed that women who were 
within 1  year of giving birth, and no longer lactating, had 
the highest LVD compared with never been pregnant (NBP) 
women. In addition, women between 3 and 10 years of giving 
birth also had elevated LVD compared with nulliparous sug-
gesting that neo-lymphangiogenesis occurs during postpartum 
breast involution in women, and the resulting lymphatics may 
persist beyond the period of remodeling (38).

Consistent with a potential role for bone marrow-derived 
cells in neo-lymphangiogenesis, additional studies of postpartum 
mammary gland involution have revealed specific changes in 
immune cell populations, and regulation, during the involution 
process (12, 19, 20, 32, 36, 40, 81–83). Initial gene expression 
analyses during the pregnancy/lactation/involution cycle identi-
fied upregulation of genes important for acute inflammatory 
responses in the mammary epithelium during postpartum 
involution (12, 26). Specifically, Stat3 and NF-κB are primary 
mediators of involution in the mouse and are also known to be 
key mediators of acute-phase inflammatory response. Recently, 
and in support of these gene expression data, the postpartum 
mammary gland was shown to have a cascade of infiltrating 
immune cells, including T-cells, T regulatory cells, and dendritic 
cells during involution that mimic a wound-healing pattern (92). 
Furthermore, numerous studies have shown that macrophages 
are present during involution in mouse, rat, and human tissues 
and that macrophage ablation during the first phase of involution 
in mice blocks epithelial cell death and adipocyte repopulation. 
The details of these studies have been reviewed elsewhere (17, 
20, 81). Importantly, we observe that macrophages and lymphat-
ics may be similarly regulated during postpartum involution 
in mouse, rat, and human tissues (19, 38, 93) (Figure  2). We 
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FiGURe 2 | A comparison of lymphatic vessel density (LvD) and macrophage infiltration in (A) mouse mammary tissue where macrophages were 
measured as %F4/80+ cells from whole mammary tissue by flow cytometry [data adapted from Lyons et al. (38) and Martinson et al. (36)], (B) rat 
mammary tissue where macrophages were measured by quantitative iHC as %CD68+ cells/pixel [data adapted from Lyons et al. (38) and O’Brien 
et al. (19)], and (C) in normal human breast tissues from women who had never been pregnant (nBP), were no longer lactating, and <1, 1–3, 3–6, 
6–10, 10–15, and >15 years since last childbirth where lymphatics were measured as number of podopanin+ vessels per area and CD68 by 
quantitative iHC [data adapted from Lyons et al. (38) and Jindal et al. (93)].
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have also shown that macrophages present during postpartum 
involution in rodent and human tissues express markers of an 
M2-polarized phenotype, such as mannose receptor, arginase-1, 
and CD11b (19, 36, 81). CD11b+ macrophages produce pro-
lymphangiogenic factors VEGF-C and -D (78, 80, 94). Moreover, 
subpopulations of CD11b+ positive macrophages express 
lymphatic endothelial markers Lyve-1 and VEGFR-3 (95, 96). 
Together, these findings indicate that the CD11b+ “involution 
macrophages” may either stimulate lymphangiogenesis through 
release of pro-lymphangiogenic cytokines or through expression 
of lymphatic markers and incorporation into existing lymphatics; 
evidence for both has been published in models of inflammation 
and cancer (68, 78, 80, 96, 97).

Our analysis of lymphangiogenesis during postpartum invo-
lution also revealed that administration of a selective COX-2 
inhibitor, celecoxib (CXB), during postpartum involution reduced 
Lyve-1-positive LVD at involution day 4 (38). These results are 
consistent with previous observations in tumor models (98–102). 
While, the mechanism by which CXB blocked lymphangiogen-
esis was not directly revealed by these studies, our in vitro data 
suggested that a product of COX-2 activity, PGE2, acts directly 
on the lymphatic endothelium via the EP2 receptor. However, 
PGE2 can also stimulate macrophages to an M2 phenotype (103, 
104); thus, it is also possible that CXB inhibits lymphangiogenesis 
through macrophage-dependent mechanisms. Understanding 
the mechanisms underlying “involution macrophage” contribu-
tion to lymphangiogenesis during normal mammary gland 
development could lead to insight into macrophage-mediated 
lymphangiogenesis during breast cancer. We postulate that 
postpartum involution is a developmental window that allows 
for studies of mechanisms driving lymphangiogenesis.

LYMPHATiC vASCULATURe in BReAST 
CAnCeR MeTASTASiS

While expansion of the lymphatic vasculature has been linked to 
faster healing and greater ability to fight infection, lymphangi-
ogenesis can also be pathologic. Pathologic lymphangiogenesis 

has been observed in graft-versus-host disease, in chronic inflam-
matory diseases (e.g., Rheumatoid arthritis and inflammatory 
bowel disease), and in the tumor microenvironment. Lymph 
node metastasis, lymphatic vessel presence at the tumor margin, 
and invasion of tumor cells into peritumor lymphatics are all 
poor prognostic factors for breast cancer patients (105). Further, 
increased LVD in the peritumor region correlates with increased 
metastasis in a number of human cancers, directly implicating 
new lymphatic vessel formation in tumor cell dissemination 
(106–108). A multitude of studies have examined mechanisms 
driving neo-lymphangiogenesis in the breast tumor environ-
ment, and VEGF-C, VEGF-D, macrophages, and COX-2/PGE2 
have emerged as key players (51, 68, 72, 73, 80, 99–101, 109–118).

VEGF-C is secreted by macrophages and other lymphatic 
cells to stimulate lymphangiogenesis, but can also be secreted by 
tumor cells for the same purpose (51, 62, 72, 73, 94, 117, 119). 
Macrophages have also been shown to participate directly in 
lymphangiogenesis via inducing lymphatic vessel sprouting and 
incorporating into existing tumor-associated lymphatics (69, 80). 
COX-2 and its product PGE2 also promote lymphangiogenesis 
in the tumor microenvironment (38, 41, 98, 99, 101, 102, 116, 
120, 121). Furthermore, VEGF-D promotes lymphatic vessel 
dilation through a COX-2-dependent mechanism. Dilation of 
pre-existing, peritumor, and intratumor lymphatics allows for the 
intravasation of tumor cells into the lymphatic vessels and sub-
sequent transmigration to regional lymph nodes (109, 114, 119, 
122). Together these results suggest there is a connection between 
COX-2-mediated lymphangiogenesis and lymphogenous tumor 
cell spread.

LYMPHATiC vASCULATURe in 
POSTPARTUM BReAST CAnCeR

Postpartum breast cancers are nearly three times as likely to 
metastasize when compared with breast cancers in nulliparous 
women (5, 123, 124). Furthermore, we have shown that postpar-
tum breast cancers have increased peritumor LVD and increased 
lymph node involvement (1). It is anticipated that postpartum 
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breast tumors will utilize mechanisms similar to those observed 
during postpartum involution to induce lymphangiogenesis. The 
first, and most obvious mechanism, is upregulation of COX-2 in 
the mammary epithelium (125), which results in increased PGE2 
production to increase lymphangiogenesis. Indeed, in animals 
treated with celecoxib (CXB) during postpartum involution, 
the resultant postpartum tumors exhibit lower levels of LVD 
compared with untreated controls. In addition, COX-2 in the 
tumor cell appears to be required as well since tumors with stable 
siRNA knockdown of COX-2 exhibit decreased tumor-associated 
LVD. Finally, if postpartum tumors are re-implanted in nullipa-
rous hosts they maintain their ability to drive tumor-associated 
lymphangiogenesis (38). Of interest, these results suggest that 
involution-induced pro-lymphangiogenic programs persist in 
tumor cells long after the process of involution is complete. These 
results are supported by gene-expression studies indicating that 
there is an involution signature observed in breast tissue of parous 
women that persists for 10 years postpartum (9).

In addition to a COX-2-dependent mechanism, if “involution 
macrophages” promote lymphangiogenesis during normal invo-
lution then postpartum tumor-associated macrophages (TAMs) 
may also acquire and utilize similar mechanisms to mediate 
lymphangiogenesis in the postpartum tumor microenvironment. 
CD11b+ is expressed by “involution macrophages” and by TAMs 
(96). TAMs also predict poor prognosis of breast cancer (126), 
and an association between TAMs and LVD has been reported for 
pancreatic cancer (127). Furthermore, TAMs express VEGF-C 
and may promote metastasis via lymphangiogenesis (71–73, 126, 
128). Thus, the CD11b+ macrophages present during postpartum 
involution may promote lymphangiogenesis in a manner similar 
to TAMs, and we have preclinical data indicating that CD11b+ 
macrophages are also increased in the tumor microenvironment 
of involution/postpartum tumors compared with nulliparous 
controls (36).

POTenTiAL CLiniCAL iMPLiCATiOnS: 
AnTi-LYMPHAnGiOGeniC THeRAPY

While it is not clear why the lymphatics are expanded during 
postpartum involution, it is clear that postpartum tumors 
hijack the lymphatic vessels in the postpartum gland to drive 
increased metastasis. In addition, the observed tumor-promoted 
neo-lymphangiogenesis offers a targetable mechanism to reduce 
cancer metastasis (123, 124, 129–131). Anti-lymphangiogenic 
therapies, such as anti-VEGFR2/3 antibodies and small molecule 
inhibitors that target VEGFR2/3, have been tested in clinical trials 
for multiple solid tumor types and have shown some successes 
and low toxicities (132–134). Since our studies suggest that 
COX-2 specific inhibitors may serve to reduce tumor-associated 
lymphangiogenesis, we suggest that identifying whether COX-2 
inhibitors can be combined with current therapies, and/or with 
anti-lymphangiogenesis therapy, to reduce lymphogenous spread 
and metastatic recurrence should be explored for postpartum 
breast cancer patients.
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