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We have discussed the perturbed Gerdjikov-Ivanov (pGI) equation describing optical pulse 
propagation (PP) with perturbation effects, which has various applications in optical fibers, 
especially in photonic crystal fibers. According to our literature review, we have discovered new 
and original soliton types using the Sardar sub-equation and the modified Kudryashov methods, 
which have not been applied to this model before. We obtained dark, bright, periodic-singular and 
periodic-M-shaped soliton solutions, respectively. The analytical forms of the obtained solutions 
are represented by 3D, 2D and contour graphics. In addition, the physical effects of the solution 
parameters on the wave envelope have been described and clearly interpreted by presenting their 
2D graphics.

1. Introduction

Differential equations (DEs) have been used in the mathematical modeling of physical and biological phenomena for over 150 
years and continue to increase in popularity rapidly. The main examples are the spread of a real disease such as Covid-19 and AIDS, 
shallow water waves, shock waves, energy transmission in optical fiber and magnetic media, respectively [1–4].

If the models used in the literature are examined, a large part of them consists of partial differential equations (PDEs) and 
nonlinear partial differential equations (NLPDEs). NLPDEs have a considerable wide usage in literature. Nonlinear Schrödinger 
equations (NLSEs) are one of the most widely used types of NLPDEs. NLSEs are capable of modeling large-scale media and situations 
due to their complex nature. Water wave modulation [5,6], application on deep water waves [7], propagation of two solitons in 
plasma [8], resonant waves in cold collision-less plasma media [9], solution of atomic system in chemistry [10] can be listed as some 
examples of variety usage of NLSEs in science. In addition, NLSEs play an important role in optic branch of physics. Optical simulation 
of gravity effect [11], Kerr effect [12], dark shock waves [13], chaotic behavior of NLSE system [14], solitons in thermo-optical media 
[15], femtosecond behavior in optical waveguide [16], stability analysis of optical solitons [17], dynamics of solitons [18], Bragg 
gratings [19] and much more can be cited as examples [20–23].

Moreover, in optic, there exist some phenomena equations that is based on NLSEs that describe an optical media or behavior like 
the optical propagation and fiber pulse propagation. Chen-Lee-Liu equation [24,25], chiral NLSE [26], Schrödinger-Hirota model 
[27], Kundu-Eckhaus equation [28,29], Sasa-Satsuma equation [30], (1+1) dimensional perturbed NLSE [31], Biswas-Milovic 
equation [32,33], Ginzburg-Landau equation [34–36] and Kundu-Mukherjee-Naskar equation [37] can be briefly listed as major 
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equations. To solve our model we used the computer algebra techniques. Computer algebra is a powerful technique to solve the 
problem in partial differential equation [38–42].

This study examines the application of the perturbed Gerdjikov-Ivanov (pGI) equation, also known as derivative nonlinear 
Schrödinger-III (DNLS-III), which is based on Schrödinger equation. The pGI equation models the (1+1)-dimensional optical pulse 
propagation. The model diverges from classical Schrödinger owing to quintic nonlinearity because classical NLSE includes cubic 
nonlinearity.

The (1+1)-dimensional perturbed Gerdjikov-Ivanov equation is given as follows [43]:

𝑖𝑢𝑡 + 𝑎𝑢𝑥𝑥 + 𝑏|𝑢|4𝑢− 𝑖
(
𝑐𝑢2𝑢∗

𝑥
+ 𝑑𝑢𝑥 + 𝛾

(|𝑢|2𝑟𝑢)
𝑥
+ 𝛽

(|𝑢|2𝑟)
𝑥
𝑢
)
= 0, (1)

where 𝑢(𝑥, 𝑡) is complex valued wave profile, ∗ denotes the complex conjugate of 𝑢(𝑥, 𝑡), 𝑥 is spatial and 𝑡 is temporal variables, 
respectively. In eq. (1), the first term is linear temporal evolution, the second term is group velocity dispersion (GVD), coefficient 
𝑏 is the coefficient for quintic nonlinearity, 𝑑 is the coefficient for intermodal dispersion, 𝛾 is the coefficient of the self-steepening 
term for short pulses and 𝛽, 𝑐 are the coefficients of the nonlinear dispersion and lastly, 𝑟 has an effect for full nonlinearity. Balance 
between GVD and nonlinearity rises a soliton and 𝑑, 𝛾, 𝛽 arises from perturbation effects [43]. Besides, 𝑎, 𝑏, 𝑐, 𝑑, 𝛾 and 𝛽 are real valued 
constants. If we omit the 𝑑, 𝛾 and 𝛽, eq. (1) is degenerated to Gerdjikov-Ivanov equation.

There are some recent studies in the literature on obtaining optical solitons of the pGI equation. The analytical methods used 
in these papers are; modified simple equation method [44], projective Riccati equation method, solitons and modulation instability 
[45], trial equation method [46], exp-function and Kudryashov method [47,48], modified extended direct algebraic method [49] and 
extended rational sin-cos and sinh-cosh method [50]. Besides all, there are some actual papers in view of fractional calculus about 
pGI equation such as M-fractional pGI equation [51], fractional pGI in conformable sense [52] and Riemann-Liouville fractional 
pGI model [53]. In addition, conservation laws for pGI with Lie symmetries [54], abundant wave solutions [55], new solitary wave 
solutions [56], fractional form [57], novel optical solitons [58] and computational extracting solutions [59].

In this article, we investigate the pGI equation by two efficient analytical techniques. Sardar subequation method (SSM) [24,60]

and modified new Kudryashov method (mNKM) [61,62]. Organization of the paper as follows; in section 2, obtaining nonlinear 
ordinary differential equation (NODE), implementation of the methods is included. Section 3 includes 3D and 2D graphs of solutions 
and interpretation of graphs. Lastly, section 4 includes the conclusion and evaluation of the obtained results.

2. Mathematical analysis and implementations of the methods

This section includes obtaining the NODE form of the analyzed problem with the wave transform and applying the suggested 
methods over this form. Both proposed methods are current methods [60,63]. The SSM method includes different solutions of the 
Riccati equation under different constraints [60]. Although the mNKM method [63] offers few soliton solutions, it is generally an 
efficient method in NLEEs solution that gives quick results, is easy to implement, does not require much mathematical processing, 
and is effective in obtaining result-oriented ideas. Therefore, these two methods were chosen in this study.

2.1. Obtaining NODE form of pGI equation

Consider the case 𝑟 = 1 for pGI equation in eq. (1) with the following wave transformation;

𝑢(𝑥, 𝑡) =𝑈 (𝜁 )𝑒𝑖𝜃 , 𝜁 = 𝑥−𝜔𝑡, 𝜃 = 𝜇𝑥− 𝜆𝑡+𝜓0, (2)

where 𝜃 is the phase component, 𝜔 is the velocity of the soliton, 𝜇 is the correspondent frequency of the wave oscillation, 𝜆 is the 
wave number and 𝜓0 is the phase constant.

Substitute eq. (2) into eq. (1), decompose the real and imaginary parts as,

𝑏𝑈5(𝜁 ) + 𝜇(𝛾 − 𝑐)𝑈3(𝜁 ) + (𝜆+ 𝜇(𝑑 − 𝑎𝜇))𝑈 (𝜁 ) + 𝑎𝑈 ′′(𝜁 ) = 0, (3)

𝑈 ′(𝜁 )(𝑑 − 2𝑎𝜇 +𝜔) +𝑈 ′(𝜁 )𝑈2(𝜁 )(𝑐 + 3𝛾 + 2𝛽) = 0, (4)

where 𝑈 ′(𝜁 ), 𝑈 ′′(𝜁 ) denote 𝑑𝑈
𝑑𝜁

and 𝑑
2𝑈
𝑑𝜁2

. From eq. (4) the following are obtained:

𝜔 = 2𝑎𝜇 − 𝑑 and 𝛽 = − 𝑐

2
− 3𝛾

2
. (5)

In eq. (5), if we consider the terms 𝑈 ′′ and 𝑈5 in eq. (3) by using the balance principle, gives 𝑁 = 1
2 which is the balancing term. In 

this case, we need to define a transformation as 𝑈 (𝜁 ) =
√
𝑉 (𝜁 ). So eq. (3) is degenerated to the following NODE form:

4𝑏𝑉 4(𝜁 ) − 4𝜇(𝑐 − 𝛾)𝑉 3(𝜁 ) + (4𝜆+ 4𝑑𝜇 − 4𝑎𝜇2)𝑉 2(𝜁 ) + 2𝑎𝑉 (𝜁 )𝑉 ′′(𝜁 ) − 𝑎(𝑉 ′)2 = 0. (6)
2

According to eq. (6), taking into account the terms 𝑉 𝑉 ′′ or (𝑉 ′)2 with 𝑉 4, 𝑁 is calculated as 𝑁 = 1 which is the balancing constant.
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2.2. Implementation of SSM to the pGI equation

We propose a new approach for the solution of eq. (6) in the following form:

𝑉 (𝜁 ) =
𝑁∑
𝑖=1

𝜎0 + 𝜎𝑖Φ(𝜁 )𝑖. (7)

If we remember that 𝑁 = 1, eq. (7) is converted into following form:

𝑉 (𝜁 ) = 𝜎0 + 𝜎1Φ(𝜁 ), (8)

where 𝜎0 and 𝜎1 are determined later, 𝜎1 ≠ 0 and Φ(𝜁 ) satisfies the following Riccati equation:

(Φ′(𝜁 ))2 = 𝛼1 + 𝛼2Φ(𝜁 )2 + 𝛼3Φ(𝜁 )4, (9)

where 𝛼1, 𝛼2 and 𝛼3 are real constants. The solutions of the eq. (9) are given as follows [60]:

• Case I: If 𝛼2 > 0 and 𝛼1 = 0,

Φ1(𝜁 ) = ±
√−𝑝𝑞𝛼2

𝛼3
𝑠𝑒𝑐ℎ𝑝𝑞(

√
𝛼2𝜁 ), (10)

Φ2(𝜁 ) = ±
√

𝑝𝑞𝛼2
𝛼3

𝑐𝑠𝑐ℎ𝑝𝑞(
√
𝛼2𝜁 ), (11)

where

𝑠𝑒𝑐ℎ𝑝𝑞 =
2

𝑝𝑒(𝜁) + 𝑞𝑒(−𝜁)
, 𝑐𝑠𝑐ℎ𝑝𝑞 =

2
𝑝𝑒(𝜁) − 𝑞𝑒(−𝜁)

.

• Case II: If 𝛼2 < 0, 𝛼3 > 0 and 𝛼1 = 0,

Φ3(𝜁 ) = ±
√−𝑝𝑞𝛼2

𝛼3
𝑠𝑒𝑐𝑝𝑞(

√
−𝛼2𝜁 ), (12)

Φ4(𝜁 ) = ±
√−𝑝𝑞𝛼2

𝛼3
𝑐𝑠𝑐𝑝𝑞(

√
−𝛼2𝜁 ), (13)

where

𝑠𝑒𝑐𝑝𝑞 =
2

𝑝𝑒(𝑖𝜁) + 𝑞𝑒(−𝑖𝜁)
, 𝑐𝑠𝑐𝑝𝑞 =

2𝑖
𝑝𝑒(𝑖𝜁) − 𝑞𝑒(−𝑖𝜁)

,

and p,q are non-zero real values.

Substitution of the eq. (8) and eq. (9) into eq. (6), gives a polynomial consisting powers of the Φ𝑖(𝜁 ) (𝑖 = 0, 1 … 4). Then by 
collecting each coefficient of Φ(𝜁 ) and equating them to zero, the following system of equations is acquired:

Φ0(𝜁 ) ∶ − 4𝑎𝜇2𝜎20 + 4𝑏𝜎40 − 4𝑐𝜇𝜎30 + 4𝑔𝜇𝜎30 − 𝑎𝛼1𝜎
2
1 + 4𝑑𝜇𝜎20 + 4𝜆𝜎20 = 0,

Φ1(𝜁 ) ∶ − 8𝑎𝜇2𝜎0𝜎1 + 16𝑏𝜎30𝜎1 − 12𝑐𝜇𝜎20𝜎1 + 12𝑔𝜇𝜎20𝜎1 + 2𝑎𝛼2𝜎0𝜎1 + 8𝑑𝜇𝜎0𝜎1 + 8𝜆𝜎0𝜎1 = 0,

Φ2(𝜁 ) ∶ − 4𝑎𝜇2𝜎21 + 24𝑏𝜎20𝜎
2
1 − 12𝑐𝜇𝜎0𝜎21 + 12𝑔𝜇𝜎0𝜎21 + 𝑎𝛼2𝜎

2
1 + 4𝑑𝜇𝜎21 + 4𝜆𝜎21 = 0,

Φ3(𝜁 ) ∶16𝑏𝜎0𝜎31 − 4𝑐𝜇𝜎31 + 4𝑔𝜇𝜎31 + 4𝑎𝛼3𝜎0𝜎1 = 0,

Φ4(𝜁 ) ∶4𝑏𝜎41 + 3𝑎𝛼3𝜎21 = 0.

(14)

Solving the algebraic system in eq. (14) via the appropriate computer algebra software, we acquire the following solution set:

Set1 ∶

⎧⎪⎪⎨⎪⎪⎩

𝜎0 = −
𝜎21𝜇 (𝑐 − 𝑔)

2𝑎𝛼3
, 𝛼2 =

−𝜇4 (𝑐 − 𝑔)4 𝜎41 − 16𝑎4𝛼1𝛼33
4𝑎2𝜇2𝛼3 (𝑐 − 𝑔)2 𝜎21

, 𝜎1 = 𝜎1,

𝑏 = −
3𝑎𝛼3
4𝜎21

, 𝑑 =
−5𝜇4 (𝑐 − 𝑔)4 𝜎41 + 16𝑎𝜇2𝛼3 (𝑐 − 𝑔)2

(
𝑎𝜇2 − 𝜆

)
𝜎21 + 16𝑎4𝛼1𝛼33

16𝑎𝜇3𝛼3𝜎
2
1 (𝑐 − 𝑔)2

⎫⎪⎪⎬⎪⎪⎭
. (15)

Substituting the eq. (15) into the eq. (8) along with the solutions of eq. (9) which are given in from eq. (10) to eq. (13) and 
considering the transformation 𝑈 (𝜁 ) =

√
𝑉 (𝜁 ), we obtain the solutions as follows:

( √
𝑝𝑞𝛼2 √ )1∕2
3

𝑢1,1(𝑥, 𝑡) = 𝜎1
𝛼3

𝑠𝑒𝑐ℎ𝑝𝑞( 𝛼2(𝑥−𝜔𝑡)) 𝑒𝑖𝜃 , (16)
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𝑢1,2(𝑥, 𝑡) =
(
𝜎1

√
𝑝𝑞𝛼2
𝛼3

𝑐𝑠𝑐ℎ𝑝𝑞(
√
𝛼2(𝑥−𝜔𝑡))

)1∕2
𝑒𝑖𝜃 . (17)

In eqs. (16) and (17) both 𝛼2, 𝛼3 > 0 or 𝛼2, 𝛼3 < 0.

𝑢1,3(𝑥, 𝑡) =
(
𝜎1

√−𝑝𝑞𝛼2
𝛼3

𝑠𝑒𝑐𝑝𝑞(
√
−𝛼2(𝑥−𝜔𝑡))

)1∕2
𝑒𝑖𝜃 , (18)

𝑢1,4(𝑥, 𝑡) =
(
𝜎1

√−𝑝𝑞𝛼2
𝛼3

𝑐𝑠𝑐𝑝𝑞(
√
−𝛼2(𝑥−𝜔𝑡))

)1∕2
𝑒𝑖𝜃 . (19)

In eqs. (18) and (19) 𝛼2 and 𝛼3 should have opposite signs. 𝜃 = 𝜇𝑥 −𝜆𝑡 +𝜓0, 𝑠𝑒𝑐𝑝𝑞, 𝑐𝑠𝑐𝑝𝑞 and 𝑠𝑒𝑐ℎ𝑝𝑞, 𝑐𝑠𝑐ℎ𝑝𝑞 are described in Section 2.2

with 𝑝, 𝑞 > 0.

2.3. Implementation of mNKM to the pGI equation

According to mNKM [63] we propose a new approach for the solution of eq. (6) in the following form:

𝑉 (𝜁 ) =
𝑁∑
𝑖=1

𝜎0 + 𝜎𝑖𝑅(𝜁 )𝑖. (20)

If we remember that 𝑁 = 1, eq. (20) is converted into:

𝑉 (𝜁 ) = 𝜎0 + 𝜎1𝑅(𝜁 ), (21)

where 𝑅(𝜁 ) satisfies the following Riccati ODE;

(𝑅′(𝜁 ))2 = 𝑙𝑛2(𝐴)𝑅2(𝜁 )
(
1 − 𝜒𝑅2(𝜁 )

)
, 0 <𝐴 ≠ 1. (22)

The solution of ODE in eq. (22) are given follows;

𝑅(𝑥−𝜔𝑡) = 4𝐿
4𝐿2𝐴(𝑥−𝜔𝑡) + 𝜒𝐴−(𝑥−𝜔𝑡) , (23)

where 𝐿, 𝐴 and 𝜒 are non-zero real values to be determined later. Substituting the eq. (21) and eq. (22) into the eq. (6), we obtain 
a polynomial form of the 𝑅𝑖(𝜁 ) with (𝑖 = 0, 1 … 8). Then by collecting each coefficient of 𝑅(𝜁 ) and equating them to zero, we get the 
following algebraic system of equations:

Φ0(𝜁 ) ∶ − 4𝜎20𝑎𝜇
2 + 4𝑏𝜎40 − 4𝜇𝑐𝜎30 + 4𝜇𝑔𝜎30 + 4𝜎20𝑑𝜇 + 4𝜎20𝜆 = 0,

Φ1(𝜁 ) ∶2𝑎𝜎1𝜎0 ln(𝐴)2 − 12𝜇𝑐𝜎20𝜎1 + 12𝜇𝑔𝜎20𝜎1 − 8𝜎0𝜎1𝑎𝜇2 + 8𝜎0𝜎1𝑑𝜇 + 8𝜎0𝜎1𝜆+ 16𝑏𝜎30𝜎1 = 0,

Φ2(𝜁 ) ∶4𝜎21𝜆− 12𝜇𝑐𝜎0𝜎21 + 12𝜇𝑔𝜎0𝜎21 + 𝑎𝜎21 ln(𝐴)
2 + 24𝑏𝜎20𝜎

2
1 − 4𝑎𝜎21𝜇

2 + 4𝜎21𝑑𝜇 = 0,

Φ3(𝜁 ) ∶ − 4𝑎𝜎1𝜎0 ln(𝐴)2 𝜒 + 16𝑏𝜎0𝜎31 − 4𝜇𝑐𝜎31 + 4𝜇𝑔𝜎31 = 0,

Φ4(𝜁 ) ∶ − 3𝑎𝜎21 ln(𝐴)
2 𝜒 + 4𝑏𝜎41 = 0.

(24)

Solving the system in eq. (24), we obtain the following solution set:

Set2 ∶

⎧⎪⎪⎨⎪⎪⎩
𝑏 = 3𝜇2 (𝑐 − 𝑔)2

16 ln(𝐴)2 𝑎
, 𝜒 =

𝜎21𝜇
2 (𝑐 − 𝑔)2

4𝑎2 ln(𝐴)4
, 𝑑 = 4𝑎𝜇2 + 5 ln(𝐴)2 𝑎− 4𝜆

4𝜇
,

𝜎0 =
2 ln(𝐴)2 𝑎
𝜇 (𝑐 − 𝑔)

, 𝜎1 = 𝜎1

⎫⎪⎪⎬⎪⎪⎭
. (25)

Substituting eq. (25) into eq. (21) along with eq. (23) and considering 𝑈 (𝜁 ) =
√
𝑉 (𝜁 ), we obtain the following solution:

𝑢2,1(𝑥, 𝑡) =
⎛⎜⎜⎜⎝
2 ln(𝐴)2 𝑎
𝜇 (𝑐 − 𝑔)

+
4𝜎1𝐿

4𝐿2𝐴(𝑥−𝜔𝑡) +
𝜎21𝜇

2(𝑐−𝑔)2𝐴−(𝑥−𝜔𝑡)

4𝑎2 ln(𝐴)4

⎞⎟⎟⎟⎠
1∕2

𝑒𝑖𝜃 . (26)

3. Results and discussion

This section includes graphical representations of the obtained solution functions and their interpretations.

Fig. 1 shows 3D (a) and contour (b) plots of |𝑢1,1(𝑥, 𝑡)| in eq. (16) as dark soliton for 𝜎1 = −1, 𝜆 = 1, 𝜇 = 4, 𝜓0 = 1, 𝑎 = 0.8, 𝑐 = −1, 𝛾 =
−2, 𝛼1 = 0, 𝛼3 = −1, 𝑝 = 1 and 𝑞 = 1.

Fig. 2 shows 3D (a) and contour (b) plots of |𝑢1,1(𝑥, 𝑡)| in eq. (16) as bright soliton for 𝜎1 = −1, 𝜆 = 1, 𝜇 = 4, 𝜓0 = 1, 𝑎 = 0.8, 𝑐 = −3, 𝛾 =
4

−2, 𝛼1 = 0, 𝛼3 = −1, 𝑝 = 1 and 𝑞 = 1.
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Fig. 1. 3D surface (a), contour plot (b) of modulus 𝑢1,1(𝑥, 𝑡) in eq. (16).

Fig. 2. 3D surface (a), contour plot (b) of modulus 𝑢1,1(𝑥, 𝑡) in eq. (16).

Fig. 3. 3D surface (a), contour plot (b) of modulus 𝑢1,4(𝑥, 𝑡) in eq. (19).

Fig. 3 shows 3D (a) and contour (b) plots of |𝑢1,4(𝑥, 𝑡)| in eq. (19) as periodic-M-shaped soliton for 𝜎1 = −1, 𝜆 = 1, 𝜇 = 4, 𝜓0 = 1, 𝑎 =
1, 𝑐 = −1, 𝛾 = −2, 𝛼1 = 0, 𝛼3 = 1, 𝑝 = 1 and 𝑞 = 2.

Fig. 4 shows 3D (a) and contour (b) plots of |𝑢1,4(𝑥, 𝑡)| in eq. (19) as periodic-singular soliton for 𝜎1 = −1, 𝜆 = 1, 𝜇 = 4, 𝜓0 = 1, 𝑎 =
5

1, 𝑐 = −1, 𝛾 = −2, 𝛼1 = 0, 𝛼3 = 1, 𝑝 = 1 and 𝑞 = 1.
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Fig. 4. 3D surface (a), contour plot (b) of modulus 𝑢1,4(𝑥, 𝑡) in eq. (19).

Fig. 5. 3D surfaces of modulus 𝑢2,1(𝑥, 𝑡) in eq. (26).

Fig. 5 shows 3D (a,b) plots of |𝑢2,1(𝑥, 𝑡)| in eq. (26) as bright and dark soliton for 𝜎1 = −2, 𝜆 = −2, 𝜓0 = 1, 𝑎 = 0.5, 𝑐 = 2, 𝛾 = 1, 𝐴 =
3, 𝐿 = 0.3, 𝜇 = −0.7 for Fig. 5a and 𝜇 = 0.7 for Fig. 5b.

Fig. 6 shows 2D plots of 𝑢1,1(𝑥, 𝑡) in eq. (16). Figs. 6a and 6b show 2D projections of wave behaviors according to the parameter 
change. In Fig. 6a, the graphs of the examined soliton are represented by three different colors. Blue, red and yellow-styled waves are 
plotted with 𝑎 = 0.5, 0.8 and 𝑎 = 1.1 respectively. Parameter 𝑎 represents the coefficient of the group velocity dispersion term. While 
parameter 𝑎 increases, wave amplitude decreases, wavelength increases and the wave shifts through positive x-axis. In Fig. 6b, also 
depicts the investigated soliton shape by three different colors. Blue, red and yellow-styled waves are plotted for 𝑐 = −0.8, −1 and 
𝑐 = −1.2 values. The parameter 𝑐 represents nonlinear dispersion term. While the parameter 𝑐 decreases, wave amplitude increases, 
wavelength decreases and the wave shifts through negative x-axis.

Fig. 7 shows 2D plots of 𝑢1,1(𝑥, 𝑡) in eq. (16). In Fig. 7a, the wave behavior according to the change of parameter 𝛼3 is depicted. 
The parameter 𝛼3 is used SSM in eq. (9). There are three-styled waves in Fig. 7a. Blue, red and yellow-styled waves are plotted for 
𝛼3 = −0.8, −1 and 𝛼3 = −1.2 values. While 𝛼3 increases, the wave amplitude decreases and the wave shifts through positive x-axis. In 
Fig. 7b, we depicted 2D plots to show the change in wave behavior due to change in parameter. In Fig. 7b, there are soliton charts 
shown with three different colors. Blue, red and yellow-styled waves are plotted for 𝛾 = 1.7, 2 and 𝛾 = 2.3 values, respectively. While 
the value of 𝛾 increases, the wave amplitude increases, the wavelength decreases and the wave shifts through negative x-axis.

Fig. 8 shows 2D plots of 𝑢1,1(𝑥, 𝑡) in eq. (16). Fig. 8a reflects the wave behavior of the dark soliton depending on the change of 𝜇. 
Blue, red and yellow-styled waves are plotted for 𝜇 = 3.2, 4 and 𝜇 = 4.8 values, respectively. While 𝜇 increases, the wave amplitude 
increases, the wavelength decreases and the wave shifts through the positive x-axis. Lastly, Fig. 8b shows wave behavior according to 
𝜆. Blue, red and yellow colored lines are plotted for 𝜆 = 0.2, 1 and 𝜆 = 1.8 values, respectively. While 𝜆 increases, the wave amplitude 
and wavelength don’t change and the wave shifts through the positive x-axis.

On the basis of the graphic presentations made above and the physical results obtained, let’s consider a brief review of their 
6

long-term behavior of the obtained solitons:
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Fig. 6. 2D plots of modulus of 𝑢1,1(𝑥, 𝑡) in eq. (16) depending 𝑎, 𝑐 when 𝑡 = 1.

Fig. 7. 2D plots of modulus of 𝑢1,1(𝑥, 𝑡) in eq. (16) depending on 𝛼3, 𝛾 when 𝑡 = 1.
7

Fig. 8. 2D plots of modulus of 𝑢1,1(𝑥, 𝑡) in eq. (16) depending on 𝜇,𝜆 when 𝑡 = 1.
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Let consider 𝑢1,1(𝑥, 𝑡), 𝑢1,2(𝑥, 𝑡), 𝑢1,3(𝑥, 𝑡), 𝑢1,4(𝑥, 𝑡) solutions which were given in eqs. (16) to (19) and consider the figures of these 
solutions which were depicted in Figs. 1 to 4. In Fig. 1, ||𝑢1,1(𝑥, 𝑡)|| = 𝑘 ∈𝐑 for 𝑡 ←←→ ±∞ and similarly ||𝑢1,1(𝑥, 𝑡)|| = 𝑘 ∈𝐑 for 𝑥 ←←→ ±∞ (𝑘 is 
the amplitude of the dark soliton). In Fig. 2, ||𝑢1,1(𝑥, 𝑡)|| = 0 for 𝑡 ←←→ ±∞ and similarly ||𝑢1,1(𝑥, 𝑡)|| = 0 for 𝑥 ←←→ ±∞. In Fig. 3, it is seen that the 
soliton behavior is in the form of a sinusoidal occurring with different amplitudes when 𝑡 ←←→ ±∞ and 𝑥 ←←→ ±∞. In Fig. 4, singular soliton 
behavior occurring with soliton amplitude as lim𝑡←←→𝑡0

||𝑢1,4(𝑥, 𝑡)|| ←←→∞, lim𝑥←←→𝑥0
||𝑢1,4(𝑥, 𝑡)|| ←←→∞ at some values for 𝑡 ←←→ 𝑡0 and 𝑥 ←←→ 𝑥0. These 

investigated solutions belong to the SSM. Also, we can analyze the solution obtained via mNKM. Let consider the Fig. 5 and eq. (26)

together, lim𝑡←←→±∞ ||𝑢2,1(𝑥, 𝑡)|| = 0 and lim𝑥←←→±∞ ||𝑢2,1(𝑥, 𝑡)|| = 0 in Fig. 5a. lim𝑡←←→±∞ ||𝑢2,1(𝑥, 𝑡)|| = 𝑀 ∈ 𝑅 and lim𝑥←←→±∞ ||𝑢2,1(𝑥, 𝑡)|| = 𝑀 ∈ 𝑅 in 
which M represents the amplitude of the dark soliton which is generated by different parameters in Fig. 5b.

4. Conclusion

In our study, we have used two effective analytical methods, the Sardar sub-equation and the modified new Kudryashov method, 
to obtain new soliton solutions of the perturbed Gerdjikov-Ivanov equation, which is a Schrödinger-based model used in fiber optic 
communication. Our main motivation in this study is that the soliton solutions of the pGI equation have never been analyzed 
before with these two methods. As a result of the application, dark, bright, periodic-singular, periodic-M-shaped soliton solutions 
have been obtained. It should also be noted that periodic-M-shaped solitons are very rare in the solutions set. We have obtained 
periodic-M-shaped soliton in eq. (19) and 3D and contour graphics of compacton soliton have been placed in Fig. 3. In addition, the 
3D, 2D and contour graphics of the obtained soliton solutions have been drawn using Symbolic Algebra Software (Matlab R2022a), 
and the effects of the parameters in the model and method have been examined and interpreted with 2D graphics. According to the 
findings we have reached at the end of the study, it is highly probable that the soliton solutions obtained will give an idea to many 
researchers working in the field of fiber optics, while emphasizing that the proposed methods are not complicated, give fast results, 
are effective, reliable and widely used by many researchers in different models.
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