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Abstract 

Background: Adverse drug reactions (ADRs) are statistically characterized within randomized clinical trials and 
postmarketing pharmacovigilance, but their molecular mechanism remains unknown in most cases. This is true even 
for hepatic or skin toxicities, which are classically monitored during drug design. Aside from clinical trials, many ele‑
ments of knowledge about drug ingredients are available in open‑access knowledge graphs, such as their properties, 
interactions, or involvements in pathways. In addition, drug classifications that label drugs as either causative or not 
for several ADRs, have been established.

Methods: We propose in this paper to mine knowledge graphs for identifying biomolecular features that may enable 
automatically reproducing expert classifications that distinguish drugs causative or not for a given type of ADR. In an 
Explainable AI perspective, we explore simple classification techniques such as Decision Trees and Classification Rules 
because they provide human‑readable models, which explain the classification itself, but may also provide elements 
of explanation for molecular mechanisms behind ADRs. In summary, (1) we mine a knowledge graph for features; (2) 
we train classifiers at distinguishing, on the basis of extracted features, drugs associated or not with two commonly 
monitored ADRs: drug‑induced liver injuries (DILI) and severe cutaneous adverse reactions (SCAR); (3) we isolate 
features that are both efficient in reproducing expert classifications and interpretable by experts (i.e., Gene Ontology 
terms, drug targets, or pathway names); and (4) we manually evaluate in a mini‑study how they may be explanatory.

Results: Extracted features reproduce with a good fidelity classifications of drugs causative or not for DILI and SCAR 
(Accuracy = 0.74 and 0.81, respectively). Experts fully agreed that 73% and 38% of the most discriminative features are 
possibly explanatory for DILI and SCAR, respectively; and partially agreed (2/3) for 90% and 77% of them.

Conclusion: Knowledge graphs provide sufficiently diverse features to enable simple and explainable models to 
distinguish between drugs that are causative or not for ADRs. In addition to explaining classifications, most discrimi‑
native features appear to be good candidates for investigating ADR mechanisms further.
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Background
Molecular mechanisms behind harmful or beneficial 
effects of drugs are largely unknown. For instance, the 
molecular mechanism of highly prescribed drugs aceta-
minophen, lithium, and metformin is not completely 
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understood. Indeed, drug development process relies 
mainly on randomized clinical trials and postmarketing 
pharmacovigilance that evaluate drug efficacy and safety, 
independently from any mechanistic investigation [1]. 
However, understanding a drug’s mechanism is fruitful: 
it can guide drug development, improve drug safety, and 
enable precision medicine, through better dosing or com-
bination of drugs [2]. Aside from this partial ignorance, 
many elements of knowledge about drug ingredients are 
available in open-access knowledge graphs, such as their 
chemical and physical properties, their interactions with 
biomolecules such as their targets, or their involvements 
in biological pathways or molecular functions [3]. Knowl-
edge graphs can be broadly defined as graphs of data 
with the intent to compose knowledge. Here, we consider 
knowledge graphs represented using Semantic Web tech-
nologies, including RDF (Resource Description Frame-
work) and URI (Uniform Resource Identifier) [4, 5]. In 
such knowledge graphs, nodes represent entities, also 
named individuals, of a domain (e.g., acetaminophen), 
classes of individuals (e.g., analgesics), or literals (e.g., 
strings, dates, numbers). Literals are purposely discarded 
in this study. Nodes are connected by directed edges that 
are labeled with predicates (e.g., transportedBy).

We propose in this article to leverage elements of 
knowledge about drugs that lie in biomedical knowl-
edge graphs to investigate ADR molecular mechanisms. 
To this aim, we experiment with knowledge graphs as 
an input to machine learning approaches (i.e., methods 
of Artificial Intelligence, commonly denoted AI) that 
are natively explainable. Indeed, Explainable AI usually 
refers to research on methods that provide explanatory 
elements to results (i.e., a classification) of sub-sym-
bolic approaches (e.g., ensembles or Deep Neural Net-
works) [6]. In a broadly manner, we consider symbolic 
approaches that provide models that are interpretable 
by humans, and investigate if features of these models 
may be explanatory for biomolecular processes involved 
in ADRs. We particularly consider a knowledge graph 
named PGxLOD, which encompasses and connects drug, 
pathway, and biomolecule data [7]; and two particular 
types of ADRs: drug-induced liver injuries (DILI) and 
severe cutaneous adverse reactions (SCAR). We choose 
these types of ADRs first because hepatic or skin toxici-
ties are commonly monitored during drug development 
for their importance in pharmacovigilance [8]. Indeed, 
drugs cause frequently hepatic and skin events, and 
those are severe enough to potentially lead to drug with-
drawal in Phase IV. Second, it exists good quality expert 
classifications that label sets of drugs as either causative 
or not for these types of ADRs [9, 10]. First, our work 
identifies biomolecular features from our knowledge 
graph that enable an automatic reproduction of expert 

classifications. In particular, we mine the graph for neigh-
bors of drugs, paths and path patterns (i.e., paths com-
posed of general classes) rooted by drugs and passing by 
at least one entity of the following types: pathway, gene/
protein, Gene Ontology (GO) term or MeSH term. Sec-
ond, we isolate both predictive and interpretative fea-
tures hypothesizing that, in addition to be explanatory 
for the classification, those may also be explanatory for 
ADR mechanisms. To this second aim, we consider sim-
ple, but explanatory classification techniques, i.e., Deci-
sion Tree and propositional rule learner over extracted 
features, because they provide human-readable models in 
the form of rules. Finally, we ask three human experts if 
they consider isolated features as possibly explanatory for 
ADRs.

A first family of related works can be described as 
explanatory, where known Drug-ADR associations, such 
as those found in SIDER, are used to highlight molecu-
lar mechanisms that may be impacted in ADRs. A second 
family of works is predictive, where data about molecu-
lar mechanisms (e.g., GO molecular processes or KEGG 
pathways) are associated with drugs and used as features 
to predict ADRs [11]. Boland et  al. [12] survey existing 
works for both predicting ADRs and elucidating their 
mechanisms; they interestingly list data and knowledge 
resources that may support these efforts.

In the explanatory family, Lee et  al. [13] associate 
SIDER side effects and GO biological processes through 
drugs, by the combination of a Drug-Side effect and a 
Drug-Biological process networks. Highlighted rela-
tionships are obtained using statistical approaches (i.e., 
enrichment and t-score) and evaluated in regard to co-
occurrences in PubMed abstracts. Wallach et  al. link 
drugs to proteins through molecular docking, then to 
pathways through the KEGG database, and use logis-
tic regression and feature selection approaches to select 
pathways most probably impacted in side effects [14]. 
Bresso et al. [15] group frequently associated drug reac-
tions and propose elements of explanations of their 
grouping using Inductive Logic Programming. Also, 
Chen et  al. [16] propose a computational algorithm to 
infer Protein-ADR relationships from a network of pro-
tein-protein interactions, ADR-ADR similarities and 
known protein-ADR relations.

In the predictive family, Bean et al. [17] build a network 
of drugs, targets, indications and ADRs to select features 
that are good predictors for ADRs in a logistic regression 
setting. PhLeGrA is an analytic method implementing 
Hidden Conditional Random Fields to allow the calcu-
lation of the probability of drug reactions given a input 
drug and a knowledge graph of drugs, proteins, pathways 
and phenotypes [18]. Similarly, Muñoz et al. [19] propose 
a specific way to extract features from knowledge graphs 
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for ADR prediction. They show that several multi-label 
learning models perform well for this task. Our work 
is similar to some extent, however it uses simpler but 
explanatory classifiers, and goes a step further by iden-
tifying features, subsequently proposed as explanatory 
elements for ADRs. Indeed, we hypothesize that within 
the large set of considered features, those that are both 
highly predictive and associated with a good level of 
interpretability may suggest to experts plausible ele-
ments of explanation. In Dalleau et  al. [20], knowledge 
graph mining serves a completion perspective and aims 
at inferring links between drugs and genes. All PhLeGrA, 
Muñoz et  al., Dalleau et  al., and the present work illus-
trate the interest of aggregating several LOD (linked open 
data) sets for knowledge discovery and data mining tasks, 
as discussed by Ristoski and Paulheim [21].

Shi and Weninger [22] use a similar approach to ours, 
but from a fact checking perspective. Indeed, for each 
relation type p, a set Dk

(ou,ov)
 of discriminative paths is 

learned. This set contains anchored predicate paths 
ou

r1
−→

r2
−→ . . .

rk
−→ ov of length k that describe a statement 

ou
p
−→ ov , where ou and ov are respectively the ontology 

classes associated with nodes u and v. To check whether a 
triple s

p
−→ t is true, they use the learned set of discrimina-

tive paths for the relation Dk
(os ,ot )

 . In such sets, only paths 
with the most discriminative power are kept. Similarly to 
our approach, they use ontology class generalization but 
apply it only to start and end nodes s and t of the fact to 
be checked. This differs from our approach as we apply 
generalization on each intermediate node (see Meth-
ods Section for details). Additionally, their path model-
ling allows reverse traversal, i.e., p−1

−−→
 , and constrains 

both source and target nodes, while we only constrain 
source nodes. Previous works also use knowledge graph 
mining to provide explanations. Those include Explain-
a-LOD that enriches statistical data sets with features 
from DBpedia. It uses correlation between attributes and 
rule learning to provide hypothesis explaining statistics 
[23]. Explain-a-LOD relies on FeGeLOD to extract fea-
tures from the DBPedia knowledge graph [24]. In par-
ticular, FeGeLOD extracts two types of features similar 
to ours: paths of size 1 ( r−→ e ) starting at the entities of 
interest; paths of size 1 ( r−→ t ) where the original entity 
(e) is replaced with ontology classes (t) it instantiates. In 
the same vein, KGPTree [25] extracts paths of the form 
root → predicate → entity → predicate ...→ 
entity, while allowing generalizations on both predi-
cates and entities, whereas we offer generalization on 
entities only. However, they only allow a generalization 
to a unique and broad type denoted with a wild card (*), 
while we allow a granular generalization following ontol-
ogy class hierarchies. FeGeLOD and KGPTree extract 
only paths and path patterns, whereas one may want to 

extract other common structures such as subtrees. Mus-
tard Python library offers such functionalities applying 
Graph Kernels on RDF graphs, plus additional facilities 
such as detecting hubs or low frequency patterns [26, 27]. 
However, it does not allow generalization operations.

The contribution of our work is twofold: first, we show 
that knowledge graphs provide sufficiently diverse fea-
tures to enable simple and explainable models to distin-
guish between drugs that are causative or not, for two 
types of ADRs commonly monitored; second, we manu-
ally evaluate in a mini-study that in this setting, predic-
tive features constitute good candidates for investigating 
ADR mechanisms further. The following sections present 
materials and methods, obtained results and a discussion 
about our methodological choices and results.

Materials and methods
Data sources
PGxLOD
PGxLOD is a linked open data (LOD) knowledge graph 
built for pharmacogenomics (PGx) and encoded in RDF 
[7]. It aggregates data mainly about drugs, genetic fac-
tors, phenotypes and their interactions from six data 
sources: PharmGKB, ClinVar, DrugBank, SIDER, Dis-
GeNET and CTD; but also includes references to Gene 
Atlas, UniProt, GOA and KEGG. In particular, it includes 
pharmacogenomic relationships, i.e., n-ary relations 
that represent how a genomic factor may impact a drug 
response phenotype. These relations are compiled from 
PharmGKB and the literature. We used PGxLOD version 
4 that encompasses 88,132,097 triples. Table  1 presents 
its main statistics. PGxLOD is available at https:// pgxlod. 
loria. fr.

In our study, PGxLOD enables to associate phenotypic 
and molecular features to drugs, by the exploration of 
their neighborhood in the graph.

Table 1 Types and numbers of entities available in the PGxLOD 
knowledge graph

Pharmacogenomic relationships of PGxLOD are of two provenances: the 
PharmGKB expert database and the literature

Concept Number 
of 
instances

Drug 63,485

GeneticFactor 494,982

Phenotype 65,133

PharmacogenomicRelationship 50,435

          from PharmGKB 3650

          from the literature 36,535

https://pgxlod.loria.fr
https://pgxlod.loria.fr


Page 4 of 14Bresso et al. BMC Med Inform Decis Mak          (2021) 21:171 

Drug expert classifications and their preprocessing
We experiment with two expert classifications of sets of 
drugs labeled as either causative or not for ADRs. The 
first concerns drugs causative for drug induced liver 
injury (DILI), and the second drugs causative for severe 
cutaneous adverse reactions (SCAR).

DILI classification We built our DILI classification from 
DILIRank, a list of 1036 FDA-approved drugs classified 
by their risk of causing DILI [9]. DILIRank distinguishes 
between four classes listed in Table 2. This classification 
was obtained by (1) the curation of information gathered 
from FDA-approved drug labels, setting an initial list of 
287 drugs; (2) a semi-automatic approach that completes 
the list up to 1036 drugs, by combining information from 
hepatotoxicity studies and the literature. We sub-sampled 
from DILIRank 370 drugs (146 DILI⊕ , and 224 DILI⊖ ) 
that fulfill criteria required for our subsequent analysis: 
being either in the Most—or No—DILI concern classes, 
being associated with a SMILES (simplified molecular-
input line-entry system) description, and being mapped 
to PGxLOD. The latter mapping was obtained with 
PubChemIDs, which are available both in DILIRank and 
PGxLOD (coming from PharmGKB, DrugBank, and/
or KEGG). Drugs satisfying these criteria and classified 
as Most-DILI concern constitute the DILI⊕ subset, and 
those classified as No-DILI concern constitute the DILI⊖.

SCAR classification Our SCAR classification relies on 
a manually built classification called “Drug notoriety 
list”, shared by members of the RegiSCAR project. This 
list was originally assembled for the evaluation of the 
ALDEN algorithm, which assesses the chance for a drug 
to cause Stevens-Johnson Syndrome and Toxic Epidermal 
Necrolysis, a specific type of SCAR [10, 28]. This classi-
fication lists 874 drugs and assigns them to five classes 
representing various levels of association with SCAR. 
These classes are listed in Table 3. We sub-sampled from 
the RegiSCAR drug notoriety list 392 drugs (102 SCAR 
⊕ , and 290 SCAR ⊖ ) fulfilling two criteria: being mapped 
to PGxLOD and having a SMILES description. The 
mapping starts with 874 drug names, which is the only 
description available in the RegiSCAR list. Drug names 

are matched with lists of synonyms associated with drugs 
in PharmGKB and DrugBank. Drugs satisfying these cri-
teria and classified as Very probable, Probable or Possi-
ble constitute the SCAR ⊕ subset, and those classified as 
Unlikely or Very unlikely, the SCAR ⊖.

Methods
An overview of the steps of the proposed method is pro-
vided in Fig. 1.

Graph‑based feature construction
Graph canonicalization In knowledge graphs, several 
nodes may co-exist, while representing the same entity. 
For example, a unique drug in PGxLOD can be repre-
sented by two nodes: one from PharmGKB and another 
from DrugBank. Each of these two nodes have their own 
connections to other nodes in the knowledge graph. 
Therefore, the union of their edges constitutes all the 
available knowledge about the drug they both represent. 
As they represent the same drug, they are connected 
through an owl:sameAs edge. In order to avoid travers-
ing such edges, we canonicalize the knowledge graph, 
that is to say, nodes linked by owl:sameAs edges are 
grouped into a unique node as a pre-processing step, 
before building graph-based features. Such a proce-
dure corresponds, in graph theory, to the contraction of 
owl:sameAs edges.

Paths, path patterns, and neighbors as drug features
From an arbitrary set of drugs D (such as DILI⊕ ∪ 

DILI⊖ ) and a canonicalized knowledge graph (such as 
PGxLOD), a set of graph-based features is built on D. 
We distinguish three kinds of features: paths, path pat-
terns and neighbor nodes. First, we build paths rooted 
by drugs from D. The neighborhood of each drug d ∈ D 
is explored in the graph with a max distance of k, gen-
erating sequences of predicates and nodes of max length 
k. Accordingly, if a path d

p1
−→ n1

p2
−→ n2 is found in the 

knowledge graph (with k = 2 ), the drug d is associated 
with the feature 

p1
−→ n1

p2
−→ n2 in the output matrix.

Table 2 Classes and size of the original DILIRank expert 
classification

Classes group drugs causative or not for drug-induced liver injury (DILI) on the 
basis of FDA-approved drug labels and a semi-automatic method

Class # drugs

Most DILI concern 192

Ambiguous DILI concern 254

Less DILI concern 278

No DILI concern 312

Total 1036

Table 3 Classes and size of the original RegiSCAR drug notoriety 
list

Classes group drugs causative or not for severe cutaneous adverse reactions 
(SCAR)

Class # drugs

Very probable (3) 18

Probable (2) 19

Possible (1) 94

Unlikely (0) 697

Very unlikely (− 1) 46

Total 874
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Fig. 1 Method overview. Main steps are in orange, data in blue, parameters in green and models in pink
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Second, we build path patterns that generalize paths 
by considering ontology classes instantiated by nodes. 
The aim of path patterns is to offer more general descrip-
tions, which have more chances to be shared by sev-
eral entities. For example, if n1 instantiates C1 and n2 
instantiates C2 , we add the following path patterns: 
p1
−→ C1

p2
−→ n2,

p1
−→ n1

p2
−→ C2,

p1
−→ C1

p2
−→ C2,

p1
−→ ⊤

p2
−→ n2,

p1
−→ n1

p2
−→ ⊤, and 

p1
−→ C1

p2
−→ ⊤,

p1
−→ ⊤

p2
−→ C2, and

p1
−→ ⊤

p2
−→ ⊤ . It is noteworthy that, to allow a high level of gener-
alization, we always consider the top-level class ⊤ in the 
generalization procedure. To leverage hierarchies organ-
izing ontology classes, a node n is only generalized by 
ontology classes at a distance of at most t from itself, fol-
lowing instantiation and subsumption edges.

Third, we list neighboring nodes, i.e., any node that 
can be reached from d ∈ D within a distance of max k. 
We do not keep track of the distance between d and its 
neighbors: if a node n can be reached from a drug d1 
after 2 hops and from a drug d2 after 3 hops, these two 
drugs will be associated with the neighbor n in the output 
matrix. Interestingly, a neighbor n can be represented by 
the general path pattern ( ∗

−→ ∗){0,k−1} ∗
−→ n.

Features can potentially be noisy and numerous, lead-
ing to a combinatorial explosion of their number. That 
is why, we add several constraints to only keep the most 
interesting features. First, we only keep the most specific 
paths and path patterns, considering that a node is more 
specific than the classes it instantiates and a class is more 
specific than its superclasses. A path or path pattern P1 is 
more specific than another path or path pattern P2 if each 
node/class in P1 is more specific than the node/class at 
the same position in P2 . Thus, if 

p1
−→ n1

p2
−→ n2 is associ-

ated with the exact same drugs as 
p1
−→ C1

p2
−→ C2 , then the 

path pattern is removed and only the path constitutes a 
feature. Similarly, if 

p1
−→ C1

p2
−→ C2 is associated with the 

exact same drugs as p1−→ ⊤
p2
−→ ⊤ , then we only keep the 

first one. Second, the exploration is stopped at nodes 
whose degree is greater than a parameter deg. Such nodes 
are usually called hubs [27], and expanding a path end-
ing at a hub may generate a large number of new paths 
associated with the same drugs. Third, we consider mini-
mal and maximal supports of features (denoted smin and 
smax ) as additional filters. The support of a feature con-
sists in the number of drugs associated with a feature, i.e., 
neighbors of a same entity or rooting a path or a path pat-
tern. Only features associated with more than smin drugs 
and less than smax drugs are output in the final matrix. 
Fourth, two blacklists avoid traversing noisy or unwanted 
edges. Edges are not traversed if their predicate is black-
listed (in bpredicates ) or if the adjacent node instantiates 
(directly or indirectly) a blacklisted class (in bexp-types ). 
For example, we blacklist predicates of PROV-O that are 
used to describe provenance metadata. By blacklisting 

rdf:type in bpredicates , we make sure the exploration is 
performed through entities and not classes of PGxLOD. 
Relations between classes are only considered when 
generalizing paths. Aside from noisy features and com-
binatorial explosion, we use these blacklists to prevent 
considering features that “obviously” carry the signal we 
are trying to predict. For example, we blacklist all “side-
effects” links from SIDER, which may directly link drugs 
in D with the side effect we aim at predicting. We also 
blacklist all classes from MeSH related to SCAR or DILI 
to avoid taking into account nodes instantiating them. 
A third blacklist ( bgen-types ) avoids generalizing nodes in 
paths by blacklisted classes. This is particularly useful to 
withdraw general classes (e.g., Drug) that increase the 
number of generated path patterns while not adding use-
ful information.

Besides previous topological constraints, we also per-
form a domain-driven filtering configured by parameter 
m. Indeed, in our objective of explaining ADRs, experts 
highlighted that features that may be explanatory to them 
mention pathways, genes, GO, and MeSH terms. For this 
reason, we propose three post-processing atomic filters, 
only keeping neighbors, paths or path patterns contain-
ing at least a pathway ( m = p ), a gene or a GO class 
( m = g ), or a MeSH class ( m = m ). Such atomic filters 
can be combined to form disjunctive filters. For example, 
the m = pg filter keeps neighbors, paths or path patterns 
containing at least a pathway or a gene or a GO class.

Table 4 summarizes the parameters that limit the num-
ber of features in the output matrix. Additional details 
about our method of feature construction are provided in 
[29].

Cross‑validation strategy
Once drug features are extracted from the knowledge 
graph, they are given to a machine learning algorithm 
that learns a model, which mimics the expert classifica-
tion. To quantitatively evaluate our approach, we adopt 
a 10-fold cross-validation strategy, meaning that we 
repeated the following steps of our learning pipeline (i.e., 
feature selection, and training) 10 times, holding out each 
time one tenth of our labeled data for testing. The split in 
10 folds is performed once, randomly.

Feature selection with boosting
The concept of boosting relies on the sequential learning 
of classifiers that successively focus on getting correct the 
examples that were wrongly classified by previous classi-
fiers, with a weight system: correctly classified examples 
loose weight, whereas falsely classified ones gain weight 
[30]. The final classification is built by a weighting of the 
results obtained from the various classifiers. Ensembles 
of decision trees can be used in a boosting strategy for 
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the estimation of feature importance in order to select 
the most important features for a subsequent learning 
model [31]. This approach is frequently named “wrapper-
based feature selection”. We adopt this approach, using 
the AdaBoost algorithm, with up to 10 decisions trees 
learned from the whole train set [32]. In case of perfect 
fit, the learning procedure is stopped early. For the Deci-
sion Tree algorithm we used CART from scikit-learn, 
Gini impurity, all features considered at each split and a 
minimal number of examples per leaf = 5 . Every train 
example is used, but classes are artificially balanced: 
examples are associated with a different weight depend-
ing on whether they belong to the ⊕ or ⊖ class. Fea-
tures that appear in at least one of the decision trees are 
selected for the subsequent step of our learning pipeline.

Performance and robustness evaluation
For evaluating our capacity of distinguishing between 
drugs associated or not with an ADR, we train a last 
decision tree, using selected features only. Note that 
because the selection step is repeated at each iteration of 
the cross validation strategy, selected features may vary 
from one iteration to another. Algorithm and parameters 
are the same as those of the selection step, i.e., CART 
from scikit-learn with Gini, all features considered at 
each split, minimal number of examples per leaf = 5, and 
weighted instances for class balancing.

Performance results are reported in term of Precision, 
Recall, F1-score (reference class ⊕ ), accuracy and AUC-
ROC. Metrics are averaged over the 10 iterations of the 
cross validation.

A robustness evaluation is also performed to assess 
the impact of the train set (i.e., expert classifications) on 
the final classifier. To this aim, first, we reproduced the 
experiment, but with a shuffled class assignment in the 
train set. This leads to a train, denoted by ·shuffled (where 
· is either DILI or SCAR ) where drugs are associated 

randomly to either the class ⊕ or ⊖ . This first sanity eval-
uation mainly checks the presence of a nonrandom signal 
in the train. Second, we replace the set of drugs from ⊖ 
by a set of drugs randomly picked out of our knowledge 
graph. We repeat this random draw five times for each 
expert classification resulting in 10 train sets denoted 
·random⊖i (where · is either DILI or SCAR  and i is an 
index taking values from 1 to 5). In each case the draw 
is made from nodes of the knowledge graph that instan-
tiate (directly or indirectly) pgxo:Drug; are identified 
with a URI from PharmGKB or DrugBank namespaces; 
are linked by a x-pubchem predicate to a PubChem URI 
(in order to have a SMILES associated with the drug); 
and are not drugs of the original DILI or SCAR expert 
classifications. In the case of DILI, this is a draw of 224 
nodes out of 5893 in the canonical graph. In the case of 
SCAR, this is a draw of 290 nodes out of 5921. This sec-
ond evaluation checks the impact of the selection of neg-
ative examples on classifier performances. In addition, we 
count the number of features that are present in 5, 4, 3 or 
2 of the five ·random⊖i experiments.

Qualitative evaluation by human experts
To go beyond performance evaluation, we produce a clas-
sification model made of rules using the RIPPER algo-
rithm, and its Java implementation named JRip [33]. JRip 
has the advantage over decision trees to provide classi-
fication rules that are more concise and by consequence 
easier to interpret for humans. JRip actually implements 
a propositional rule learner, produces relatively non 
redundant rules in comparison to rules that could be 
learned following branches of a decision tree. However, 
JRip and CART decision tree usually perform very simi-
larly, since they implement similar pruning strategies and 
stopping criteria. To evaluate this assessment, we per-
formed a 10-fold cross validation of the JRip approach 

Table 4 Parameters used to limit the number of features

Each parameter is associated with a domain for its value

Parameter Domain Description

k N
+ Maximum length of paths and path patterns

t N ∪ {−1} Maximum depth of generalization

deg N ∪ {−1} Maximum node degree to allow expansion

smin N Minimum support for features

smax N Maximum support for features

Undirected B Consider the graph undirected or directed

bpredicates List of URIs Blacklist of predicates not to traverse

bexp-types List of URIs Blacklist of types of entities not to traverse

bgen-types List of URIs Blacklist of types not to traverse in generalization

m {no- check,p,g,m,pg,pgm} Domain‑dependent filter for features with at least a pathway (p), a gene (g) or a MeSH class (m)
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and compared performances with CART. JRip generates 
rules of the form:

where A is a set of attribute-value pairs affirmed, B is a 
set of attribute-value pairs negated, and c is the minority 
class of the classification problem. Accordingly, c = ⊕ in 
our study. Note that A or B can be an empty set, but not 
both at the same time. In other words, JRip rules consist 
in the conjunction of affirmed and negated features.

As for CART Trees, we start with an initial step of fea-
ture selection with AdaBoost, with the same parameters 
but this time considering all examples of the train set. 
Following, JRip rules are built considering also all exam-
ples of the train set, and features that appear in at least 
one of the trees built by AdaBoost. To be consistent, with 
the CART Tree setting, we set to 5 the minimal number 
of instances per rule, which can be compared to the mini-
mal number of examples per leaf.

JRip rules are post-processed to facilitate their inter-
pretation by our experts. First, among features that 
are path patterns, we discard those only involving 
generic classes such as Resource or Drug. Indeed, 
such path patterns turned out to be impossible to 
interpret. Second, features are translated into a read-
able format, by resolving ids with associated labels (e.g., 
drugbank:BE0003543 is resolved as “Cytochrome 
P450 1A1”) and by interpreting and rewriting paths 
and path patterns in an understandable form (e.g., 
drugbank_vocabulary:enzyme
−−−−−−−−−−−−−−−−−−−−−→ geneatlas_vocabulary:

Resource is turned in interactsWith
−−−−−−−→ Enzyme ). Because of 

the limited number of features in rules, this translation is 
made manually, on the basis of descriptions of predicates, 
classes, and entities found in their original knowledge 
graph or database.

We asked three experts in pharmacy and pharmacol-
ogy to review independently each attribute (i.e., feature) 
of the rules, to evaluate if they may be explanatory for 
ADRs. Each expert has to answer a voluntarily simple 
three-way question: “according to your own knowledge 
or the state of the art, do you think that the feature is 
explanatory for DILI?” (SCAR, respectively). Possible 
answers are “yes”, “maybe (possible, but not obvious)” 
and “no (probably not explanatory)”. We allow expert to 
check the literature or any state-of-the-art resource, but 
up to 15  min, since we consider that more time causes 
to fall in the “no (probably not explanatory)” option. To 
guide their decision on each feature, experts are provided 
with two Web links: one pointing to the list of drugs 
from the ⊕ train set that supports the feature; one to the 
page of the main entity mentioned in the feature (i.e., the 

(

∧

∀a∈A

a

)

∧

(

∧

∀b∈B

¬b

)

⇒ c

neighbor node, or the final node of the path or path pat-
tern) in an expert database: DrugBank, ChEBI, KEGG, 
QuickGO, or MeSH browser, depending on the names-
pace of the node. After expert reviews, answers were 
normalized, under their supervision, to guarantee all 
experts interpret the negation of features the same way. 
For each feature we check if at least one, two or three of 
the experts think it is or may be explanatory, if the three 
think it is explanatory and if the three think it is not. In 
addition, we compute Cohen’s kappa coefficient to evalu-
ate the average agreement between experts with two dif-
ferent settings: considering the three different answers as 
distinct, or considering answers “yes” and “maybe” as a 
unique positive answer.

Results
Graph‑based feature construction
We experimented graph exploration with combinations of 
the following parameters values k ∈ {1, 2, 3, 4}, t ∈ {1, 2, 3},

deg = 500,undirected = false, smin = 5, smax = +∞ 
and m ∈ {p,g,m,pg,pgm} . k = 4 was only tested with 
t = 1 because of memory issues caused by the high number 
of generated features with greater values of t. However, we 
report only the best results, which were obtained with 
k = 3, t = 3,m = pgm for DILI and m = pg for SCAR. 
These values of m enable to conserve only features that 
includes an entity that is either a pathway, a gene, or a GO 
term (for pg ); or a pathway, a gene, a GO, or MeSH term 
(for pgm).

The construction of graph-based features is obviously 
limited by the amount of available memory. We enforce 
smin to be set to allow the construction of paths and 
path patterns, in order to avoid combinatorial explo-
sion. Accordingly their number is reported only once we 
reduced the number of all possible combinations, which 
we were not able to compute. We used a server with a 
Xeon E5-2680 v4@2.40GHz CPU, 28 cores/56 threads 
and 768GB of memory. As an illustration, we obtained 
the features associated with the DILI expert classification 
under k = 3, t = 3 in approximately 1  h using 62 GB of 
RAM, and under k = 4, t = 1 in 4 days using 380 GB of 
RAM.

To provide with an idea of the size of the considered 
neighborhood with regards to all reachable nodes, Table 5 
reports statistics about numbers of neighbors, paths and 
path patterns reachable with different level of filtering. 
In particular, we report sizes of the full neighborhood of 
drugs, and of 3 levels of filtering. The first level of filter-
ing consists in prohibiting the expansion of the neigh-
borhood through nodes with a degree higher than 500 
( deg = 500 ). In the full neighborhood and first level of 
filtering, k and t are not constrained since no path or path 
pattern is computed, but we report max k and t reached 
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in the neighborhood. We note that k is surprisingly lower 
in the larger neighborhood, i.e., 19 and 20 versus 23 and 
23 with the first level of filtering. This can be explained 
by the fact that with “hubs” (nodes with deg > 500 ), the 
full neighborhood can be reached through smaller paths. 
We also observe that because of this first filtering, cer-
tain nodes are not accessible anymore (when every pos-
sible path to them pass through a hub), which results in 
a smaller number of neighbors. The second level of filter-
ing comes on top of the first, and constrains neighbors, 
paths, and path patterns to have a minimal support set of 
5 ( smin = 5 ), a max length of 3 ( k = 3 ), and a max depth 
3 for generalization of paths into patterns ( t = 3 ). The fil-
tering level 3 comes on top of the second, and constrains 
neighbors, paths, and path patterns to contain a pathway, 
a gene, a GO term, or a MeSH term for DILI ( m = pgm ), 
or to contain a pathway, a gene, or a GO term for SCAR 
( m = pg ). The filtering level 3 is the one used in the fol-
lowing experiments, because it is computable in our set-
ting, while providing the best performances in our set of 
experiments.

Table 5 Numbers of drug features extractable from the knowledge graph, with different levels of filtering

The first line corresponds to the full neighborhood of drugs from DILI and SCAR expert classifications. deg = −1 means that all nodes are considered, regardless of 
their degree, whereas deg = 500 in Filtering level 1 means that nodes with a degree > deg are filtered out. In the two first lines (No filtering and Filtering level 1), k 
and t are unconstrained, so reported values are maximum k and t observed in the graph. Paths and paths pattern are computed only when deg and smin (minimum 
support) are set, to avoid combinatorial explosion. Filtering level 2 and 3 share the following additional parameters: undirected = false , smax = +∞ . In Filtering 
level 3, m is set for additional filtering. Distinct values for m chosen respectively for DILI and SCAR are those associated with the best performances, e.g., mDILI = pgm 
and mSCAR = pg

DILI SCAR 

Neighbors 5,488,531 5,488,510

No filtering (deg = ‑1) k 19 20

t 21 21

Neighbors 2,419,957 2,419,920

Filtering level 1 (deg = 500) k 23 23

t 21 21

Filtering level 2 (deg = 500, smin = 5, k = 3, t = 3) Neighbors 175,652 179,694

Paths & path patterns 20,145,635 29,011,996

Filtering level 3 (deg = 500, smin = 5, k = 3, t  3, mDILI = 
pgm and mSCAR  = pg)

Neighbors 4069 1594

Paths & path patterns 102,674 86,753

Table 6 Quantitative evaluation of our classifiers of drugs associated with ADRs or not (DILI or SCAR)

Algorithm Data set Precision Recall Accuracy AUC F1‑score

CART DILI 0.68 0.67 0.74 0.73 0.67

SCAR 0.64 0.68 0.81 0.77 0.65

JRip DILI 0.82 0.71 0.72 0.74 0.75

SCAR 0.88 0.70 0.71 0.74 0.77

Table 7 Robustness evaluation of our classifiers

·shuffled corresponds to an experiment where class labels (i.e., ⊕ or ⊖ ) are 
randomly affected to drugs. ·random⊖i correspond to experiments where 
negative examples (i.e., ⊖ ) are replaced by drugs randomly picked in the 
knowledge graph. Indices i from 1 to 5 refer to 5 different draws

Data set Accuracy AUC F1‑score ⊕

DILIshuffled 0.52 0.49 0.36

DILIrandom⊖1 0.92 0.91 0.89

DILIrandom⊖2 0.92 0.91 0.89

DILIrandom⊖3 0.93 0.92 0.91

DILIrandom⊖4 0.93 0.92 0.90

DILIrandom⊖5 0.92 0.91 0.90

SCARshuffled 0.63 0.51 0.26

SCARrandom⊖1 0.93 0.89 0.86

SCARrandom⊖2 0.94 0.90 0.88

SCARrandom⊖3 0.93 0.90 0.86

SCARrandom⊖4 0.92 0.89 0.85

SCARrandom⊖5 0.93 0.89 0.86
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Quantitative and robustness evaluation
Performances of our CART decision trees to distinguish 
between drugs associated or not with ADRs are reported 
in Table 6. With both types of ADRs, we obtained accu-
racy and AUC higher than 0.70, illustrating the fact that 
learned classifiers reproduced a large part of expert clas-
sifications, on the basis of features from the knowledge 
graph.

Robustness of classifiers is illustrated by the results 
provided in Table  7. DILIshuffled and SCARshuffled are 
associated with AUC of 0.49 and 0.51, respectively. This 
illustrates that a random assignment of class labels in the 
train set, leads to a classifier that randomly assign labels 
to test examples. This is expected, but illustrates that 
expert classifications encompass a signal that our classi-
fiers learn and reproduce, to some extent.

Classifiers trained with a random pick of negative 
examples ( ·random⊖i ) instead of negatives picked by 
experts are significantly better for the three performance 
metrics (t test, t > 36, p < 1.7× 10−6 ). This reveals it is 
harder for our classifier to discriminate between posi-
tives and negatives of expert classifications, than it is 
between positives and randomly picked drugs. This lets 
us assume that negatives from expert classifications are 
somehow similar to positives (they may share some prop-
erties) and harder to distinguish for the classifier, even if 
not associated with the studied ADR. When comparing 
features used in the five random pick of DILIrandom⊖i , we 
observed that, out of a mean of 122 features (sd=8), 6, 
12, 27 and 99 were common to respectively 5, 4, 3 and 2 
picks. With SCARrandom⊖i , out of 108 features (sd=8), 2, 
6, 23 and 81 were common to respectively 5, 4, 3 and 2 
picks.

Expert evaluation
JRip produced 6 and 5 rules for DILI and SCAR, respec-
tively. The translation of these rules is available in 
Additional file 1: Tables S1 and S2. After removing unin-
formative features, we obtained 11 and 13 distinct fea-
tures, respectively. Those are provided in Additional 
file 1: Tables S3 and S4. These features are those reviewed 
by our three experts in pharmacology (CB, CNC, and 
NP). Quantitative performances of the JRip algorithm are 
presented in Table 6 for comparison with CART. On both 
datasets (DILI and SCAR) differences in performances 
(Precision, Recall, Accuracy, F-measure) are not statisti-
cally significant (t test, p < 0.05).

The ratio (and number) of features for which experts 
reached an agreement, or for which at least one, two or 
three of the experts think they are or may be explana-
tory (answers “yes” or “maybe”) are provided in Table 8. 
Detailed results of the manual evaluation are provided in 
Additional file 2. We observe that no feature generated by 

JRip is considered as unexplanatory by all three experts. 
In other words, every feature is thought as possibly 
explanatory by at least one expert. The ratio of features 
having a full agreement between experts on the possibil-
ity of being explanatory is reduced compared to those 
having a partial agreement but stays relatively high (0.73 
features) for DILI and moderate (0.38 features) for SCAR. 
Full agreement for features being explanatory (all three 
experts answer “yes”) remains minor, but exists. Kappa’s 
Cohen agreement score is κn=3 = 0.26 when consider-
ing answers “yes”, “maybe”, and “no” independently, but 
reaches κn=2 = 0.70 when the problem is reduced to 
two classes by aggregating “yes” and “maybe” answers. 
Note that Table 8 reports in its fifth column the ratio of 
features that reach full agreement for our three experts 
when “yes” and “maybe” answers are aggregated. Addi-
tional file 2 contains results of the manual evaluation of 
the features.

Examples of features and elements of interpretation
Three features reach an agreement for being explana-
tory (i.e., three answers “yes” per feature). Those 
can be interpreted as elements that are well known 
for being explanatory, or at least associated, with 
DILI or SCAR mechanisms. As a first illustra-
tion,  
reached an agreement for DILI. This is explained by the 
fact that endoplasmic reticulum is known, in particu-
lar in liver tissues, to host primarily cytochrome P450 
enzymes, well known for being involved in drug metab-
olism [34]. As a second illustration, Cytochrome P450 
2B6 reached an agreement for SCAR, whereas genomic 
variations in the gene coding for this enzyme are known 
for being associated with SCAR [35]. One might con-
sider fairly that this feature does not bring new explana-
tory elements, although it can be considered a minimum 

Table 8 Ratio of features that either reach a full agreement for 
being unexplanatory, explanatory or are considered as possibly 
explanatory to various extents

Absolute numbers are reported in parentheses. Ratio of unexplanatory 
features are in the left column, whereas explanatory features are in the right 
columns. The three middle columns count numbers of features that are, or may 
be, explanatory according to at least one, two or three experts. Numbers of 
considered features are 11 and 13 for DILI and SCAR respectively

Data 
set

With agreement 
on unexplanatory

Features possibly 
explanatory for

With agreement 
on explanatory

� 1 � 2 � 3 
experts

DILI 0 1 (11) 0.90 
(10)

0.73 (8) 0.18 (2)

SCAR 0 1 (13) 0.77 
(10)

0.38 (5) 0.08 (1)
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that our method highlights well established explanatory 
elements.

All other features did not reach an agreement, or 
reach one for “maybe”. Each of those is interesting to 
explore for further interpretation, but for the sack 
of briefness, we will only discuss two of them here. 
First,  
reaches an agreement for potentially being explanatory 
(i.e., three answers “maybe”) for DILI. This path pattern 
is relatively complex to interpret since it is long ( k = 3 ) 
and negated. Experts searched for literature report-
ing associations between DILI and Calcium signaling 
pathway. They found that a relatively old literature (old 
is seen as lacking confirmation by some experts) were 
reporting such an association [36]. A more recent bio-
informatics article by Chen et al., also reported such an 
association, but with a finer grain of information, since 
they report an association with hepatomegaly (a sec-
ondary example of DILI), and a negative association 
with hepatitis (a primary example of DILI) [37]. Accord-
ingly, negative results from this study are consist-
ent with our finding of this latter negated feature. We 
note that Chen et  al. study is computational, as is ours, 
and that we may also be impacted by similar bias. Sec-
ond,  
for SCAR, obtained very diverse opinions, with one “no”, 
one “maybe” and one “yes”. Even if this disagreement 
could be perceived as inconclusive, it may also point to 
a promising candidate for explanation. In this very one 
case, Electron transport is known for being perturbed 
in mitochondrion in many types of ADRs, including 
hepatotoxicity [38]. However, we did not find any study 
reporting a link with skin toxicities.

Discussion
In our work, simple, but explainable, classifiers (CART 
Decision Trees and JRip) were preferred to more 
advanced machine learning methods, even if we are con-
vinced that methods based on deep neural networks, 
such as graph embedding with Graph Convolutional Net-
works (GCN), should lead to better performances than 
those obtained [39, 40]. However, acquiring explanatory 
elements about decisions made by such models necessi-
tates an additional step of neural network analysis, such 
as saliency maps [41], which provides information such 
as the layer or neurons activated by some instances. We 
consider this information of high interest for data sci-
entists, but such methods require high level interpre-
tation before being understandable by typical domain 
experts, unfamiliar with neural networks [42]. Conse-
quently, such direction did not seem mature enough to 
reach our objectives. For instance, heatmaps that are to 
some extent explanatory for image classification, are still 

hard to transpose to knowledge graphs [43]. However, it 
would be of interest to evaluate performances of a GCN 
on the classification task to measure the gap caused by 
our choice of simple classifiers. We also hope that our 
work will motivate studies on explainable subsymbolic 
approaches.

Our approach is reproducible for other applications. 
For instance, the same rational could be applied for the 
investigation of the mechanism of drug beneficial effects. 
This would necessitate to change our expert classifica-
tions for lists of drugs with a same indication ( ⊕ ) and 
drugs without effect for this indication ( ⊖ ), which could 
be obtained from SIDER or DailyMed.

An objective of our work is to illustrate various advan-
tages of mining knowledge graphs, and particularly 
Semantic Web ones. First, they provide human-read-
able features, that may subsequently be interpreted by 
experts. Second, predictive features may come from 
various connected data sets and be jointly used in a sin-
gle rule, which would have not been found if data sets 
were considered isolated. In addition, using Semantic 
Web standards eases the addition to our graph of novel 
data, following other owl:sameAs links. Third, Seman-
tic Web knowledge graphs are associated with a formal 
semantics we benefit from at two steps: at the initial 
canonicalization, and at the generalization of path pat-
terns. In this regards, one may ask if we could benefit 
from additional reasoning mechanisms, such as gener-
alization over predicates. In our very specific case, predi-
cates are not associated with any hierarchy, so it would 
not have changed our results, but from a general point of 
view, path patterns would benefit from this mechanism. 
Similarly, we could think of a canonicalization, not only 
with owl:sameAs links, but also following properties 
carrying similar semantics (e.g., skos:exactMatch) or 
by applying matching approaches such as PARIS [44].

When testing with values between 1 and 3, we observed 
that larger t and k are associated with better perfor-
mances. To achieve this, we adopted a rational approach 
for scaling the mining of RDF knowledge graphs, which 
is presented in [29]. This approach reaches its limits with 
k > 3 and t > 3 , but we think that additional optimiza-
tion in the graph mining algorithm is still possible and 
would enable going further.

We used only binary features as they are easy to con-
sider as explanations. Other strategies (e.g., counting, 
relative counting [45]) could also have been considered 
while maybe hindering the descriptive power of such 
features. To maximize the descriptive power of candi-
date features and avoid redundancy, one could use spe-
cific metrics (e.g., approaches relying on hierarchies [46] 
and/or extent of classes [47] of ontologies). Such met-
rics could also be considered within the decision tree 
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algorithm, to propose to the algorithm additional features 
(more or less aggregated according to generalization) that 
may be associated with best split with regards to the Gini 
index (or others). This would lead to the consideration of 
formal knowledge directly in the mining algorithm [21]. 
Also, we proposed, with our parameter m, an hardcoded 
way of selecting features of interest. However, one may 
think of an interactive selection by user, following the 
possibilities offered by an ontology.

A usual difficulty in human annotation or human eval-
uation is the normalization of expert answers. Despite a 
1-h training about the task, the interpretation of negated 
features has been heterogeneous among experts. One 
pitfall was to think that if the affirmation of a feature is 
true, its negation is wrong. This is misleading because it 
is possible that a feature is explanatory for some exam-
ples and that its negation is also explanatory for other 
examples or in another context. To ensure normalization 
of negated features, we considered a feature as explana-
tory if its affirmation or its negation is explanatory to the 
expert. This change has been considered in a normalisa-
tion batch of reviews done in cooperation with experts.

Our review by human experts evaluates how many fea-
tures highlighted by our approach are relevant (similarly 
to what Precision measures), but does not evaluate how 
many relevant features we may miss (similarly to what 
Recall measures). It would be of interest to ask experts 
what are features such as pathways, drug targets, cellu-
lar functions that are known to be associated with DILI 
and SCAR ADRs to enable a final comparison. However, 
establishing an exhaustive list from the state of the art 
would be complex and time consuming for experts. Text 
mining approaches could be of interest to guide them in 
this matter.

Conclusion
We illustrate in this work that life science knowledge 
graphs provide sufficiently diverse features to enable sim-
ple and explainable models to distinguish between drugs 
that are causative, or not, for two severe ADRs. These 
features take the form of paths, path patterns or sim-
ple neighboring nodes from the graph, which have the 
advantage, when adequately selected, of being human-
readable and interpretable by experts. We quantify 
through a small-sized human evaluation that such fea-
tures are not only discriminative, thus predictive for the 
classification, but also appear to be good candidates for 
providing explanatory elements of ADR mechanisms. In 
conclusion, this work illustrates that simple models, fed 
with diverse and explicit knowledge sources such as those 
connected in the form of linked open data constitute 
an alternative to complex models, efficient but hard to 
interpret. A natural perspective is to combine such rich 

sources of background knowledge with models that are 
both highly performing (such as GCN) and interpretable.
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