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ABSTRACT. In several primates and carnivores, pronation/supination angles of the forearm 
skeleton were examined, and it is thought that a larger angle is useful to acquire dexterous 
behaviors in feeding and/or life style, including climbing. In this study, the pronation/supination 
angles in Asiatic black, brown and polar bears were nondestructively examined. These specimens 
were classified as adult or non-adult. Three or four carcasses of each group of Asiatic black and 
brown bears were used for CT analysis, whereas only one adult polar bear was used. The forearms 
were positioned within the gantry of a CT scanner in both maximally supinated and pronated 
states. Extracted cross-sectional CT images of two positions were superimposed by overlapping 
the outlines of each ulna. The centroids of the radii were detected, and then the centroid of each 
radius and the midpoint of a line which connects between both ends of the surface of each 
radius facing the ulna, were connected by lines to measure the angle of rotation as an index of 
pronation/supination. In adult brown and polar bears, the angles were smaller as compared with 
the other groups (Asiatic black and non-adult brown bears). Asiatic black and non-adult brown 
bears can climb trees, whereas adult brown bears and polar bears cannot. This suggests that the 
pronation/supination angle is related to arboreal activity in Ursidae.
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Asiatic black (Ursus thibetanus), brown (U. arctos) and polar (U. maritimus) bears are classified into the order Carnivora, 
superfamily Ursoidea, family Ursidae. Asiatic black bears usually inhabit moist deciduous forests and brushy areas in Eurasia, and 
are omnivorous mammals eating fruits, tree nuts, seeds, berries, buds, invertebrates, small vertebrates and carrions [2, 17]. They 
are capable of skillful climbing to get fruit, tree nuts and honey, and can form tree branches into bird nest-like “bear shelves” in the 
tops of trees [2, 17, 25]. Brown bears, which live in a broad area of Eurasia and North America, are also omnivorous. Brown bears 
can climb when young, however, they become unable to climb in the process of growing into an adulthood [6]. Polar bears inhabit 
the northern part of Eurasia and North America, and Arctic regions, and are almost carnivorous [9]. They mainly hunt seals, but 
feed on the carcasses of mammals, fish and berries [17]. Polar bears are generally included among marine mammals and can swim 
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long distances [2, 19, 21]. On the other hand, they do not have climbing behavior through all developmental stages because there 
are no trees in their habitat.

In mammalian evolution, Eutheria and Metatheria (marsupials), which are classified in Theria, are descended from arboreal 
ancestors [13]. Didelphimorphia (opossums) genetically considered as the most primitive groups in exist marsupials [16], indicates 
an arboreal habit [13]. At present, it is thought that Juramaia sinensis is known as one of the oldest eutherian mammals [1, 11], 
whose scansorial (arboreal) adaptation is suggested. Polly [22] reported that the forelimb shows extensive pronation and supination 
in almost all scansorial mammals. It has been reported that in rodents such as rats and mice, forearm pronation/supination is 
skillfully used to take feeds and convey them to their mouth [27].

In several primates and carnivores, the pronation/supination angles of the forearm skeletons were examined, and it has been 
reported that a larger angle is important to acquire dexterous behaviors in feeding and/or life style, including climbing [10, 14, 
18]. The mammals used in the previous studies on the pronation/supination angles were medium in size. However, the rotation in 
large mammals has not been nondestructively investigated. In large terrestrial mammals, the relationships between the pronation/
supination angles and their life styles are of interest. In this study, therefore, first of all, we examined the mobility of the forearm 
skeleton using X-ray computed tomography (CT) in three species of genus Ursus, Asiatic black, brown and polar bears, which are 
large mammals with different life styles, considering the phylogenetic confusion among genera and simple understanding.

MATERIALS AND METHODS

In the present study, the carcasses of seven Asiatic black bears (three non-adults and four adults), six brown bears (three non-
adults and three adults) and one adult polar bear were used for the range of motion (ROM) analyses of forearm rotation (pronation/
supination) (Table 1). Adults were distinguished from non-adults by closure of the epiphyseal line (arrows in Figs. 1, 3A and 4A). 
The forelimbs were separated from the trunk and refrigerated at −15°C until examinations. Specimens were positioned within the 
gantry of the CT scanner (Aquilion LD, Canon, Tokyo, Japan; scanning conditions, 135 kV, 300 mA and 0.5 mm slice thickness) 
in both maximally pronated and supinated states. At the time of scanning, the ulna and humerus were firmly fixed, thus the location 
of each bone did not change at pronation and supination, and only the radius was movable (e.g. Fig. 3). CT-scanned data were 
visualized as CT images and then reconstructed into three-dimensional images on a workstation for image processing (Virtual Place 
Fujin and AZEWIN, AZE, Tokyo, Japan). The proximal and distal ends of the ulna were connected by a line, and this axis was 
used for the perpendicular line to obtain the same sectional surface of the ulna at pronation and supination. The sectional surface 
was created at the most widespread area in the distal part of the ulna. To measure the range of rotation of the radius, the cross-
sectional image of this part of the forearm was used. The sectional CT images of two positions (pronation and supination) were 
superimposed by overlapping the outlines of each ulna. The centroids of the cross-sections of the radii on the image were detected 
by ImageJ 1.51 (National Institute of Health, Bethesda, MD, USA), and the line through the centroid of the radius and the midpoint 
of the radial facet facing the ulna was drawn for each forearm position. The angle between the lines drawn through the radii on 
the superimposed cross-sectional images was defined as the rotation angle of the radius in relation to the shaft of the ulna and was 
adopted as an index of pronation/supination (Fig. 2).

RESULTS

Three-dimensional images of the forearm skeletons in all groups are shown in Figs. 3‒5. In the maximally pronated position in 
each group, the long axes of the radius and ulna are crossed with each other, and the posture was almost the same as that in the 
usual grounding position with palms facing the ground surface (AD1 and L1 in Figs. 3‒5), similar to mid-sized carnivores [10]. 
In maximally supinated position, the posterior side of the radii of adult brown and polar bears did not clearly appear in the antero-
distal view of the forearm, due to their limited supination angles (AD2 in Figs. 4B and 5).

The ranges of the rotation angles of the radius relative to the ulna were Avg., 78.0 ± 1.9° (74.3°, 80.6°, 79.3°), Avg., 76.9 ± 2.1° 
(80.0°, 76.7°, 71.0°, 79.7°); Avg., 72.7 ± 2.9° (78.5°, 69.6°, 70.0°) and Avg., 45.8 ± 5.2° (54.0°, 47.2°, 36.2°) in non-adult Asiatic 
black, adult Asiatic black, non-adult brown and adult brown bears, respectively, and the pronation/supination angle of one adult polar 
bear was 39.3° (Fig. 6). In adult brown and polar bears, the angles were smaller as compared with the other groups (Fig. 6). On the 
other hand, there are no large differences among non-adult Asiatic black, adult Asiatic black and non-adult brown bears (Fig. 6).

DISCUSSION

The present study demonstrated that the forearms of adult brown and polar bears supinate to a lesser degree than those of Asiatic 
black and non-adult brown bears. The maximally pronated position of the forearm was almost equal to the usual grounding position 
with palms facing the ground in each group. Therefore, the more largely bears supinate their forearms, the more dorsally they can direct 
their palms, because the rotation of carpal bone is limited in the radialcarpal joint between the radius and intermedioradial carpal bone, 
and the carpal bone moves with the radius in pronation/supination of the forearm although this joint allows the extension/flexion and 
abduction/adduction of the hand [15]. The pronation/supination flexibility is related to behaviors essential for life. In several primates, 
the pronation/supination angles were examined, and arboreal primates were reported to have larger angles than semi-terrestrial and 
terrestrial primates, suggesting that pronation/supination flexibility is related to climbing adaptation [18]. However, humans are not 
arboreal primates and have little climbing ability, although our forearms have greater mobility than those of several arboreal primates. 
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Therefore, humans are thought to have evolved to have pronation/supination flexibility to enable complicated manipulations needed 
for terrestrial life, e.g. the use of instruments [18]. Among carnivores, raccoons exhibit skillful handling and climbing with large 
pronation/supination angles. Thus, the flexibility may be helpful both for handling and climbing in raccoons [10, 24].

Both Asiatic black and brown bears are omnivorous, and there is no large difference between them in feeding style, i.e., hauling 
of foods into their mouths by palms or approach of their mouths toward food. However, Asiatic black bears can climb at all ages, 

Table 1. The carcasses used in this study

Species Maturity* Sex SN** Donor or location Left/Right
Asiatic black bear Non-adult Female AN-1 HBMC (Gunma, Japan) Left
Asiatic black bear Non-adult Male AN-2 HBMC (Gunma, Japan) Left
Asiatic black bear Non-adult Male AN-3 HBMC (Gunma, Japan) Left
Asiatic black bear Adult Male AA-1 HBMC (Nagano, Japan) Left
Asiatic black bear Adult Female AA-2 HBMC (Gunma, Japan) Left
Asiatic black bear Adult Female AA-3 HBMC (Gunma, Japan) Left
Asiatic black bear Adult Male AA-4 HBMC (Gunma, Japan) Left
Brown bear Non-adult Male BN-1 HBMC (Hokkaido, Japan) Left
Brown bear Non-adult Male BN-2 HBMC (Hokkaido, Japan) Left
Brown bear Non-adult Female BN-3 HBMC (Hokkaido, Japan) Right
Brown bear Adult Female BA-1 HBMC (Hokkaido, Japan) Left
Brown bear Adult Male BA-2 Bear Mountain (Hokkaido, Japan) Left
Brown bear Adult Male BA-3 Bear Mountain (Hokkaido, Japan) Right
Polar bear Adult Female PA-1 Asahiyama Zoo (Hokkaido, Japan) Left
HBMC, harmful birds and mammals control. * Adults were distinguished from non-adults by the closing of epiphyseal 
line. ** Specimen number.

Fig. 1. The distal end of the forearm skeleton in Asiatic 
black bears. Adults (B) were distinguished from non-
adults (A) by closure of the epiphyseal line (green 
arrows). R, radius; U, ulna. (Specimens shown in this 
Figure: A, AN-2; B, AA-2).

Fig. 2. CT cross sectional images of left forearms in a non-adult Asiatic black bear (A1), adult Asiatic black bear (A2), non-adult brown bear (B1), 
adult brown bear (B2) and adult polar bear (P). Cross section of the ulna (1), and radius in maximal supination (2) and pronation (3) with centroids 
(dots). The cross sections were extracted at the most widespread area in the distal part of the ulna. The centroid of the radii and the midpoint of a 
line which connects between both ends of the surface of each radius facing the ulna, were connected by lines, and the rotation angles as an index 
of pronation/supination were created (specimens shown in this Figure: A1, AN-1; A2, AA-2; B1, BN-1; B2, BA-2; P, PA-1).
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Fig. 5. Antero-dorsal (AD) and lateral (L) views of three-dimension-
al CT images of the left forearm of the adult polar bear. (1) and (2) 
show maximally pronated and supinated positions, respectively. R, 
radius; U, ulna. (specimen shown in this Figure: PA-1).

Fig. 6. The pronation/supination angle of the forearms in bears.

Fig. 3. Antero-dorsal (AD) and lateral (L) views of three-dimensional 
CT images of the left forearm skeleton of the non-adult (A) and adult 
(B) Asiatic black bears. (1) and (2) show maximally pronated and su-
pinated positions, respectively. R, radius; U, ulna; Arrow, epiphyseal 
line. (specimens shown in this Figure: A, AN-2; B, AA-4).

Fig. 4. Antero-dorsal (AD) and lateral (L) views of three-dimension-
al CT images of the left forearm skeleton of the non-adult (A) and 
adult (B) brown bears. (1) and (2) show maximally pronated and 
supinated positions, respectively. R, radius; U, ulna; Arrow, epiphy-
seal line. (specimens shown in this Figure: A, BN-1; B, BA-2).
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and continue a tree climbing for foraging, while making bear shelves, which are the accumulation of broken tree branches after 
berries or nuts were removed [25]. In brown bears, however, it has been reported that the juvenile has relative good climbing skills, 
but the subadult comes to loss the abilities [6, 8].

The body size of brown bears markedly increases even after reaching sexual maturity compared with Asiatic black bears, and 
the brown bears show marked increase in the body size between non-adult and adult stages [17]. This suggests that morphological 
changes in the musculature, skeleton and/or connective tissues in the forearms of brown bears due to the increase in size may limit 
the movable range (pronation/supination angle) of the forearm skeleton. It may be assumed that the brown bears have evolved 
largely in size to survive under cold environments according to Bergmann’s rule. With the increase of body size, the bear may have 
been necessary to alter the features and functions of the musculoskeletal system to support their heavy weight by trade-off with the 
skills for arboreal life, e.g. limitation of the pronation/supination flexibility of forearms.

Like the brown bear, the polar bear is known to be one of the largest ursids, and indicates remarkable differences in the body 
size between non-adult and adult stages. The radial rotation angle of the polar bear was much smaller than that of Asiatic black and 
non-adult brown bears examined in the present study. This result supports the forearms of polar bears being less dexterous than 
those of other ursids, consistent with the previous report [9]. In this study, the forearm of polar bear was CT-scanned in relatively 
extended elbow joint angle compared with the other bears. However, the difference in the elbow joint extension/flexion angle is 
not considered to affect the range of maximum pronation/supination angles in the bears as well as in humans [7]. It is unknown 
whether the limited mobility of the forearms in the polar bear results from morphological changes due to remarkable growing of 
the body like seen in adult brown bears or if it is a natural characteristic in this species because the forearms of non-adult polar 
bears were unable to be examined in this study. In future studies, analyses of the pronation/supination angle in non-adult polar 
bears are necessary to clarify this. Furthermore, as only one adult polar bear was used in this study, additional examinations with a 
sufficient number of polar bear specimens should be carried out to confirm the mobility of the forearm skeleton. It is well-known 
that the polar bear is a long distance swimmer [2, 19, 21], but they swim using a dog-paddle style without pronation/supination 
flexibility [20]. In addition, the polar bears show maximally pronated position of forearms with palms facing the surface of iceberg 
when landing from seawater. It is thought that, therefore, the large supination of forearms may be not required for swimming and 
landing in polar bears, although in vertical tree climbing, arboreal bears need to embrace the trunk of tree from both sides with 
the palms medially facing by the supination of forearms. Polar bears may more adept at walking than swimming from the point of 
view of energy expenditure even though they can swim for long distances [3, 5, 19].

In a previous study, the more circular radial head allows the greater movement of pronation/supination in the lower forelimb, and 
the large rotation shows a positive relationship in arboreal adaptation and manipulative skill [8, 12]. In addition to the roundness of 
the radial head, VanBuren and Bonnan [26] described that the curvature of the radius is related to active pronation and calculated 
the angle of curvature of the radius in 189 mammals including the 7 ursid species except U. thibetanus. However, each bear species 
is only one specimen without the consideration of age and sex. In our further studies, it is important that the roundness of the radial 
head and the angle of curvature would be examined in the radial specimens of genus Ursus with enough number, both sexes and 
different developmental stages.

In the bears, comprehensive changes in other factors, such as the body weight, the mobility of the upper arms, carpal joints 
and hind limbs, and the related musculature may limit the climbing abilities. In our previous study on adult bears, arboreal bears 
such as the giant panda and Malayan sun bear develop the fleshy portion of the cranial tibial muscle with a short tendon better and 
attach the popliteal muscle into more distal area of the tibia as compared with the brown and polar bears with a terrestrial habitat, 
suggesting that these morphological features offer the strongly fixed supination of the foot and the efficient pronation of the lower 
leg helpful for holding down the trunk of a tree from both sides in tree climbing [23]. Furthermore, Fujiwara and Hutchinson [4] 
measured the moment arms of extensor, flexor and adductor muscles in the elbow joint, and reported that the scansorial taxa had 
a positive correlation in the elbow flexor muscles. In further studies in the ursids, it is worth comparing the physiological cross 
sectional area (PCSA) and moment arm in the elbow flexor muscles and the supinator and pronator teres muscles with various 
situations (e.g. non-adult and adult) to understand the arboreal ability.

In conclusion, the present study revealed that adult brown and polar bears have smaller pronation /supination angles of the 
forearm than Asiatic black bears and non-adult brown bears, and this characteristic may be one of the limitations of arboreal 
activity. To more precisely confirm the characteristics of forearm rotation in polar bears, a sufficient number of samples with 
different growth stages is required.
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