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The dynamics of neural networks is often characterized by collective behavior and quasi-synchronous
events, where a large fraction of neurons fire in short time intervals, separated by uncorrelated firing
activity. These global temporal signals are crucial for brain functioning. They strongly depend on the
topology of the network and on the fluctuations of the connectivity. We propose a heterogeneous mean–field
approach to neural dynamics on random networks, that explicitly preserves the disorder in the topology at
growing network sizes, and leads to a set of self-consistent equations. Within this approach, we provide an
effective description of microscopic and large scale temporal signals in a leaky integrate-and-fire model with
short term plasticity, where quasi-synchronous events arise. Our equations provide a clear analytical picture
of the dynamics, evidencing the contributions of both periodic (locked) and aperiodic (unlocked) neurons to
the measurable average signal. In particular, we formulate and solve a global inverse problem of
reconstructing the in-degree distribution from the knowledge of the average activity field. Our method is
very general and applies to a large class of dynamical models on dense random networks.

T
opology has a strong influence on phases of dynamical models defined on a network. Recently, this topic has
attracted the interest of both theoreticians and applied scientists in many different fields, ranging from
physics, to biology and social sciences1–6. Research has focused in two main directions. The direct problem

aims at predicting the dynamical properties of a network from its topological parameters7. The inverse problem is
addressed to the reconstruction of the network topological features from dynamic time series8–11. The latter
approach is particularly interesting when the direct investigation of the network is impossible or very hard to be
performed.

Neural networks are typical examples of such a situation. In local approaches to inverse problems8–11, the
network is reconstructed through the knowledge of long time series of single neuron dynamics, a methods that
applies efficiently to small systems only. Actually, the signals emerging during neural time evolution are often
records of the average synaptic activity from large regions of the cerebral cortex – a kind of observable likely much
easier to be measured than signals coming from single neuron activities12,13. Inferring the topological properties of
the network from global signals is still an open and central problem in neurophysiology. In this paper we
investigate the possibility of formulating and solving such a global version of the inverse problem, reconstructing
the network topology that has generated a given global (i.e. average) synaptic-activity field. The solution of such
an inverse problem could also imply the possibility of engineering a network able to produce a specific average
signal.

As an example of neural network dynamics, we focus on a system of leaky integrate–and–fire (LIF) excitatory
neurons, interacting via a synaptic current regulated by the short–term plasticity mechanism14,15. This model is
able to reproduce synchronization patterns observed in in vitro experiments16–18. As a model for the underlying
topology we consider randomly uncorrelated diluted networks made of N nodes. In general N is considered quite
a large number, as is the number of connections between pairs of neurons. This suggests that the right framework
for understanding large–population neural networks should be a mean–field approach, where the thermodyn-
amic limit, N R ‘, is expected to provide the basic ingredients for an analytic treatment. On the other hand, the
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way such a thermodynamic limit is performed may wipe out any
relation with the topological features that are responsible, for finite N,
of relevant dynamical properties.

In Erdös–Renyi directed networks, where each neuron is ran-
domly and uniformly connected to a finite fraction of the other
neurons (massive or dense connectivity), the fluctuations of the
degree determine a rich dynamical behavior, characterized in par-
ticular by quasi-synchronous events (QSE). This means that a large
fraction of neurons fire in a short time interval of a few milliseconds
(ms), separated by uncorrelated firing activity lasting over some tens
of ms. Such an interesting behavior is lost in the thermodynamic
limit, as the fluctuations of the connectivity vanish and the ‘‘mean-
field-like’’ dynamics reduces to a state of fully synchronized neurons
(e.g., see19). In order to maintain the QSE phenomenology in the large
N limit, we can rather consider the sequence of random graphs that

keep the same specific in-degree distribution P ~k
� �

, where ~ki~ki=N

is the fraction of incoming neurons connected to neuron i for any
finite N, similarly to the configuration models20. This way of per-
forming the thermodynamic limit preserves the dynamical regime of
QSE and the difference between synchronous and non-synchronous
neurons according to their specific in-degree ~k. By introducing expli-
citly this N R ‘ limit in the differential equations of the model, we
obtain a heterogeneous mean–field (HMF) description, similar to the
one recently introduced in the context of epidemiological spreading
on networks2,3,21,22. Such mean–field like or HMF equations can be
studied analytically by introducing the return maps of the firing
times. In particular, we find that a sufficiently narrow distributions

of P ~k
� �

is necessary to observe the quasi–synchronous dynamical

phase, which vanishes on the contrary for broad distributions of ~k.
More importantly, these HMF equations allow us to design a

‘‘global’’ inverse–problem approach, formulated in terms of an integ-

ral Fredholm equation of the first kind for the unknown P ~k
� �

23.

Starting from the dynamical signal of the average synaptic-activity
field, the solution of this equation provides with good accuracy the

P ~k
� �

of the network that produced it. We test this method for very

different uncorrelated network topologies, where P ~k
� �

ranges from

a Gaussian with one or several peaks, to power law distributions,
showing its effectiveness even for finite size networks.

The overall procedure applies to a wide class of network dynamics
of the type

_wi~F wi,
g
N

X
j=i

jiG wj
� � !

, ð1Þ

where the vector wi represents the state of the site i, F(wi, 0) is the
single site dynamics, g is the coupling strength, G(wj) is a suitable
coupling function and j,i is the adjacency matrix of the directed
uncorrelated dense network, whose entries are equal to 1 if neuron
j fires to neuron i, and 0 otherwise.

Results
The LIF model with short term plasticity. Let us introduce LIF
models, that describe a network of N neurons interacting via a synap-
tic current, regulated by short–term–plasticity with equivalent
synapses16. In this case the dynamical variable of the neuron i is wi

5 (vi, xi, yi, zi) where vi is the rescaled membrane potential and xi, yi,
and zi represent the fractions of synaptic transmitters in the
recovered, active, and inactive state, respectively (xi 1 yi 1 zi 5 1).
Eq. (1) then specializes to:

_vi~a{viz
g
N

X
j=i

jiyj ð2Þ

_yi~{
yi

tin
zuxiSi ð3Þ

_zi~
yi

tin
{

zi

tr
: ð4Þ

The function Sj(t) is the spike–train produced by neuron j,
Sj tð Þ~

P
m d t{tj mð Þ
� �

, where tj(m) is the time when neuron j
fires its m-th spike. Notice that we assume the spike to be a d
function of time. Whenever the potential vi(t) crosses the threshold
value vth 5 1, it is reset to vr 5 0, and a spike is sent towards its
efferent neurons. The mechanism of short–term plasticity, that
mediates the transmission of the field Sj(t), was introduced in14,15

to account for the activation of neurotransmitters in neural
dynamics mediated by synaptic connections. In particular, when
neuron i emits a spike, it releases a fraction of neurotransmitters
uxi(t) (see the second term in the r.h.s. of Eq. (3)), and the fraction
of active resources yi(t) is increased. Between consecutive spikes of
neuron i, the use of active resources determines the exponential
decrease of yi(t), on a time scale tin, thus yielding the increment of
the fraction of inactive resources zi(t) (see the first term on the r.h.s.
of Eq. (4)). Simultaneously, while zi(t) decreases (see the second term
on the r.h.s. of Eq. (4)), the fraction of available resources is recovered
over a time scale tr: in fact, from Eq.s (3) and (4) one readily obtains
_xi tð Þ~zi tð Þ=tr{uxi tð ÞSi tð Þ. We assume that all parameters
appearing in the above equations are independent of the neuron
indices, and that each neuron is connected to a macroscopic num-
ber, O Nð Þ, of pre-synaptic neurons: this is the reason why the
interaction term is divided by the factor N. In all data hereafter
reported we have used phenomenological values of the rescaled
parameters: tin 5 0.2, tr 5 133tin, a 5 1.3, g 5 30 and u 5 0.519.

The choice of the value of the external current, a, is quite import-
ant for selecting the dynamical regime one is interested to reproduce.
In fact, for a . vth 5 1, neurons are in a firing regime, that typically
gives rise to collective oscillations19,24,25,27. These have been observed
experimentally in mammalian brains, where such a coherent rythmic
behavior involves different groups of neurons26. On the other hand, it
is also well known that in many cases neurons operate in the presence
of a subthreshold external current18. In this paper, we aim to present a
method that works irrespectively of the choice of a. For the sake of
simplicity, we have decided to describe it for a 5 1.3, i.e. in a strong
firing regime.

Numerical simulations can be performed effectively by transform-
ing the set of differential equations (2)–(4) into an event–driven
map19,28,29. On Erdös–Renyi random graphs, where each link is
accepted with probability p, so that the average in-degree Ækæ 5

pN, the dynamics has been analyzed in detail19. Neurons separate
spontaneously into two different families: the locked and the
unlocked ones. The locked neurons determine quasi-synchronous
events (QSE) and exhibit a periodic dynamics. The unlocked ones
participate in the uncorrelated firing activity and exhibit a sort of
irregular evolution. Neurons belong to one of the two families
according to their in-degree ki. In this topology, the thermodynamic
limit can be simply worked out. Unfortunately, this misses all the
interesting features emerging from the model at finite N. Actually, for
any finite value of N, the in–degree distribution P(k) is centered
around Ækæ, with a standard deviation sk*N

1
2. The effect of disorder

is quantified by the ratio sk/Ækæ, that vanishes for N R ‘. Hence the
thermodynamic limit reproduces the naive mean–field like dynamics
of a fully coupled network, with rescaled coupling g R pg, that is
known to eventually converge to a periodic fully synchronous state19.

The LIF model on random graphs with fixed in–degree distri-
bution. At variance with the network construction discussed in
previous sections, uncorrelated random graphs can be defined by
different protocols, that keep track of the in-degree inhomogeneity
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in the thermodynamic limit. In our construction, we fix the

normalized in–degree probability distribution P ~k
� �

, so that sk/Ækæ

is kept constant for any N20. Accordingly, P ~k
� �

is a normalized

distribution defined in the interval ~k[ 0,1ð � (while the number of

inputs k g (0, N]). In particular, if P ~k
� �

is a truncated Gaussian

distribution, the dynamics reproduces the scenario observed in19 for
an Erdös–Renyi random graph. In fact, also in this case neurons are
dynamically distinguished into two families, depending on their in–
degree. Precisely, neurons with ~k in between two critical values, ~kc1

and ~kc2< ~k
D E

, are locked and determine the QSE: they fire with

almost the same period, but exhibit different (~k-dependent) phases.
All the other neurons are unlocked and fire in between QSE
displaying an aperiodic behavior. Notice that the range 0v

~kv~kc1

corresponds to the left tail of the truncated Gaussian distribution;
accordingly, the large majority of unlocked neurons is found in the
range ~kc2v

~kv1 (see Fig. 1). In order to characterize the dynamics at
increasing N, we consider for each neuron its inter-spike-interval
(ISI), i.e. the lapse of time in between consecutive firing events. In

Fig. 2 we show the time-average of ISI vs ~k, or ISI ~k
� �

. One can clearly

observe the plateau of locked neurons and the crossover to unlocked
neurons at the critical values ~kc1 and ~kc2.

Remarkably, networks of different sizes (N 5 500, 5000 and

20000) feature the same ISI ~k
� �

for locked neurons, and almost the

same values of ~kc1 and ~kc2. There is not a sharp transition from locked
to unlocked neurons, because for finite N the behavior of each neu-
ron depends not only on its ~k, but also on neighbor neurons sending
their inputs. Nevertheless, in the inset, the crossover appears to be
sharper and sharper for increasing N, as expected for true critical

points. Furthermore, the fluctuations of ISI ~k
� �

over different reali-

zations, by P ~k
� �

, of three networks of different size exhibit a peak

around ~kc1 and ~kc2, while they decrease with N as , N21/2 (data not
shown). Thus, the qualitative and quantitative features of the QSE at
finite sizes are expected to persist in the thermodynamic limit, where

fluctuations vanish and the dynamics of each neuron depends only
on its in–degree.

Heterogeneous mean field equations. We can now construct the
Heterogeneous Mean–Field (HMF) equations for our model by
combining this thermodynamic limit procedure with a consistency
relation in Eqs. (2)–(4). The input field received by neuron i is
Yi~1=N

P
j ijyj tð Þ~1=N

P
j[I ið Þ yj, where I(i) is the set of ki

neurons transmitting to neuron i. For very large values of N the
average field generated by presynaptic neurons of neuron i, i.e.

1
.

ki

X
j[I ið Þ yj, can be approximated with 1=N

X
j
yj, where the

second sum runs over all neurons in the network (mean–field
hypothesis). Accordingly, we have Yi~ ki=Nð Þ 1=kið Þ

X
j[I ið Þ yj<

~ki 1=N
X

j
yj

� �
: as a consequence in the thermodynamic limit the

dynamics of each neuron depends only on its specific in–degree. In
this limit, ~ki becomes a continuous variable independent of the label
i, taking values in the interval (0,1]. Therefore, all neurons with the
same in–degree ~k follow the same dynamical equations and we can
write the dynamical equations for the class of neurons with in–degree
~k. Finally, we can replace Yi with ~kY tð Þ, where

Y tð Þ~
ð1

0
P ~k
� �

y~k tð Þd~k ð5Þ

The HMF equations, then, read

_v~k tð Þ~a{v~k tð Þzg~kY tð Þ ð6Þ

_y~k tð Þ~{
y~k tð Þ
tin

zu 1{y~k tð Þ{z~k tð Þ
� �

S~k tð Þ ð7Þ

_z~k tð Þ~ y~k tð Þ
tin

{
z~k tð Þ

tr
, ð8Þ

where v~k, y~k and z~k are the membrane potential, fraction of active and

inactive resources of the class of neurons with in–degree ~k,
respectively. Despite this set of equations cannot be solved
explicitly, they provide a great numerical advantage with respect to
direct simulations of large systems. Actually, the basic features of the
dynamics of such systems can be effectively reproduced (modulo

finite–size corrections) by exploiting a suitable sampling of P ~k
� �

.

For instance, one can sample the continuous variable ~k[ 0,1½ � into M

discrete values ~ki in such a way that
ð~kiz1

~ki

P ~k
� �

d~k is kept fixed

(importance sampling). Simulations of Equations (5)–(8) show
that the global field field Y (t) is periodic and the neurons split into
locked and unlocked. Locked neurons feature a firing time delay with
respect the peak of Y (t), and this phase shift depends on the in–
degree ~k. As to unlocked neurons, that typically have an in-degree
~kw ~k
D E

, they follow a complex dynamics with irregular firing times.

In Fig. 2 (black dots) we compare ISI ~k
� �

, obtained from the HMF

equations for M 5 307, with the same quantity computed by direct
simulations of networks up to size N 5 2 3 104. The agreement is
remarkable evidencing the numerical effectiveness of the method.

The direct problem: stability analysis and the synchronization
transition. In the HMF equations, once the global field Y (t) is
known, the dynamics of each class of neurons with in-degree ~k can
be determined by a straightforward integration, and we can perform
the stability analysis that Tsodyks et al. applied to a similar model30.

356 358 360 362 364
t

0

100

200

300

400

500

Figure 1 | Raster plot representation of the dynamics of a network of N 5
500 neurons with a Gaussian in-degree distribution P ~k

� �
~k
D E

~0:7, s~k~0:077
� �

. Black dots signal single firing events of neurons

at time t. Neurons are naturally ordered along the vertical axis according to

the values of their in-degree. The global field Y (t) (red line) is superposed

to the raster plot for comparison (its actual values are multiplied by the

factor 103, to make it visible on the vertical scale).
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As an example, we have considered the system studied in Fig. 2. The
global field Y (t) of the HMF dynamics has been obtained using the

importance sampling for the distribution P ~k
� �

. We have fitted Y (t)

with an analytic function of time Yf(t), continuous and periodic in
time, with period T. Accordingly, Eq. (6) can be approximated by

_v~k tð Þ~a{v~k tð Þzg~kYf tð Þ: ð9Þ

Notice that, by construction, the field Yf(t) features peaks at times t 5

nT, where n is an integer. In this way we can represent Eq. (9) as a
discrete single neuron map. In practice, we integrate Eq.(9) and
determine the sequence of the (absolute value of the) firing time–
delay, t~k nð Þ, of neurons with in–degree ~k with respect to the reference
time nT. The return map R~k of this quantity reads

t~k nz1ð Þ~R~k t~k nð Þ
� �

: ð10Þ

In Fig. 3 we plot the return map of the rescaled firing time–delay
t~k nð Þ

�
T for different values of ~k. We observe that in-degrees ~k

corresponding to locked neurons (e.g., the brown curve) have two
fixed points ts

~k
and tu

~k
, i.e. two points of intersection of the curve with

the diagonal. The first one is stable (the derivative of the map R~k is
,1) and the second unstable (the derivative of the map R~k is .1).
Clearly, the dynamics converges to the stable fixed point displaying a
periodic behavior. In particular, the firing times of neurons ~k are
phase shifted of a quantity ts

~k
with respect the peaks of the fitted

global field. The orange and violet curves correspond to the dyna-
mics at the critical in-degrees ~kc1 and ~kc2 where the fixed points
disappear (see Fig. (2)). The presence of such fixed points
influences also the behavior of the unlocked component (e.g., the
red and light blue curves). In particular, the nearer ~k is to ~kc1 or to ~kc2,
the closer is the return map to the bisector of the square, giving rise to
a dynamics spending longer and longer times in an almost periodic
firing. Afterwards, unlocked neurons depart from this almost
periodic regime, thus following an aperiodic behavior. As a
byproduct, this dynamical analysis allows to estimate the values of
the critical in–degrees. For the system of Fig. 1, ~kc1~0:48 and

~kc2~0:698, in very good agreement with the numerical
simulations (see Fig. 2).

Still in the perspective of the direct problem, the HMF equations
provide further insight on how the network topology influences the
dynamical behavior. We have found that, in general, the fraction of

locked neurons increases as P ~k
� �

becomes sharper and sharper,

while synchronization is eventually lost for broader distributions.

In Fig. 4 we report the fraction of locked neurons, fl~

ð~kc2

~kc1

P ~k
� �

d~k,

as a function of the standard deviation deviation s~k, for different

kinds of P ~k
� �

(single or double–peaked Gaussian, power law) in

the HMF equations. For the truncated power law distribution, we

set P ~k
� �

*h ~k{~kmin

� �
~k{a. In all cases, there is a critical value of s~k

above which fl vanishes, i.e. QSE disappear. The generality of this

scenario points out the importance of the relation between P ~k
� �

and

the average synaptic field Y(t).

The inverse problem. The HMF approach allows to implement the
inverse problem and leads to the reconstruction of the distribution

P ~k
� �

from the knowledge of Y(t). If the global synaptic activity field

Y(t) is known, each class of neurons of in-degree ~k evolves according
to the equations:

_v~k tð Þ~a{v~k tð Þzg~kY tð Þ ð11Þ

_y~k tð Þ~{
y~k tð Þ
tin

zu 1{y~k tð Þ{z~k tð Þ
� �

~S~k tð Þ ð12Þ

_z~k tð Þ~ y~k tð Þ
tin

{
z~k tð Þ

tr
: ð13Þ

Notice that the variable v(t), y(t), z(t) can take values that differ from
the variables generating the field Y(t), i.e. v(t), y(t), z(t), as they start
from different initial conditions. However, the self consistent relation
for the global field Y(t) implies:

0 0.2 0.4 0.6 0.8 1
t(n)___

T

0

0.2

0.4

0.6

0.8

1

t(n+1)____
T

0.42
t(n+1) = t(n)
0.48
0.63
0.698
0.77

Figure 3 | The return map R~k in Eq. (10) of the rescaled variables t~k nð Þ
�

T
for different values of ~k, corresponding to lines of different colors,

according to the legend in the inset: the black line is the bisector of the

square.

0.7 0.71

1.21

1.22

0.4 0.5 0.6 0.7 0.8 0.9 1~k

1.1

1.15

1.2

1.25

1.3

ISI
~k

~kc1
~k c2

Figure 2 | Time average of inter-spike intervals ISI ~k
� �

vs ~k from a
Gaussian distribution with ~k

D E
~0:7 and s~k~0:077 and for three

networks with N 5 500 (blue triangles), N 5 5000 (red diamonds), N 5
20000 (green squares). For each size, the average is taken over 8 different

realizations of the random network. We have also performed a suitable

binning over the values of ~k, thus yielding the numerical estimates of the

critical values ~kc1<0:49 and ~kc2<0:70. In the inset we show a zoom of the

crossover region close to ~k
D E

~0:7. Black dots are the result of simulations

of the mean field dynamics (see Eq.s (6)–(8)) with M 5 307.
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Y tð Þ~
ð1

0
P ~k
� �

y~k tð Þd~k: ð14Þ

If Y(t) and y~k tð Þ are known, this is a Fredholm equation of the first

kind in P ~k
� �

23. In the general case of Eq. (1), calling E(t) the global

measured external field, the evolution equations corresponding to
Eq.s (11)–(13) read

_w~k~F w~k,g~kE tð Þ
� �

ð15Þ

and the Fredholm equation for the inverse problem is

E tð Þ~
ð1

0
P ~k
� �

G w~k tð Þ
� �

d~k: ð16Þ

In the case of our LIF model, as soon as a locked component exists,
Eq. (14) can be solved by a functional Montecarlo minimization

procedure applied to a sampled P ~k
� �

. At variance with the direct

problem, P ~k
� �

is the unknown function and, accordingly, we have to

adopt a uniform sampling of the support of ~k. A sufficiently fine

sampling has to be used for a confident reconstruction of P ~k
� �

(See Methods section).

To check our inverse method, we choose a distribution P ~k
� �

,

evolve the system and extract the global synaptic field Y(t). We then
verify if the procedure reconstructs correctly the original distribution

P ~k
� �

. In panels (a), (b) and (c) of Fig. 5 we show examples in which

Y(t) has been obtained from the simulation of the HMF with differ-

ent P ~k
� �

(Gaussian, double peak Gaussian and power law). We can

see that the method determines confidently the original distribution

P ~k
� �

. Notice that the method fails as soon as the locked component

disappears, as explained in the methods section. Remarkably, the
method can recognize the discontinuity of the distribution in

~k~~kmin and the value of the exponent of the power law a 5 4.9.
Finally, in panel (d) of Fig. 5, we show the result of the inverse

problem for the distribution P ~k
� �

obtained from a global signal

generated by a finite size realization with N 5 500 and Ækæ 5 350.
The significant agreement indicates that the HMF and its inverse
problem are able to infer the in–degree probability distribution

P ~k
� �

even for a realistic finite size network. This last result is par-

ticularly important, as it opens new perspectives for experimental
data analysis, where the average neural activity is typically measured
from finite size samples with finite but large connectivity.

Discussion
The direct and inverse problem for neural dynamics on random
networks are both accessible through the HMF approach proposed
in this paper. The mean-field equations provide a semi–analytic form
for the return map of the firing times of neurons and they allow to
evidence the effects of the in-degree distribution on the synchron-
ization transition. This phenomenology is not limited to the LIF
model analyzed here and it is observed in several neural models on
random networks. We expect that the HMF equations could shed
light on the nature of this interesting, but still not well understood,
class of synchronization transitions24,25,31. The mean field nature of
the approach does not represent a limitation, since the equations are
expected to give a faithful description of the dynamics also in net-
works with finite but large average in-degree, corresponding to the
experimental situation observed in many cortical regions32.

The inverse approach, although tested here only on numerical
experiments, gives excellent results on the reconstruction of a wide
class of in-degree distributions and it could open new perspectives on
data analysis, allowing to reconstruct the main topological features of
the neural network producing the QSE. The inversion appears to be
stable with respect to noise, as clearly shown by the effectiveness of
the procedure tested on a finite realization, where the temporal sig-
nals of the average synaptic activity is noisy. We also expect our
inverse approach to be robust with respect to the addition of limited
randomness in leaky currents, and also with respect to a noise com-
patible with the signal detection from instruments. Finally, the

0 0.05 0.1 0.15 0.2
σk~

0

20

40

60

80

f
l

power law
 Gaussian
2 Gaussians

Figure 4 | The fraction of locked neurons, fl, as a function of the standard

deviation s~k of the distributions: truncated Gaussian with ~k
D E

~0:7

(black dots); truncated superposition of two Gaussians (both with
standard deviation 0.03), one centered at ~k1~0:5 and the other one at a
varying value ~k2, that determines the overall standard deviation s~k (blue
squares); truncated power law distribution with ~kmin~0:1 (red
diamonds). In the last case the value of the standard deviation is changed

by varying the exponent a, while the average ~k
D E

changes accordingly.

Lines have been drawn to guide the eyes.
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Figure 5 | Inverse problem for P ~k
� �

from the global field Y(t).

Panels (a), (b) and (c) show three distributions of the kind considered in

Fig. (4) (black continuous curves) for the HMF equations and their

reconstructions (circles) by the inverse method. The parameters of the

three distributions are s~k~0:043, ~k2~0:7 and a 5 4.9. In panel (d) we

show the reconstruction (crosses) of P ~k
� �

(black continuous line) by the

average field Y(t) generated by the dynamics of a finite size network with N

5 500.
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method is very general and it can be applied to a wide class of
dynamical models on networks, as those described in Eq. (1).

Further developments will allow to get closer to real experimental
situations. We mention the most important, i.e. the introduction of
inhibitory neurons and the extension of our approach by taking into
account networks with degree correlations3, that are known to char-
acterize real structures, and sparse networks. The HMF equations
appear to be sufficiently flexible and simple to allow for these
extensions.

Methods
Montecarlo approach to the inverse problem. In this section we provide details of
the algorithmic procedure adopted for solving the inverse problem, i.e. reconstructing

the distribution P ~k
� �

from Eq. (14). In the HMF formulation, the field Y(t) is

generated by an infinite number of neurons and ~k is a continuous variable in the
interval (0, 1]. In practice, we can sample uniformly this unit interval by L disjoint
subintervals of length 1/L, labelled by the integer i. This corresponds to an effective
neural index i, that identifies the class of neurons with in-degree ~ki~i=L. In this way
we obtain a discretized definition converging to Eq.(14) for L R ‘:

Y tð Þ~
ð1

0
P ~k
� �

y~k tð Þd~k^
1
L

XL{1

i~0

P ~ki

� �
y~ki

tð Þ: ð17Þ

In order to improve the stability and the convergence of the algorithm by smoothing
the fluctuations of the fields y~ki

tð Þ, it is convenient to consider a coarse–graining of
the sampling by approximating Y(t) as follows

Y tð Þ~ 1
L’

XL’{1

i~0

P ~ki

� �
y~ki

tð Þ
D E

: ð18Þ

where y~ki
tð Þ

D E
is the average of L/L9 synaptic fields of connectivity ~k[ ~ki,~kiz1

h i
. This

is the discretized Fredholm equation that one can solve to obtain P ~ki

� �
from the

knowledge of y~ki
tð Þ

D E
and Y(t). For this aim we use a Monte Carlo (MC)

minimization procedure, by introducing at each MC step, n, a trial solution, Pn
~ki

� �
,

in the form of a normalized non-negative in-degree distribution. Then, we evaluate
the field Yn(t) and the distance n defined as:

Yn t,Pn
~ki

� �� �
~

1
L’

XL’{1

i~0

Pn
~ki

� �
y~ki

tð Þ
D E

ð19Þ

n Pn
~ki

� �� �2
~

1
t2{t1

ðt2

t1

Yn t,Pn
~ki

� �� �
{Y tð ÞÞ

h i2

Y2 tð Þ dt: ð20Þ

The time interval [t1, t2] has to be taken large enough to obtain a reliable estimate of
n. For instance, in the case shown in Fig. 1, where Y(t) exhibits an almost periodic

evolution of period T < 1 in the adimensional units of the model, we have used t2 2 t1

5 10. The overall configuration of the synaptic fields, at iteration step n 1 1, is
obtained by choosing randomly two values ~kj and ~kl , and by defining a new trial

solution �Pnz1
~k
� �

~Pn
~k
� �

z d~k,~kj
{ d~k,~kl

, so that, provided both �Pnz1
~kj

� �
and

�Pnz1
~kl

� �
are non-negative, we increase and decrease Pn

~kj

� �
of the same amount, ,

in ~kj and ~kl respectively. A suitable choice is *O 10{4
� �

. Then, we evaluate

nz1 �Pnz1
~ki

� �� �
: If nz1 �Pnz1

~ki

� �� �
v n Pn

~ki

� �� �
the step is accepted i.e.

Pnz1~�Pnz1, otherwise Pn11 5 Pn. This MC procedure amounts to the imple-

mentation of a zero temperature dynamics, where the cost function n Pn
~ki

� �� �
can

only decrease. In principle, the inverse problem in the form of Eq.(18) is solved, i.e.

Yn t,Pn
~ki

� �� �
~Y tð Þ, if n Pn

~ki

� �� �
~0. In practice, the approximations introduced

by the coarse-graining procedure do not allow for a fast convergence to the exact

solution, but Pn
~ki

� �
can be considered a reliable reconstruction of the actual P ~k

� �
already for n , 1022. We have checked that the results of the MC procedure are quite

stable with respect to different choices of the initial conditions P0
~ki

� �
, thus con-

firming the robustness of the method. We give in conclusion some comments on the

very definition of the coarse-grained synaptic field y~ki
tð Þ

D E
. Since small differences in

the values of ~ki reflect in small differences in the dynamics, for not too large intervals
~ki,~kiz1

h i
the quantity y~ki

tð Þ
D E

can be considered as an average over different initial

conditions. For locked neurons the convergence of the average procedure defining

y~ki
tð Þ

D E
is quite fast, since all the initial conditions tend to the stable fixed point,

identified by the return map described in the previous subsection. On the other hand,
the convergence of the same quantity for unlocked neurons should require an average
over a huge number of initial conditions. For this reason, the broader is the distri-
bution, i.e. the bigger is the unlocked component (see Fig. 4), the more computa-
tionally expensive is the solution of the inverse problem. This numerical drawback for
broad distributions emerges in our tests of the inversion procedure described in Fig. 5.
Moreover, such tests show that the procedure works insofar the QSE are not neg-
ligible, but it fails in the absence of the locking mechanism. In this case, indeed, the

global field Y(t) is constant and also y~ki
tð Þ

D E
become constant, when averaging over a

sufficiently large number of samples. This situation makes Eq.(18) trivial and useless

to evaluate P ~ki

� �
. We want to observe that, while in general y~ki

tð Þ=y~ki
tð Þ, one can

reasonably expect that y~ki
tð Þ

D E
is a very good approximation of y~ki

tð Þ
D E

. This

remark points out the conceptual importance of the HMF formulation for the
possibility of solving the inverse problem.
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