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Alzheimer’s disease and related dementias (ADRD) are an expanding worldwide crisis.
In the absence of scientific breakthroughs, the global prevalence of ADRD will continue
to increase as more people are living longer. Racial or ethnic minority groups have
an increased risk and incidence of ADRD and have often been neglected by the
scientific research community. There is mounting evidence that vascular insults in the
brain can initiate a series of biological events leading to neurodegeneration, cognitive
impairment, and ADRD. We are a group of researchers interested in developing and
expanding ADRD research, with an emphasis on vascular contributions to dementia,
to serve our local diverse community. Toward this goal, the primary objective of
this review was to investigate and better understand health disparities in Alabama
and the contributions of the social determinants of health to those disparities,
particularly in the context of vascular dysfunction in ADRD. Here, we explain the
neurovascular dysfunction associated with Alzheimer’s disease (AD) as well as the
intrinsic and extrinsic risk factors contributing to dysfunction of the neurovascular
unit (NVU). Next, we ascertain ethnoregional health disparities of individuals living in
Alabama, as well as relevant vascular risk factors linked to AD. We also discuss
current pharmaceutical and non-pharmaceutical treatment options for neurovascular
dysfunction, mild cognitive impairment (MCI) and AD, including relevant studies
and ongoing clinical trials. Overall, individuals in Alabama are adversely affected by
social and structural determinants of health leading to health disparities, driven by
rurality, ethnic minority status, and lower socioeconomic status (SES). In general,
these communities have limited access to healthcare and healthy food and other
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amenities resulting in decreased opportunities for early diagnosis of and pharmaceutical
treatments for ADRD. Although this review is focused on the current state of health
disparities of ADRD patients in Alabama, future studies must include diversity of race,
ethnicity, and region to best be able to treat all individuals affected by ADRD.

Keywords: neurovascular dysfunction, health disparities, Alzheimer’s disease, Alabama (United States), dementia

INTRODUCTION

ADRD remain a global health crisis for all affected individuals
including patients with ADRD, individuals at risk, and caregivers
such as friends and family. For over a century, ADRD research
has made significant efforts to cure, treat, or prevent ADRD.
However, there is a clear lack of research focusing on regional,
racial, and ethnic disparities in ADRD, particularly in Southern,
rural and poor states like Alabama. It is estimated that over
94,000 people in Alabama have AD (Alzheimer’s Association,
2022) and AD is the sixth leading cause of death of people in
Alabama (Alabama, 2021). African Americans are more likely
to develop AD than White Americans (Blum et al., 2018;
Alzheimer’s Association, 2022). According to the US census as
of 2021, African Americans account for 13.4% of the American
population, but in Alabama 26.8% of the over 5 million people
are African American (Census, 2022), presenting a greater risk
and prevalence of ADRD in Alabama. In addition, more than
a million Alabamians live in rural areas, where there are even
more significant health disparities (Rural Health Information
Hub, 2022). This combination of high-risk populations presents
an urgent need for research focusing on ADRD in Alabama and
other regions with similar demographics.

The neuropathologies found in the post-mortem brains of
ADRD patients are complex and multifactorial. A number of
amyloid isotypes accumulate in the brains of these patients
including amyloid-β (Aβ) plaques, neurofibrillary tau tangles
(NFTs), Lewy body α-synuclein pathologies, and transactive
response DNA and RNA binding protein 43 kDa aggregates
(Nelson et al., 2019; Robinson et al., 2021; Uemura et al.,
2022). These neuropathologies are often associated with
neurovascular abnormalities including large macroscopic,
lacunar and microscopic infarcts, hemorrhages, and vessel
pathologies including cerebral amyloid angiopathy, intracranial
atherosclerosis and arteriolosclerosis. For example, in the
Religious Order Study and Rush Memory and Aging Project
cohort, ∼87% of probable AD diagnosed subjects had abnormal
vascular neuropathologies. Approximately 74% of these subjects
also had traditional AD and/or other neurodegenerative
neuropathologies (Kapasi et al., 2017). This work and others
described below support that neurovascular dysfunction occurs
more often than not in ADRD.

Neurovascular dysfunction in ADRD can be partially
attributed to cardiovascular deficits (Shabir et al., 2018).
Neurovascular uncoupling, an early event in AD, leads to
dysregulation of cerebral blood flow (CBF) and the NVU and
is a major contributor to AD progression (Iadecola, 2004,
2013; Zlokovic, 2011; Montagne et al., 2015; Sweeney et al.,

2015, 2019; Zhao et al., 2015; Arvanitakis et al., 2016; Iturria-
Medina et al., 2016; Nelson et al., 2016; Kisler et al., 2017a;
Nation et al., 2019). Blood-brain barrier (BBB) breakdown as well
as pericyte injury and loss are also hallmark findings in AD,
leading to chronic neuroinflammation, gliosis, Aβ deposition,
and tau hyperphosphorylation (Collins-Praino and Corrigan,
2017; Perea et al., 2018). The aforementioned clinical findings
in AD may be partially mitigated by education and awareness
of several extrinsic vascular risk factors linked to AD. The
most common genetic risk factor for AD is apolipoprotein ε4
(APOE4) carriage (Mahley et al., 2006). Studies have suggested
that APOE4 mice (Bell et al., 2012) and humans (Montagne et al.,
2020a) have increased BBB breakdown that corresponds with
cognitive decline. Furthermore, APOE functions to transport
lipids (e.g., cholesterol) in the bloodstream (Di Battista et al.,
2016). Previous studies indicate that APOE4 carriage disrupts
brain cells’ ability to metabolize lipids (Dupuy et al., 2001; Huang
and Mahley, 2014). Metabolism deficiencies may be the cause of
gut dysbiosis seen in AD cases, which contributes to increased
proinflammatory cytokine levels and systemic inflammation (Al
Bander et al., 2020). Furthermore, systemic infections, such as
pneumonia, lead to peripheral generation of amyloids (e.g., Aβ

and tau) and incident dementia that may ultimately contribute
to ADRD (Nelson, 2022). Stress and anxiety also contribute to
AD progression through consequences in subsequent behavioral
and physiological changes (Dimsdale, 2008). Diet and lifestyle
differences have also been identified as a risk factor for AD. Use
of alcohol and recreational drugs is linked to ADRD diagnosis
and cognitive impairment. These identified risk factors not
only contribute to AD progression, but related cardiovascular
and pulmonary diseases as well. For this reason, cardiovascular
and pulmonary diseases have been linked to dementia via
disruption of the BBB and neuroinflammation. However, it
is important to note that vascular risk factors that occur in
midlife may be temporally uncoupled with cognitive dysfunction,
suggesting that aging is a contributing factor to neurovascular
dysfunction in ADRD.

Although there is no cure for ADRD, several medications
may be prescribed to temporarily alleviate symptoms through
decreasing hypertension, protecting neurovasculature, or
correcting gut dysbiosis (Ahmed, 2005; Stirban et al., 2006;
Raj et al., 2018; Williamson et al., 2019; Nasrallah et al., 2021).
Non-pharmaceutical treatments may also be viable options to
slow cognitive decline in AD patients, also commonly through
the correction of gut dysbiosis. Physical activity has been shown
to decrease the risk of AD and slow cognitive decline, even in
APOE4 carriers (Allard et al., 2017). However, the South has
the highest prevalence of physical inactivity in the United States
(Centers for Disease Control and Prevention, 2021). Treatment
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of mood disorders has also been shown to protect vascular
health through prevention of adopting unhealthy behaviors such
as smoking and physical inactivity (Abed et al., 2014). Other
non-pharmaceutical and alternative treatments for AD such as
hormone replacement therapy and oxygen therapy have also
been suggested to treat patients with AD, but their efficacies are
still unclear (Smith et al., 2010; Harch and Fogarty, 2018; Guo
et al., 2020; Song et al., 2020; Shapira et al., 2021; Somaa, 2021).

Every individual has a unique social determinants of health
profile and many individuals living in Alabama suffer from
inequities in health and health care. Social determinants of health
are defined as, “the conditions in the environments where people
are born, live, learn, work, play, worship, and age that affect a
wide range of health, functioning, and quality-of-life outcomes
and risks” (Healthy People, 2022). Health disparities are usually
manifested in groups that are disadvantaged. Individuals and
groups may be disadvantaged due to their race or ethnicity,
sex, sexual identity, age, disability, SES, cognitive abilities, and
geography (Foundation Health Measures Archive, 2020). In most
of the US and in Alabama specifically, SES and race/ethnicity are
the areas of disadvantage that have the greatest impact on health
disparities (Arrieta et al., 2008).

Although there are numerous potential treatments to slow
cognitive decline and vascular dysfunction progression in AD,
many social and structural determinants of health in Alabama
make it difficult to access these treatments or even diagnose
ADRD. Many regions within Alabama suffer from low SES
creating the challenge to adopt healthy eating and exercise
habits that might prevent or delay onset of ADRD. Diagnosis of
dementia tends to be earlier in individuals with high SES, when
interventions may have an impact, than people with low SES (Cha
et al., 2021; Petersen et al., 2021). Many areas in Alabama, both
urban and rural, have limited access to healthcare and healthy
food, making it more difficult to initiate crucial lifestyle changes
to slow AD progression. The large rural population of Alabama
further adds to the increased prevalence of AD. Taken together, it
is clear that this region presents numerous risk factors of ADRD
as well as substantial barriers preventing the mitigation of these
risks. Reports are desperately needed to highlight the urgency of
developing preventative strategies targeted at ADRD, especially
in states with an ethnic and racial makeup like Alabama. Low SES
and health disparities exist in global communities contributing
to ADRD worldwide. Therefore, in this review, we present the
current social and structural determinants of health that lead to
health disparities contributing to neurovascular dysfunction and
ADRD in Alabama and beyond.

NEUROVASCULAR DYSFUNCTION IN
ALZHEIMER’S DISEASE AND DEMENTIA

Neurovascular Uncoupling and Cerebral
Blood Flow Reductions
The brain is metabolically active and requires 20% of the body’s
oxygen and glucose for proper functioning (Iadecola, 2013). The
NVU consists of vascular cells (e.g., endothelial cells, pericytes,

and vascular smooth muscle cells), glia (e.g., astrocytes, microglia,
and oligodendrocytes), and neurons (Nelson et al., 2016;
Sweeney et al., 2019) (Figure 1). Neurovascular coupling refers
to the communication and connection between the vasculature
and brain cells. The NVU regulates CBF through neurovascular
coupling to assure that brain energy needs are met (Kisler et al.,
2017a). There is growing appreciation and strong evidence that
neurovascular uncoupling, CBF reductions and dysregulation,
and breakdown of the BBB, including the loss of pericytes, are
early events in the AD pathophysiological cascade (Iadecola,
2004, 2013; Zlokovic, 2011; Montagne et al., 2015, 2020a;
Sweeney et al., 2015, 2019; Arvanitakis et al., 2016; Iturria-
Medina et al., 2016; Nelson et al., 2016; Kisler et al., 2017a)
(Figure 1). In a clinical study, African Americans were found to
have lower intracranial arterial blood flow than White people
which was associated with higher fasting glucose and triglyceride
levels (Clark et al., 2019).

Blood-Brain Barrier Breakdown
The BBB has been referred to as the gatekeeper of the
brain. Increased adherens and tight junctions in the BBB
prevent uninhibited entry of blood-derived products, toxins, and
molecules from entering the brain (Zlokovic, 2011; Zhao et al.,
2015; Nelson et al., 2016). Unlike peripheral vessels, the BBB
has a controlled specialized substrate-specific transport system
(Zlokovic, 2011; Zhao et al., 2015; Nelson et al., 2016).

BBB breakdown in AD has been detected by
immunohistochemistry (Salloway et al., 2002; Bailey et al.,
2004; Wu et al., 2005; Baloyannis and Baloyannis, 2012; Sengillo
et al., 2013; Halliday et al., 2016), fluid biomarker assessment of
albumin quotient, plasminogen and fibrinogen (Craig-Schapiro
et al., 2011; Montagne et al., 2015; Sweeney et al., 2015),
and magnetic resonance imaging neuroimaging sequences of
perivascular hemosiderin deposits/microbleeds (Goos et al.,
2009; Brundel et al., 2012; Uetani et al., 2013; Heringa et al., 2014;
Olazarán et al., 2014; Yates et al., 2014; Zonneveld et al., 2014;
Shams et al., 2015; Poliakova et al., 2016). More recent studies
have used dynamic contrast enhanced magnetic resonance
imaging to quantify BBB permeability and found increased BBB
breakdown in individuals with normal aging (Montagne et al.,
2015; Verheggen et al., 2020), MCI (Montagne et al., 2015, 2020a;
Nation et al., 2019; Rensma et al., 2020), and early AD (van de
Haar et al., 2016, 2017a,b).

Pericyte Injury and Loss
With endothelial cells being the gatekeepers of the brain, pericytes
function as the padlock, providing a second layer of protection
to ensure the gate regulated by the BBB is fortified. Pericytes are
critical support cells of the BBB and have other key functions
including angiogenesis, clearance of toxic metabolites (Ma et al.,
2018), and regulating capillary hemodynamic responses (Kisler
et al., 2017a,b; Nelson et al., 2020). Pericyte loss has been
demonstrated using electron microscopy of AD cortex (Farkas
and Luiten, 2001; Baloyannis and Baloyannis, 2012) and by
decreased levels of pericyte marker platelet derived growth factor
receptor β (PDGFRβ) in the precuneus and underlying white
matter (Miners et al., 2018). Through immunohistochemical
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FIGURE 1 | The neurovascular unit (NVU) during normal physiological and pathological conditions. The NVU is comprised of many cell types. The blood-brain barrier
(BBB) is formed by endothelial cells, which at the capillary level, are supported by pericytes. Astrocytic endfeet provide additional support to the BBB. Other cellular
components of the NVU include microglia and neurons (yellow, left side). (1) Cerebral blood flow (CBF) reductions, (2) BBB breakdown, (3) pericyte injury, and (4)
neuroinflammation all contribute to neurovascular dysfunction in many neurodegenerative diseases and disorders, including Alzheimer’s disease (blue, right side).
Both intrinsic and extrinsic factors can contribute to neurovascular dysfunction. Created with BioRender.com.

analysis, it was shown that pericyte number and coverage of brain
capillaries were reduced in the AD cortex and hippocampus when
compared to control brains (Sengillo et al., 2013), and this loss
was accelerated in APOE4 carriers (Halliday et al., 2016). Pericyte
injury marker soluble PDGFRβ has also been found to be elevated
in cerebrospinal fluid (CSF) in MCI and early AD (Montagne
et al., 2015, 2020a; Miners et al., 2019; Nation et al., 2019; Wang
et al., 2022). No studies to date, that we could identify, have
assessed BBB breakdown or pericyte injury in diverse populations
with MCI or ADRD.

Neuroinflammation
Neuroinflammation may be triggered by injury, infection,
stress, or aging (DiSabato and Sheridan, 2021), and short-
term neuroinflammation generally leads to improved patient
outcome (Hopper et al., 2012). However, neuroinflammation
can be prolonged and may become detrimental when the
stimulus persists, leading to neuronal dysfunction, injury, or
deficit (Streit et al., 2004; Delgado et al., 2021). Specific to AD,
neuroinflammation has been correlated with increased levels
of proinflammatory cytokines such as tumor necrosis factor-α
(TNF-α) and interleukin (IL)-6 (Strauss et al., 1992; Chang et al.,
2017) in both the brain and blood. Another study comparing

the release and presence of microvessel-associated cytokines
between AD and control brain microvessels found increased
levels of IL-1β, IL-6, and TNF-α in AD brains (Grammas
and Ovase, 2001). IL-1β has been shown to activate certain
kinases that promote tau hyperphosphorylation (Collins-Praino
and Corrigan, 2017). Proinflammatory cytokines have also been
shown to increase Aβ production via upregulation of beta-
secretase 1 (BACE1), the key enzyme that initiates production of
Aβ (Vassar, 2004).

Neuroinflammation can be beneficial or detrimental and
is mediated by astrocytes and microglia (Fakhoury, 2018).
Microglia are the primary immune cells of the central nervous
system (CNS), act as resident macrophages (DiSabato and
Sheridan, 2021) and are important for synapse integrity and
learning and memory (Wolf et al., 2017). Microglia are activated
by Aβ plaques as well as hyperphosphorylated tau (Perea et al.,
2018). Although microglia initially provide neuroprotection
through clearance and degradation of Aβ, prolonged activation
leads to hypersecretion of proinflammatory cytokines (Shastri
et al., 2013) and pronounced proliferation of microglia and
inflammatory markers (Varnum and Ikezu, 2012). Preclinical
studies from AD models suggest specialized proresolving
mediator (SPM) deficiencies and dysregulation due to imbalance
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between proinflammatory cytokines and SPM or SPM synthesis
interruption (Ponce et al., 2022). Microglia also communicate
with astrocytes, specialized glial cells that are the most abundant
cells in the CNS (Shastri et al., 2013). IL-1β, a cytokine that
functions in astrocyte proliferation and astrogliosis, has been
shown to be present in 30x as many glial cells in AD brains
compared to age-matched controls (Griffin et al., 1989; Grammas
and Ovase, 2001).

Aβ in both its plaque and soluble form activates the pathway
of microglia priming, leading to release of reactive oxygen
species. Microglial priming in AD patients is exceptionally
detrimental because the cytokines and chemokines released
during this process fuels a positive feedback mechanism or
neuroinflammation inducing astrogliosis, Aβ deposition, as
well as further release of proinflammatory cytokines (Ho
et al., 2005; Delgado et al., 2021). Further studies regarding
neuroinflammation should include various races and ethnicities
to reveal potential variance in neuroinflammatory patterns in
diverse populations.

VASCULAR RISK FACTORS LINKED TO
ALZHEIMER’S DISEASE

Race and Ethnicity
An analysis of 2014 Medicare and US Census Bureau data
found that ADRD were most prevalent in Black Americans and
Hispanic adults over the age of 65 years. The rates were 14.7% for
African Americans, followed by 12.9% for Hispanic adults, 11.3%
for non-Hispanic White people, 10.5% for American Indian
and Alaska Natives, and 10.1% for Asian and Pacific Islanders
(Matthews et al., 2019).

A study focusing on plasma metabolites in AD subjects
across multiple races and ethnicities showed that amino acid
metabolism was altered in African Americans, non-Hispanic
White people, and Caribbean Hispanics adults. Fatty acid
metabolism was altered in African Americans and non-Hispanic
White people. African Americans also had altered glycolytic
metabolism (Vardarajan et al., 2020). Neurodegenerative disease
panels from a study on AD in African Americans revealed that
levels of soluble receptor for advanced glycation endproducts
(sRAGE) were significantly elevated in African Americans
(Ferguson et al., 2021). sRAGE is a receptor on the luminal side of
the BBB involved in transport of Aβ into the brain and increased
sRAGE levels are correlated with increased Aβ accumulation
(Nelson et al., 2016). The same study that identified elevated
sRAGE also found higher levels of innate immunity regulator
nuclear factor kappa B and its inhibitor, nuclear factor of kappa
light polypeptide gene enhancer in B-cells inhibitor-alpha, in
African American AD male patients compared to white people
and African American females, with a 116% increase in Fas-
associated death domain protein levels for African Americans,
indicating increased apoptosis (Ferguson et al., 2020). In a
separate study, it was found that levels of IL-1β, monokine
induced by gamma, and TNF-related apoptosis-inducing ligand
were increased and levels of IL-8 and IL-3 were decreased in
African Americans, independent of gender, further explaining

increased incidence of apoptosis (Ferguson et al., 2021). In
addition, CSF IL-9 levels were increased in African Americans
with AD but not in white people with AD (Wharton et al., 2019).

The specific reasons for these differences across races and
ethnicities remain unclear. Contributing to this knowledge gap
is the lack of multi-ethnic studies in clinical research including
studies of ADRD. There has been work to understand the barriers
to enrolling participants from underrepresented groups into
clinical research projects (George et al., 2014). Non-Hispanic
White people were found to be the most willing to participate
in ADRD research studies, while Hispanic adults, non-Hispanic
Asians, and non-Hispanic Black people were 44, 46, and 64%,
respectively, less willing to participate in AD prevention trials
(Salazar et al., 2020). African Americans’ participation in research
studies should be increased in order to better understand ADRD
and other diseases that disproportionately impact them. Among
African Americans, there is a long-standing mistrust in the health
care system and a significant contributor to that mistrust is rooted
in Alabama. The U.S. Public Health Service Syphilis Study at
Tuskegee, 1932–1972 is a well-known unethical 40-year clinical
study that continues to be a major barrier to the participation
of Black people in research (Freimuth et al., 2001). Mistrust
stems from this and other historical events and is a known
barrier to research participation reinforced by discriminatory
events and flaws in the healthcare system (Scharff et al., 2010).
Therefore, current research in race- and ethnicity-dependent
vascular risk factors for AD is also limited by small sample
sizes. In addition, most multi-racial and ethnicity studies in
ADRD have focused on comparing non-Hispanic White people
to Black people, while inclusion of other races and ethnicities
is less common. Further multi-racial studies investigating the
mechanisms mediating ethnic differences in AD pathology are
needed. Encouraging community engagement and involvement
early in the design and development of a research project helps
to build trust while also allowing the participants to share the
importance of research with other members of the surrounding
community (Crook et al., 2019).

Genes
Autosomal-dominant AD (ADAD) is a form of AD caused by
mutations in PSEN1, PSEN2, and APP. ADAD accounts for a
small percentage of all AD cases and has an early age of onset
(<65 years of age). The presentation and symptoms of ADAD
are very similar to those seen in the more common sporadic
cases of AD (Bateman et al., 2011). While sporadic AD is not
primarily a genetic disease, several genes significantly increase
the risk for AD development. The most common genetic risk
factor of sporadic AD is APOE4 (Mahley et al., 2006). In addition,
mutations in PICALM, CLU, and SORL1 have been implicated
in AD (Zhao et al., 2015; Nelson et al., 2016; Sweeney et al.,
2019). Interestingly, all the above-mentioned genes have been
implicated in neurovascular dysfunction, as recently reviewed
(Zhao et al., 2015; Nelson et al., 2016; Sweeney et al., 2019). Also,
ABCA7 and TREM2 have been implicated in AD and are linked
to innate immunity (Sweeney et al., 2019).

Although many genome-wide association studies (GWAS)
have identified genetic risk factors in AD (Lambert et al., 2013;
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Naj et al., 2014; Kunkle et al., 2019; Wightman et al., 2021),
these studies predominantly included Europeans or Americans of
European descent. Moreover, individuals from several US states
were included, but none specifically from Alabama. Recently,
GWAS have been done to evaluate AD risk genes in African
American populations (Logue et al., 2011, 2018; Kunkle et al.,
2021), showing that African Americans and white people have
variation in the top genetic risk factors for AD. Specifically, the
DRD2 Taq A1 allele reduces the D2 receptors in the brain, causing
impaired cognitive function in older age, creating a magnified
risk of AD (Blum et al., 2018). This A1 allele is more prevalent
in African American populations. Kunkle et al., 2021, identified 8
novel loci (TRANK1, FABP2, LARP1B, TSRM, ARAP1, STARD10,
SPHK1, and SERPINB13) as being significant risk factors for
African Americans. This study only identified TREM2 and
C2DAP as being significant in both African American and
White populations. ABCA7 mutations are more prevalent in
African American populations and could be a greater risk factor
than APOE4 (Stepler et al., 2022). When ATP Binding Cassette
Subfamily A Member 7 (ABCA7) dysfunctions, more Aβ is
produced and not cleared properly from the brain by microglia
(Aikawa et al., 2018). Precision medicine is one mechanism to
lessen the impact of the social determinants of health and other
contributors to health disparities in the future. Understanding the
genetic—environment interaction is critical if that future is to be
realized. Therefore, studies seeking to identify genes conferring
increased risk, likelihood of response to therapy, and prognosis
for ADRD must include more diverse populations with regards
to ethnicity, gender, and geography.

Diet and Lifestyle
The Centers for Disease Control and Prevention (CDC) has
recently reported that over 35% of the adult population in
the US was obese in 2021, with the highest obesity rates
in the Southern states (Mississippi, Louisiana, and Alabama)
(CDC, 2021c). In Alabama, non-Hispanic Black adults (46.2%)
encounter obesity-related health disparities more than non-
Hispanic White adults (34.3%) (CDC, 2021c) with high-energy
food intake and physical inactivity as main factors contributing
to this problem. The 2021 county health rankings revealed
that 29% of adults in Alabama had no leisure-time physical
activity (Alabama, 2022). In addition, several areas in Alabama
suffer from low income and limited accessibility to healthy
foods (USDA, 2022). It has previously been shown that energy-
dense food consumption triggers severe health conditions such
as metabolic syndrome, cardiovascular disorder, neurovascular
dysfunction, memory deficits, as well as AD (Thériault et al.,
2016; Ting et al., 2017; Moreno-Fernández et al., 2018; Lasker
et al., 2019; Bracko et al., 2020). Studies in animals fed with
short-term or long-term enriched-energy diet increased the
permeability of the BBB as demonstrated by an elevation of
extravascular immunoglobulin G deposits and albumin content
in the hippocampus (de Aquino et al., 2018; Yamamoto et al.,
2019; de Paula et al., 2021). Animals fed with a high-calorie
diet exhibited attenuation of tight junction proteins claudin
5 and occludin, alleviation of collagen type IV, augmented
fenestration of endothelial cells, and astrogliosis (de Aquino

et al., 2018; Yamamoto et al., 2019). In mice, consumption
of high-salt diets were found to reduce the brain endothelial
cells’ capacity to generate nitric oxide, leading to cognitive
and neurovascular dysfunction (Faraco et al., 2018). These
negative effects not only disrupt the structure of the NVU, but
also reduce CBF, which plays a crucial role in neurovascular
coupling processes (Faraco et al., 2018; Nielsen et al., 2020).
Notably, both in vivo and clinical experiments have shown
that a disruption of the BBB and neurovascular uncoupling
potentially diminish cognitive performance, resulting in the
development of AD and dementia (Lourenço et al., 2017;
Nielsen et al., 2020; Lin et al., 2021). For these reasons, the
modification of structural and social determinants of health (e.g.,
improved access to food, safer neighborhoods for exercise) may
allow improvements in dietary behaviors and the enhancement
of physical activities which are beneficial ways to decrease
risk of obesity, vascular dysfunction, and AD in Alabama
and other states.

Emotions, Stress, and Anxiety
Stress has been identified as a vascular risk factor and can
contribute to negative vascular outcomes through influencing
behavior and physiology. A systematic review found stress
to be related to behavioral factors that are known to lead
to poor vascular health outcomes (Dimsdale, 2008). Stress
influenced the adoption of unhealthy lifestyle habits, including
smoking, eating a poor-quality diet, disordered eating, and
living a sedentary lifestyle (Dimsdale, 2008). Increased levels
of stress hormones, such as cortisol, have been found to
impair cerebrovascular function (Münzel et al., 2018). Chronic
mental stress was found to be a risk factor for metabolic
syndrome and for the development of hypertension (Esler et al.,
2008). Stress facilitates the progression of AD and exacerbates
symptom severity (Justice, 2018). Additionally, AD patients
exhibit increased levels of stress hormones (Csernansky et al.,
2006). Stress is a psychological factor that impacts behavioral and
physiological functioning, consequentially impacting vascular
health and increasing the risk of AD.

Anxiety is an independent cardiovascular disease risk factor
(Shen et al., 2008). Additionally, it has been linked to
adverse cardiovascular outcomes such as autonomic dysfunction,
inflammation, and endothelial dysfunction (Celano et al., 2016).
A meta-analysis of 46 studies found anxiety to be associated with
several vascular events such as a 71% higher risk of stroke, a
41% higher risk of cardiovascular mortality and coronary heart
disease, and a 35% higher risk of heart failure (Emdin et al.,
2016). In a study examining neuronal activity and blood supply
in individuals with generalized anxiety disorder (GAD), patients
with GAD displayed a decrease in neurovascular coupling and
alteration in CBF (Chen et al., 2021).

Allostatic load is the cumulative burden of chronic stress
and life events (Guidi et al., 2021). Black Americans have
a greater allostatic load than White Americans, which was
shown to be associated with poorer physical and mental health
outcomes (Guidi et al., 2021). Living with the negative impacts
of racism is a significant stressor on Black Americans and
other minorities. A study using multinomial logistic regression
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to quantify experiences of racism and subjective cognitive
function found that Black women subjected to institutional
racism had worsened subjective cognitive function that was
in part mediated by depression and insomnia (Coogan et al.,
2020). Another study found that higher perceived stress in
older Black Americans was associated with faster declines in
global cognition, especially episodic memory and visuospatial
ability (Turner et al., 2017). Stressful life events were reported
more frequently in Black Americans than White people and
were associated with age-related cognitive decline (Zuelsdorff
et al., 2020). Stress in Black Americans has been linked to
elevated Aβ and tau CSF biomarkers (Garrett et al., 2019;
Trammell et al., 2020). Modifying environmental (e.g., larger
living space), sociocultural (e.g., larger social network size),
behavioral (e.g., more purpose in life), and biological (e.g., higher
global cognition) levels was associated with a lower odds of
having higher levels of perceived stress (Glover et al., 2021).
This suggests that improving social determinants of health,
including those affecting Black Alabamians, may help alleviate
stress-associated cognitive decline and ADRD.

Drugs and Alcohol
There is a positive association between heavy drinking (as
defined by the World Health Organization) and diagnosis with
dementia or cognitive impairment (Schwarzinger et al., 2018).
A clinical review in 2018 described that chronic heavy alcohol
consumers had an increased risk of dementia and cognitive
impairment (Topiwala and Ebmeier, 2018). For example patients
with chronic alcoholism were discussed to have a frontal lobe
more vulnerable to dementia (Topiwala and Ebmeier, 2018). It
is already known that frontal cortex and hippocampus size and
function are significantly altered with alcoholism while white
matter recovery is seen in cases upon abstinence from alcohol
(Alvarez et al., 1989; Bengoechea and Gonzalo, 1991; Kril and
Halliday, 1999). Although alcohol has been identified as a risk
factor for AD, a statistically significant association between light
use of alcohol and lower risk of cognitive decline and dementia
has also been found (Yan et al., 2021). However, studies presented
are limited by obvious ethical obstacles and inherent biases.
That is, alcohol use is always self-reported, studies often lack
controls for confounding variables, and there are few studies that
examine interactions between other risk factors of AD such as
drug use and genetics.

Smoking tobacco has been identified as a modifiable risk
factor for AD (Etgen et al., 2011). In 2021, it was reported that
approximately 18.5% of adults in Alabama smoked cigarettes
(Explore Smoking in Alabama, 2021 Annual Report), whereas
the national prevalence is only 12.5%. A longitudinal study
suggested that smokers should be encouraged to quit because
continual smokers have an increased risk of overall dementia
(Choi et al., 2018). The same study also showed that long-
term quitters as well as individuals who have never smoked
had a decreased risk of developing AD as well as vascular
dementia when compared to continual smokers (Choi et al.,
2018). It is hypothesized that a combination of smoking-
induced oxidative stress and the brain’s high susceptibility to
oxidative stress contributes to neuroinflammation via release of

proinflammatory cytokines and gliosis (Voloboueva and Giffard,
2011). Oxidative stress is known to be a consequence of Aβ- or
tau-based neuropathies (Praticò et al., 2002; Sutherland et al.,
2013). However, an in vitro study reported that oxidative stress
stimulates BACE1 transcription which subsequently promotes
Aβ production (Tamagno et al., 2008).

Certain prescription drug use has also been identified as
a risk factor for AD. Benzodiazepines have been shown to
induce memory deficit states through targeting of gamma-
Aminobutyric acid (GABA), and it is proposed that the α5
subunit of GABA is most affected as it controls cognitive
functions (Ettcheto et al., 2019).

Recreational use of marijuana has also been identified as
a risk factor for AD, although related studies present mixed
results. For instance, it has been demonstrated that marijuana
users exhibited a lower average cerebral perfusion and decreased
right hippocampal perfusion (Amen et al., 2017). However,
the active ingredient in marijuana (i.e., THC) is a competitive
inhibitor of acetylcholinesterase, a critical region involved in the
formation of Aβ (Eubanks et al., 2006). Therefore, it is shown
that low doses of marijuana may have therapeutic effects on AD
(Cao et al., 2014).

Sex, Gender, and Sexuality
Two-thirds of the Americans affected by AD are women
(Alzheimer’s Association, 2022). Originally, this was attributed
to women’s longer lifespan since AD development increases with
age (Mielke et al., 2014). However, further research suggests that
there may be other factors contributing to this sex difference
than solely longevity (Snyder et al., 2016). One study examining
APOE4-by-sex interaction as a risk of converting from healthy
aging to MCI/AD suggested that the effect of APOE4 carriage was
stronger in women (Altmann et al., 2014). The same study also
showed more elevated Aβ in the CSF of women compared to men
(Altmann et al., 2014). There is still an evident gap in knowledge
regarding sex differences in AD onset and progression and more
studies should focus on gender- and sex-based disparities of
ADRD risk factors.

Approximately 3.1% of adults in Alabama identify as
lesbian, gay, bisexual, transgender, queer, or questioning
(LGBTQ) (Williams Institute, 2022). Individuals in the LGBTQ
community experience various health disparities and exhibit
a greater risk for dementia than their straight, cisgender
counterparts. For example, researchers found increased reports
of subjective cognitive decline in LGBTQ individuals compared
to straight, cisgender participants (Flatt et al., 2021). Human
immunodeficiency virus, acquired immunodeficiency syndrome
(HIV/AIDS) is most prevalent within the LGBTQ community,
and is also linked to AD (Davis, 2013). BBB breakdown plays
a major role in HIV-associated dementia by allowing HIV-1-
infected monocyte-macrophages to traverse the BBB and enter
the brain (Strazza et al., 2011; Sweeney et al., 2019). Once HIV
accesses the brain, it negatively influences cognitive function
by eventually leading to Aβ plaque deposition and/or NFTs
(Canet et al., 2018).

LGBTQ individuals are less likely to seek needed medical care
due to lifetime experiences of discrimination and victimization
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(Quinn et al., 2015). LGBTQ Americans are also less likely to
develop support systems through marriage or having children
and are twice as likely to live alone (Zelle and Arms, 2015;
Goldsen et al., 2017). This lack of support may have negative
effects on mental health and lead to increased stress, a known
vascular risk factor for AD (Caruso et al., 2018). One notable
research study conducted by multiple universities is Research
Inclusion Supports Equity (RISE). The RISE study functions to
ensure that LGBTQ adults are properly represented in ADRD
research.1 More studies must bridge the gap between healthcare
and research of LGBTQ individuals and the heterosexual
population by including LGBTQ demographics in health-
related research.

Pathological Diseases
Systemic Inflammation and Gut Dysbiosis
Systemic inflammation is an important mechanism linked to
vascular impairment and AD (Takeda et al., 2013; Elwood
et al., 2017). Previous studies have demonstrated a high
level of proinflammatory markers in the periphery in AD
subjects (Cattaneo et al., 2017). Multiple studies have revealed
the association between peripheral inflammation and various
diseases including gut dysbiosis, metabolic disease, diabetes, and
cardiovascular disease (Cox et al., 2015; García et al., 2017;
Brandsma et al., 2019; Al Bander et al., 2020).

Gut dysbiosis is an imbalance of intestinal microbial
composition and is related to dietary alteration or pathological
conditions, including inflammation and oxidative stress (Proctor
et al., 2017; Dumitrescu et al., 2018; Al Bander et al.,
2020). A reduction of Bacteroidetes and an enhancement of
Actinobacteria was detected in AD patients (Zhuang et al.,
2018). However, an increase of Bacteroidetes along with the
reduction of Firmicutes and Bifidobacterium was also measured
in fecal samples of AD participants (Vogt et al., 2017). All
changes of gut components related to the production of
proinflammatory markers in the blood subsequently caused
systemic inflammation (Al Bander et al., 2020). In addition,
the mentioned differences of gut microbiomes is linked to the
deterioration of intestinal integrity, which leads to the leakage
of lipopolysaccharides as well as gram-negative bacteria into
blood circulation (Thiennimitr et al., 2018; Salguero et al., 2019;
Marizzoni et al., 2020). These microbiome differences are also
associated with changes of short-chain fatty acids levels in blood,
which contribute to peripheral inflammation (Marizzoni et al.,
2020). Systemic inflammation or gut dysbiosis increases vascular
permeability as demonstrated by an elevation of albumin in brain
parenchyma (Takeda et al., 2013) and attenuates the level of
tight junction protein expression in brain endothelial cells (Hu
et al., 2020; Wen et al., 2020). These effects caused by systemic
inflammation and gut dysbiosis ultimately contribute to cognitive
decline in ADRD.

Gut microbiota alteration and/or systemic infection may
disproportionately affect ethnic minorities, though the influence
of race and ethnicity on gut composition remains to be fully
discovered. One study observed variation in the phyla of
microbiota, including Actinobacteria, Firmicutes, Proteobacteria,

1https://www.theriseregistry.org/

Bacteroidetes, and Verrucomicrobia across ethnicities (Brooks
et al., 2018). There was also significant variation of gut microbiota
across ethnicities as determined by Shannon’s alpha diversity
index from the American Gut Project which ranked Hispanic
adults greater than white people, followed by Asians, then
African Americans (Brooks et al., 2018). Furthermore, the
relationship of patients with infectious diseases, such as ulcerative
colitis, and ethnic disparities was shown in a previous study
(Castaneda et al., 2017). Taken together, ethnicity and race are
factors contributing to gut dysbiosis and inflammation in US
population as well as in Alabama. Nevertheless, the link between
racial and ethnic disparities and gut dysbiosis as it is associated
with neurovascular impairment and cognitive decline in AD
should be further studied.

Metabolic Syndrome and Vascular Dysfunction
Metabolic syndrome is a group of metabolic risk factors
characterized by a large waist circumference, abnormality of
lipid profiles (e.g., high triglycerides and low high-density
lipoprotein cholesterol levels), hypertension, and hyperglycemia
(NHLBI, 2022). Being overweight or obese as a consequence of
poor diet is the main cause of metabolic syndrome (NHLBI,
2022). Previous studies have demonstrated that a high caloric
intake not only leads to hyperlipidemia but also triggers
insulin resistance, both of which are linked to pre-diabetes
and type 2 diabetes (Lozano et al., 2016; Saiyasit et al., 2020;
Kumar et al., 2021). The national diabetes report from the
CDC indicated that approximately 88 million adults in the
United States had pre-diabetes and 26.8 million were diagnosed
with diabetes (CDC, 2022c). In Alabama, 14.8% of adults
currently have diabetes, which was shown to affect more African
Americans (18.1%) than White people (14.1%) Americans in
2020 (Explore Diabetes in Alabama, 2021 Annual Report).
Additionally, Alabamians with less education (Figure 2A) and
low income (Figure 2B) were more susceptible to diabetes
(Explore Diabetes in Alabama, 2021 Annual Report). Several
studies have shown an association between diet-induced obesity
or diabetes with vascular dysfunction (Chang et al., 2014; de
Paula et al., 2021; Li et al., 2021). Excessive caloric consumption
stimulates peripheral immune cells, induces the generation
of proinflammatory cytokines and increases oxidative stress,
which have all been linked to BBB dysfunction (Salameh et al.,
2019). In a recent study in obese Zucker rats, researchers
observed BBB disruption (e.g., increased aquaporin-4 and
reduced glucose transporter 1) in the frontal cortex and
hippocampus, which was associated with cognitive impairment
(Tomassoni et al., 2020). BBB breakdown was also found
in a streptozotocin-induced diabetes model that had reduced
levels of tight junction proteins (e.g., occludin, and zonula
occludens-1), and increased protein levels of cell adhesion
molecules (e.g., intercellular adhesion molecule 1, and vascular
adhesion protein 1) (Aggarwal et al., 2018). Importantly, BBB
leakage leads to the activation of glial cells, resulting in the
release of proinflammatory cytokines in the brain, causing
neuroinflammation and cognitive decline (de Aquino et al.,
2018; Salameh et al., 2019; de Paula et al., 2021). Notably,
a large amount of Aβ accumulation was detected in the
brain of a high-fat diet-induced obese model (Busquets et al.,
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FIGURE 2 | Health disparities in Alabama. The disparities prevalence of Alabamians in 2006–2022 as shown by (A) population without school diploma, (B) poverty,
(C) the prevalence of obesity, (D) the prevalence of diagnosed diabetes, (E) low access to healthy food, (F) leisure-time physical inactivity, (G) health professional
shortage area in primary care, and (H) health professional shortage area in dental care. These figures were generated using Rural Health Information Hub (RHIhub,
www.ruralhealthinfo.org).

2017). All the aforementioned studies support the theory that
high-caloric consumption causes metabolic disturbance and
disrupts neurovascular function, which enhances the risk of
ADRD. As mentioned above, many Alabamians struggle with
obesity (Figure 2C) and diabetes (Figure 2D), prompted by
a high-calorie diet and/or reduced access to healthy food
(Figure 2E). For these reasons, metabolic disturbances in
Alabama may contribute to the increased risk for neurovascular
dysfunction and ultimately progression of AD.

Cardiovascular Disease
Another important factor for neurovascular disruption is
cardiovascular impairment (Aires et al., 2020; Vanherle et al.,
2020). Based on the data in 2018, heart disease (mostly
coronary heart disease) is the most common cause of death
in the US, as well as in the state of Alabama (Alabama,
2021; Heart Disease and Stroke Statistics, 2021 Update). In
2020, the CDC reported the number of people in Alabama
who died with heart disease: 14,739 per 100,000 individuals

(Stats of the States Heart Disease Mortality, 2021). Cholesterol
deposition inside the arterial wall, also known as atherosclerosis,
is a vascular disease that underlies major ischemic events
such as myocardial infarction and stroke (Atherosclerosis,
2022). It has been shown that there is a relationship between
a score of vascular risk factors and AD risk factors in
middle aged adults (Lockhart et al., 2021). A lower score of
cardiovascular risk factors, aging, and incidence of dementia
(CAIDE) was found in White individuals when compared
with African Americans, resulting in a decreased risk for AD
(Lockhart et al., 2021). A higher CAIDE score is also linked to
increased Aβ deposition (Lockhart et al., 2021). Therefore, the
impact of the social determinants of health in ethnic minority
communities, particularly African Americans, leads to higher risk
of vascular disease and AD.

Notably, the correlation of atherosclerosis, cardiovascular
disease, and APOE4 was reported (Bennet et al., 2007; Granér
et al., 2008; Duong et al., 2021). APOE4 expression was
highly correlated to neurovascular impairment, stroke, and
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AD (Montagne et al., 2020b; Pendlebury et al., 2020). In
addition, mice with targeted replacement of ApoE with human
APOE4 displayed a reduction of resting CBF and a lower
density of brain vascular structures such as endothelial cells
and pericytes (Koizumi et al., 2018). APOE4 carriers exhibited
degradation of BBB structures via several pathways, including
pericyte degeneration, reduction in low density lipoprotein
receptor-related protein 1 expression, increased proinflammatory
cytokines, and elevated apoptosis. APOE4 carriers also exhibited
synaptic dysfunction, hyperphosphorylated tau, and increased
Aβ levels (Halliday et al., 2016; Zhao et al., 2020). Furthermore,
an association of increased BBB permeability and elevated levels
of the pericyte injury marker, soluble PDGFRβ, in CSF and
cognitive impairment was found in APOE4 carrier participants
(Montagne et al., 2020a). Therefore, cardiovascular disease not
only causes systemic pathologies, but can also progress into
cerebrovascular dysfunction and eventually AD, including in
individuals living in Alabama.

Pulmonary Diseases
Human lungs are constantly exposed to airborne microbes,
pollutants, and small particulates, all of which can directly
impact their function, and secondarily the health of the brain.
Specific to the lung-brain axis, emerging evidence indicates that
damage to the lung can lead to cognitive impairment (Ely et al.,
2004). The intricate lung-brain link has been implicated in lung
damage associated with mechanical ventilation, bacterial and
viral pneumonia, and air pollution.

Clinical studies have shown that many patients in the
intensive care unit (ICU) suffer from the rapid onset of
delirium during their ICU stay, which may transition into
prolonged cognitive sequelae even after the patients recover
from the critical illness and are released from the ICU (Girard
et al., 2010). In fact, a hospital stay itself can harm cognition,
and in the ICU settings, animal studies have implicated that
mechanical ventilation can increase peripheral inflammation
that results in neuroinflammation and impairs brain function
(Reade and Finfer, 2014; Lahiri et al., 2019). While the
mechanisms underlying clinical delirium and/or the consequent
impairment to the brain remain unclear, cognitive impairment
is more rampant in infection-induced pneumonia patients,
including patients that contract either community- or hospital-
acquired pneumonia infections (Karhu et al., 2011; Girard et al.,
2018). Although the infection-induced peripheral inflammatory
response may be a common mechanism for several types
of infection, emerging evidence has indicated that additional
mechanisms may underlie the lung-brain axis.

It was recently discovered that lung capillary endothelium
produces and releases amyloids into the surrounding milieu
(Ochoa et al., 2012; Morrow et al., 2016). These amyloids include
Aβ variants that possess antimicrobial activity against invading
microbes (Voth et al., 2020). However, when exposed to virulent
clinical bacterial strains, including bacteria such as Pseudomonas
aeruginosa, Klebsiella pneumoniae, and Staphylococcus aureus,
the amyloids produced by lung endothelium become cytotoxic.
In addition to Aβ, lung endothelium also produces several tau
isoforms that are also released upon bacterial infection (Balczon
et al., 2017; Choi et al., 2021).

Intriguingly, virulent bacteria-elicited lung endothelial Aβ

and tau gain tropism toward the brain (i.e., neurotropic), are
neurotoxic to brain cells, and may cause Aβ and tau aggregation
(Choi et al., 2021). Thus, a bacterial lung infection that elicits
the release of endothelial Aβ and tau may induce incident
dementia indirectly by triggering the senile plaques and/or NFT
pathways (Lin et al., 2018; Balczon et al., 2019, 2021; Scott et al.,
2020).

Chlamydia pneumoniae bacterium, on the other hand, has
been found to invade the brain and trigger brain impairment.
Indeed, along the same line of findings, viruses and viral particles
(e.g., herpes viruses) found entangled in the senile plaques of
AD brains, likely due to the antimicrobial activity of Aβ, have
been suspected to be the cause of AD (Kumar et al., 2016; Eimer
et al., 2018; Abbott, 2020). Whether these microbes could be
the smoking guns that trigger AD is still under heavy debate,
but it is not hard to imagine that the presence of neurotropic
viruses in the brain and the consequent neuroinflammation
would directly impact brain function. Studies from the recent
COVID-19 pandemic show that the SARS-CoV-2 virus could
also damage the brain (Kotfis et al., 2020; Mao et al., 2020).
However, it appears that the virus may do so both via the
lung-brain axis and via the olfactory transneuronal retrograde
pathways (Barthold et al., 1990; Perlman et al., 1990; St-Jean
et al., 2004). Altogether, these findings support the concept
that pathogenic microorganisms cause infections generating an
innate immune response and have fueled the formation of the
peripheral amyloid hypothesis to cognitive impairment and AD
(Nelson, 2022).

The lung-brain axis could further expand to include chemical
pollutants and particulate matters < 2.5 µm (PM2.5). In
addition to the risk of developing asthma, cardiovascular
disease, lung disease, and premature death, emerging evidence
has implicated that greater exposure to airborne pollutants
is associated with an increased risk of dementia (Ehlenbach
et al., 2010; Corrales-Medina et al., 2015; Peters et al., 2019).
Alabama ranks 33rd among US states for air quality with
a value of 7.8. This value correlates to an average exposure
to PM2.5 (Explore Air Pollution in Alabama, 2021 Annual
Report). This line of research has implicated that oxidative
stress induced by breathing in harmful particles results in
chronic respiratory and systemic inflammation, which impairs
BBB integrity and triggers neuroinflammation (Moulton and
Yang, 2012). There is evidence in North America, that areas
with low SES have higher concentrated air pollutants (Hajat
et al., 2015). Individuals with low income also tend to
live nearer to sources of pollution, increasing their exposure
(O’Neill et al., 2003).

POTENTIAL PREVENTIONS AND
TREATMENTS

Pharmaceutical Treatments
There are a few drugs approved by the Food and Drug
Administration (FDA) for AD patient use; these include
acetylcholinesterase inhibitors (e.g., rivastigmine and donepezil),
a N-methyl-d-aspartate receptor agonist (e.g., memantine), and
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a monoclonal antibody to Aβ (e.g., aducanumab). There are
no FDA approved drugs for the treatment of neurovascular
dysfunction that occurs in vascular cognitive impairment and
dementia. However, there are several candidates in the pipeline
which we describe below and summarize in Figure 3.

Currently, we are aware of only one interventional ADRD-
related clinical trial recruiting in Alabama (NCT01760005).
This study is investigating the use of anti-Aβ antibodies (e.g.,
Gantenerumab and Solanezumab) in patients with ADAD. These
drugs have been shown to bind to Aβ aggregates and improve
downstream biomarkers, but no cognitive benefits have been
observed in early trials (Salloway et al., 2021).

Efforts have been made to assess the vascular and cognitive
benefits of currently approved drugs. For example, lowering
blood pressure was shown to reduce the risk of cognitive
impairment in the Systolic Blood Pressure Intervention Trial—
Memory and Cognition in Decreased Hypertension cohort
(Williamson et al., 2019; Nasrallah et al., 2021) and other cohorts
(Ding et al., 2020; Peters et al., 2020). The beneficial effect of
anti-hypertensive classes of drugs on cognitive impairment have
yielded conflicting results (De Oliveira et al., 2016; Ding et al.,
2020; Peters et al., 2020).

Lomecel-b is made from medicinal signaling cells that have
been isolated from bone marrow in adult donors and was recently
tested in a Phase I clinical trial for AD (Brody et al., 2022). This
allogenic drug functions by multimodal mechanisms of action
and was able to increase anti-inflammatory (e.g., IL-10, IL-12,
sIL-2Rα) and pro-vascular (e.g., VEGF, IL-4, IL-6) biomarkers in
patient serum (Oliva et al., 2021).

CY6463 is a soluble guanyl cyclase stimulator that is meant to
normalize the nitric oxide-cGMP signaling pathway. Deficiency
in this pathway has been associated with neurovascular
dysfunction (Garthwaite, 2019). This study suggests that there
may be additive effects when CY6463 is administered with
donepezil (Correia et al., 2021).

AD patients exhibit a decline in thiamine diphosphate-
dependent enzymes, which are involved in glucose metabolism
in the brain (Gibson et al., 2020). Benfotiamine is a synthetic
thiamine precursor that acts on metabolic pathways, oxidative
stress, and inflammation by activating transketolase which
reduces advanced glycation end products production (Ahmed,
2005; Raj et al., 2018). In a Phase IIa study, Benfotiamine was
determined to be safe for AD patients and lessened cognitive
decline, especially in APOE4 non-carriers (Gibson et al., 2020).

Gut microbiota play an important role in Th1/M1 microglia-
predominated neuroinflammation in AD progression (Xiao
et al., 2021). Sodium oligomannate (GV-971) effectively remodels
gut microbiota and reduces Th1-related inflammation in the
brain (Wang et al., 2020; Xiao et al., 2021). Furthermore, it
was shown to improve cognitive function in AD patients in
a Phase III trial (Wang X. et al., 2019; Wang et al., 2020;
Xiao et al., 2021). GV-971 has been approved in China for
treatment of mild to moderate AD to improve cognitive function
(Syed, 2020). It has been hypothesized that the benefit of
GV-971 might be due to antimicrobial and antiviral activities,
specifically against herpes simplex virus type 1 (Itzhaki, 2020).
Future studies should not only assess cognitive function but

also examine the neurovascular benefits of GV-971 in MCI
and AD patients.

Non-pharmaceutical and Alternative
Treatments
Diet and Supplements
While there is no standard treatment for ADRD, altering one’s
diet and taking supplements may be beneficial against the
cognitive decline and pathological severity of AD. Currently,
multiple studies support the hypothesis that modulation of
gut dysbiosis reduces negative pathologies and memory loss,
delaying the severity of AD both in experimental studies and
in clinical trials. Probiotic supplementations in Aβ1−42-induced
AD rats showed improved learning and synaptic plasticity
(Rezaeiasl et al., 2019). Furthermore, probiotic supplementation
along with moderate-intensity interval training in AD rats
enhanced the mRNA expression of hippocampal choline
acetyltransferase and brain-derived neurotrophic factor (BDNF),
which are essential for synaptic function (Shamsipour et al.,
2021). Another experiment demonstrated that co-treatment of
probiotics and selenium for 12 weeks decreased the abnormalities
of metabolic profiles, reduced circulating inflammatory markers,
increased antioxidant activity, and enhanced the cognitive
score in AD participants (Tamtaji et al., 2019). A recent
study also revealed the benefits of gut modulation on mental
and stress adjustment not only in AD patients, but also in
healthy older adults (Kim et al., 2021). Diet is a part of
culture and may be challenging to change for individuals in
the South. However, taking supplements may be an easier
change to implement.

Supplementation with choline, a nutrient that plays a key
role in cholinergic system and synaptic processes, reduced Aβ

plaques and neuroinflammation in the hippocampus, decreased
the activation of microglia, augmented synaptic proteins, and
improved spatial memory in AD mice (Velazquez et al., 2019;
Wang Y. et al., 2019). Furthermore, AD mice (e.g., J20)
supplemented with lactoferrin, a multifunctional protein that acts
as an antioxidant or anti-inflammatory, improved Aβ clearance
as demonstrated by increased brain levels of ApoE and Abca1
(Abdelhamid et al., 2020). Lactoferrin supplementation not
only led to a reduction of Aβ but also lowered BACE1 levels
(Abdelhamid et al., 2020). Administration of 7-glutamylcysteine
not only increased the brain antioxidant activity and anti-
inflammatory expression, but also reduced lipid peroxidation,
Aβ deposition, and inflammatory markers, leading to cognitive
improvements in APP/PS1 mice (Liu Y. et al., 2021). Vitamin
D was also shown to improve working memory at early and
late stages in 5XFAD transgenic mice (Morello et al., 2018).
Resveratrol, a plant-derived phytoalexin, has been shown to
regulate BBB permeability and neurovascular function (Shin
et al., 2015; Wei et al., 2015). Several studies showed that
resveratrol administration attenuated neurovascular dysfunction
(Wei et al., 2015) by enhancing antioxidants and reducing
cognitive loss (Zhao et al., 2012). While the results of these
experimental studies are promising, the benefits of these
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supplements should be tested in future clinical studies including
diverse populations and regions.

A clinical study reported the benefits of dietary Omega-3 fatty
acids, specifically docosahexaenoic acid and eicosapentaenoic
acid, on cognition in MCI subjects (Chiu et al., 2008).
Interestingly, a long-term modified ketogenic diet, a common
diet for subjects with impaired brain energy metabolism,
improved cognition in AD patients (Ota et al., 2019; Phillips et al.,
2021).

In addition, the Mediterranean-Dietary Approach to Systolic
Hypertension (DASH) diet intervention for neurodegenerative
delay (MIND), which is a diet enriched with high antioxidants,
has been shown to delay cognitive dysfunction associated with
aging (Morris et al., 2015; de la Rubia Ortí et al., 2018; Liu X. et al.,
2021). Dietary supplementation serves as a feasible and effective
method to delay or protect against the progression of cognitive
loss and AD. However, further studies should be done to include
the effects of dietary supplementation in AD populations with
diverse racial, ethnic and regional backgrounds.

Exercise
Individuals with higher levels of physical activity present
with decreased cognitive decline and reduced risk of AD
(Kramer et al., 2005, 2006; Rovio et al., 2005; Rolland et al.,
2008; Lautenschlager et al., 2010; Barnes, 2015; Allard et al.,
2017; Gallaway et al., 2017; Stephen et al., 2017; Barnes
and Corkery, 2018; Rabin et al., 2018, 2019; Coelho-Junior
et al., 2020; De la Rosa et al., 2020; Pasek et al., 2020;
Sinha et al., 2020). It has been estimated that an increase
of 25% in physically active adults would prevent > 230,000
cases of AD in the US (Barnes and Yaffe, 2011). This is
largely based on evidence that demonstrates exercise promotes
Aβ turnover (Baker et al., 2010; Liang et al., 2010; Rabin
et al., 2018, 2019), the synthesis and release of neurotrophins
(Coelho et al., 2013, 2014), and cerebral (Burdette et al.,
2010; Bliss et al., 2020) and peripheral blood flow (Scicchitano
et al., 2019; O’Brien et al., 2020; Pasek et al., 2020), while
also eliciting a positive systemic inflammatory effect (Jensen
et al., 2019; De la Rosa et al., 2020). Thus, there is growing
support that, at minimum, exercise has the ability to delay the
onset of AD and related vascular conditions such as small-
vessel-type ischemic stroke and cardiovascular disease (Ngandu
et al., 2015; Gallaway et al., 2017; Barnes and Corkery, 2018;
Nystoriak and Bhatnagar, 2018; Wardlaw et al., 2019; Alty
et al., 2020; Pasek et al., 2020), which African Americans
experience at a disproportionately higher prevalence (Soden
et al., 2018; Benjamin et al., 2019; El Husseini et al., 2020).
While the benefits of regular exercise are known, many adults
are not meeting the recommended amount (Benjamin et al.,
2019; Centers for Disease Control and Prevention, 2021). For
instance, the South has the highest prevalence of physical
inactivity compared to other US regions (Centers for Disease
Control and Prevention, 2021). Alabama is the 4th least
active state (Figure 2F), and African Americans residing in
Alabama self-reported physical inactivity at a prevalence of
34.3% (Centers for Disease Control and Prevention, 2021).
Perhaps as a direct consequence, Alabama exhibits the 2nd

highest AD mortality rate (CDC, 2022e: 50.8). Interventions
are typically designed to circumvent these outcomes by
including exercise prescriptions consisting of aerobic and/or
resistance exercise, while also fostering exercise adherence. It
has been shown that aerobic exercise increased serum BDNF
in African Americans with MCI, but this improvement was
only seen in non-APOE4 carriers (Allard et al., 2017). This
suggested that genotype is an important factor when examining
the efficacy of exercise interventions aimed at ADRD risk
reduction. This has garnered additional support via a report
that aerobic exercise in older African Americans provided
no improvement in a hippocampus-related assessment of
generalization following rule learning in a high-genetic risk
group (Sinha et al., 2020). Interestingly, however, it has been
stated that APOE4 status influences the associations between
exercise and ADRD risk such that exercise has a greater
ability to protect among APOE4 carriers (Rovio et al., 2005;
Kaufman et al., 2021). Taken together (Rovio et al., 2005;
Allard et al., 2017; Sinha et al., 2020), exercise is still beneficial
for genetically at-risk individuals, but the most efficacious
exercise prescription has yet to be elucidated. Notably, there
is currently limited understanding concerning the ability of
resistance exercise to improve vascular health with the goal
of reducing ADRD risk (Gallaway et al., 2017; Barnes and
Corkery, 2018; Landrigan et al., 2020), especially within the
African American population (Shin and Doraiswamy, 2016).
However, a recent meta-analysis (Coelho-Junior et al., 2020)
suggested that resistance training likely improves cognition,
but there was no available data regarding the impact of
genotype or race/ethnicity. Therefore, this critical gap presents
a promising future direction with opportunities for high
impact discoveries.

Diet and exercise along with cognitive training and
monitoring vascular risk factors may maintain or improve
cognitive function in older adults who may have increased risk of
developing cognitive decline or dementia. This is supported by
results from the Finnish Geriatric Intervention Study to Prevent
Cognitive Impairment and Disability (FINGER) study (Ngandu
et al., 2015). The World-Wide FINGER network2 is working
to replicate results with larger and more diverse populations,
including the US POINTER Study (NCT03688126).

Emotional Wellbeing
The treatment of mood disorders with psychotherapy may
serve as a protective factor for vascular health. Several studies
have shown that mood disorders predict vascular dysfunction
(Frasure-Smith and Lespérance, 2008; Fiedorowicz et al.,
2011). Mood disorders such as anxiety and depression may
increase the chance of adopting behaviors such as smoking,
sedentary lifestyle, and issues with medication adherence (Abed
et al., 2014). Depression has been found to impact vascular
health (Valkanova and Ebmeier, 2013). Depressed individuals
presenting with simultaneous symptoms of anxious distress
appear to be at an even higher risk compared to other depressed
individuals (Rowan et al., 2005; Almas et al., 2015). Patients

2www.alz.org/wwfingers
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with established cardiovascular disease and mental health
comorbidities struggle with medication adherence and adopting
healthy lifestyle recommendations as well as experience greater
disease progression (Ryder and Cohen, 2021). Psychotherapy
can potentially serve as a preventative measure for vascular
dysfunction through improving behaviors linked to protective
factors of vascular dysfunction. Psychotherapy has been effective
in improving vascular outcomes for patients with hypertension
through adherence to treatment (Ma et al., 2014). Meta-analyses
of randomized control trials supported that mental health
treatments led to improvements in depression and anxiety, in
addition to reductions in coronary heart disease events and
cardiovascular mortality (Rutledge et al., 2013; Richards et al.,
2018). To prevent the negative cardiovascular consequences of
mood disorders, appropriate mental health screening should be
conducted by providers (Ryder and Cohen, 2021). The treatment
of mood disorders has an overall positive impact on vascular
health and functioning.

Non-pharmaceutical interventions for AD have been found
to be beneficial preventative measures. Social support can serve
as a protective factor for AD. In a study that examined positive
and negative effects of social support on the development
of AD, positive social support from children was associated
with reduced risk of developing dementia (Khondoker et al.,
2017). Children may be in a unique position to be impactful
members of an elder’s psychological health and should be
incorporated into their support system. In a study that examined
the relationship between individual forms of social support with
early AD vulnerability and cognitive functioning, social support
in the form of supportive listening was associated with greater
cognitive resilience (Salinas et al., 2021). Social support is one
non-pharmaceutical, early intervention that may lead to better
outcomes for individuals with ADRD.

Hormone Replacement
Midlife aging is a critical time for preventing and delaying
neurodegeneration (Mishra et al., 2022). Studies have shown
that deprivation of estrogen as well as testosterone relate
to cognitive decline in rats, with obesity accelerating the
process (Pratchayasakul et al., 2015; Chunchai et al., 2019).
The loss of control effect that estrogen has on brain glucose
metabolism during the menopausal transition in women,
accelerated by APOE4, creates a bioenergetic crisis leading to
neurodegeneration (Rahman et al., 2019; Mishra et al., 2022). The
sex disparities seen in AD patients could be explained by the
neuroprotective nature of estrogen in females and the changes
in estrogen expression that occur at or around the time of
menopause (Snyder et al., 2016; Rahman et al., 2019). Estrogen
replacement therapy has potential as a treatment for women with
AD but more studies are needed to determine the effects of the
stages of the menopausal transition and ultimately if the therapy
would be beneficial (Smith et al., 2010; Guo et al., 2020; Song et al.,
2020).

Oxygen Therapy
As stated above, there are currently limited options available to
improve the prognosis of AD, and thus, researchers continue

to attempt to understand the efficacy of various off-label
treatments such as hyperbaric oxygen therapy (HBOT), notably
in trials aimed at promoting neuroplasticity and improving
neurocognitive function in humans (Harch and Fogarty, 2018;
Xu et al., 2019; Chen et al., 2020; Gottfried et al., 2021;
Marcinkowska et al., 2021; Shapira et al., 2021; Somaa, 2021).
The effects of this specific treatment have also been investigated
via various animal models to reveal HBOT has the ability
to reduce neuroinflammation (Shapira et al., 2021), reduce
hippocampal neuronal apoptosis (Zhao et al., 2017), and
promote neuro- (Zhang et al., 2010) and angiogenesis (Yang
et al., 2017). Accordingly, there is rationale to examine HBOT
implementation due to the synergistic effects of vascular disease
and AD; HBOT might delay or prevent vascular disease and
AD via the alleviation of both cerebrovascular occlusion and
the resulting cerebral hypoperfusion (Zhang and Le, 2010;
Harch and Fogarty, 2018; Xu et al., 2019; You et al., 2019;
Gottfried et al., 2021; Shapira et al., 2021; Somaa, 2021). Typical
administration of HBOT consists of inhaling 97–100% oxygen
under a pressure greater than 1 atmospheric absolute (ATA)
(Tibbles and Edelsberg, 1996; Carson et al., 2005), which, in
theory, increases the concentration of oxygen dissolved in the
plasma as well as arterial saturation to subsequently improve
tissue hypoxia (Xu et al., 2019; Fischer and Barak, 2020). In
practice, it has been shown that 60 sessions of HBOT (5
d·wk−1, 90 min of exposure, 100% O2 at 2 ATA) induces
angiogenesis as demarcated by increases in cerebral perfusion and
velocity of blood flow (Hu et al., 2014; Tal et al., 2017). These
vascular function/structure benefits have fostered investigations
of HBOT pertaining to improved cognitive outcomes (Tal
et al., 2017; Zhao et al., 2017; Xu et al., 2019; Gottfried
et al., 2021; Marcinkowska et al., 2021; Shapira et al., 2021;
Somaa, 2021). For instance, following a similar HBOT exposure
prescription (Tal et al., 2017), six elderly patients with significant
memory loss exhibited increases in CBF in multiple brain
areas as well as improved global cognitive scores (memory,
attention, and processing speed were most ameliorated) (Shapira
et al., 2021). Additionally, in a large sample of patients
diagnosed with vascular dementia, it was revealed that HBOT
(5 d·wk−1, 60 min of exposure, 100% O2 at 2 ATA) plus
5 mg·d−1 of donepezil hydrochloride resulted in higher mini-
mental state examination (MMSE) scores, a commonly used
cognitive impairment screening test, post treatment than the
control (5 mg·d−1 of donepezil hydrochloride) group (19.8%
vs. 9.7%, respectively) (Xu et al., 2019). Further, within this
investigation (Xu et al., 2019), it was reported that humanin
was increased to a greater extent in HBOT condition compared
to the control group (17.4% vs. 13.2%), and of interest, the
humanin levels were positively correlated (r = 0.409) with
the MMSE scores. Overall, the understanding of HBOT to
alleviate symptoms of AD via vascular improvements remains
in its infancy, but the currently available data is undoubtedly
promising, and warrants continued investigation. Future work
remains particularly needed to uncover potential race/ethnicity
and genetic based differences in responses as well as the efficacy
of combining HBOT with other suspected AD preventative care
strategies such as diet and exercise.
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HEALTH DISPARITIES FOR PREVENTION

Rural Health Disparities
Some rural Americans, particularly individuals living in the rural
South, face greater health disparities compared to both their
urban counterparts as well as individuals in other rural areas
in the United States (Murray et al., 2006; Miller and Vasan,
2021). The rural mortality penalty is a term used to describe the
increased mortality rate observed in rural areas in certain parts of
the United States compared to non-rural populations. Southern
rural areas, particularly Appalachia, the Mississippi Delta Region,
and the Alabama Black Belt have the lowest life expectancies in
the country, and this trend has persisted for the last five decades
(Singh and Siahpush, 2014; James et al., 2018). While mortality
rates are higher in all areas in the South, mortality rates in rural
areas in the East South Central Region (e.g., Kentucky, Tennessee,
Mississippi, and Alabama) have the highest rates of mortality
(Murray et al., 2006; James et al., 2018). Additionally, lower SES
and higher rates of poverty correlate to poorer health outcomes.
Non-metropolitan areas in Alabama have a poverty rate of
20.6%, which further increases disparities in access to quality
healthcare in this population (Rural Health Information Hub,
2022), as shown in Figure 2G. These higher mortality and poverty
rates in these underserved Southern rural communities are due
to long-standing structural and social barriers to good health,
education, jobs, and income/wealth. These communities have
greater barriers to accessing quality health care as individuals
have to travel longer distance to physicians’ offices, do not
have access to public transportation, are more likely to be
uninsured, and there are fewer physicians per capita (Miller
and Vasan, 2021). The rural South has the fewest number of
physicians relative to population, and according to data collected
from the Health Resources and Services Administration, in
non-metropolitan regions in Alabama, there are only nine
physicians per ten thousand people (Miller and Vasan, 2021;
Rural Health Information Hub, 2022). The prevalence of
health professional shortage in primary care (Figure 2G) and
dentistry (Figure 2H). Furthermore, the University of Alabama
at Birmingham Alzheimer’s Disease Center is the only academic
center for the specialized care of patients with AD in the state.
A lack of support and resources for both patients and caregivers
in addition to rural Americans having less frequent interactions
with healthcare providers all likely contribute to this population
receiving a diagnosis of AD at later stages of cognitive decline
than their urban counterparts (Rahman et al., 2021). These
observations are why it is vital to address the disparities in
care and resources present in rural communities, particularly
in states like Alabama, where over one million people reside
in rural areas of the state (Rural Health Information Hub,
2022).

Socioeconomic Status and Environment
Although age is a major factor in the development of
vascular dysfunction, dementia, and AD, it does not affect
the older populations equally, especially those individuals
of disadvantaged backgrounds, due to socioeconomic and

FIGURE 3 | Food and Drug Administration (FDA) approved, clinical trials and
preclinical studies of neurovascular unit (NVU) dysfunction, mild-cognitive
impairment (MCI) and Alzheimer’s disease (AD). Here, we highlight FDA
approved drugs for AD, and ongoing preclinical studies and clinical trials
targeting NVU dysfunction, MCI, and AD. *Clinical trials for anti-Aβ antibodies
Gantenerumab and Solanezumab are being conducted in Alabama.

environmental contributors. SES, the social ranking of an
individual or group that is often measured by the combination
of education, income, and employment, frequently reveals
discrepancies and inequities regarding resource access, ultimately
leading to health disparities (Riley, 2012; American Psychological
Association, 2021).

Components of SES have been identified as modifiable risk
factors for the development of dementia and dementia-related
mortality. For example, when comparing individuals with higher
SES to those with lower SES, higher SES people should anticipate
to live a much longer amount of time without dementia (Cha
et al., 2021). In addition, lower SES with low income and
financial stress is associated with increased risk of dementia
in older persons, and the correlations are similar to those
found in older adults with lower education in the United States
(Samuel et al., 2020). Also, caregivers who share a home
with AD patients with severe neuropsychiatric symptoms (e.g.,
aggression and anxiety) while living in lower SES areas had more
caregiver stress, further showing that different physical and social
environmental factors have distinct effects on the likelihood of
AD (Alhasan et al., 2021).
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Collectively, the aforementioned examples provide evidence
that people of lower SES will suffer major consequences of
healthcare outcomes and caregiver expenses. Thus, earlier
detection and intervention strategies should be developed to
steer preventative and risk-reduction measures for vascular
dysfunction, dementia, and AD.

Accessibility to Healthcare and Quality
Food
The incidence of AD in Alabama is compounded by poor
health predispositions and barriers to receiving necessary medical
care. In 2019, the Rural Health Information Hub reported that
47.5% of metropolitan Alabama residents and 31.7% of non-
metropolitan Alabama residents had low access to healthy food.
Low-access areas were defined as having at least 500 people, or
33% of the population, living more than 1 mile (urban areas)
or 10 miles (rural areas) from the nearest supermarket (Rural
Health Information Hub, 2022). Additionally, in 2018, there
were 7 Primary Care Physicians (PCPs) in metropolitan areas
of Alabama per 10,000 people with only 5 PCPs per 10,000 in
non-metropolitan areas (Rural Health Information Hub, 2022).
The prevalence of healthcare disparities and low accessibility
to healthy food in Alabamians is shown in Figure 2. A 2015
report by the Alzheimer’s Association further revealed that 51.0%
of adults in Alabama aged 45 and over that are experiencing
Subjective Cognitive Decline have not talked to a health care
provider (ADPH, 2021).

In the South, including in Alabama, we like our food fried
(e.g., chicken, okra, and almost anything else), buttery, salty,
and/or sweet. Just writing that sentence can make a Southerner
hungry. Detaching culture from food is challenging but if there
is more awareness about the impact of diet on cardiovascular
health and brain health, perhaps we can reduce the risk of
ADRD in Alabama. However, saying one should eat better
and exercise more is much easier said than done. It requires
creating healthy communities (Crook et al., 2019). Healthy
communities are walkable, safe, supportive, intergenerational,
loving, and have access to healthy food and other essentials. These
safe communities are non-violent, supportive, and invite social
interaction and physical activity. These healthy communities are
structured on the health equity principle of meeting people where
they are and they are not judgmental.

BEYOND ALABAMA

The aforementioned ADRD risk factors are concentrated in
Alabama; however, other regions exhibit many of these risk
factors and health disparities as well and should be highlighted.
As previously stated, African Americans make up 26.8% of
the population in Alabama (Census, 2022). However, the
proportion of Black participants and other ethnic minorities
in the United States population is growing (Tamir, 2021).
Furthermore, the population of minority children and youth
grew from 33% (1990) to 38% (2000) to 43% (2008) (Johnson
and Lichter, 2010). Therefore, ethnicity- and race-related health

disparities must be addressed not only in Alabama but across the
United States as well.

Lifestyle-related risk factors for ADRD are also present
outside of Alabama. For example, only 8.4% of adults in West
Virginia met fruit intake recommendations, compared to the
American average of 12.3% (Lee, 2022). Obesity rates also
vary between regions of the United States with the highest
obesity prevalence in the Midwest (34.1%) and South (34.1%)
(CDC, 2021c). Alcohol binge drinking prevalence among adults
was highest in Montana, Wyoming, Colorado, North Dakota,
South Dakota, Nebraska, Minnesota, Iowa, Missouri, Wisconsin,
Illinois, Michigan, Connecticut, Massachusetts, Maine, and
Hawaii in 2018 (CDC, 2022b). Cigarette use was highest
among adults in West Virginia, Kentucky, Louisiana, Ohio,
Mississippi, Alabama, Tennessee, Missouri, Indiana, Oklahoma,
Michigan, and North Carolina in 2019 (CDC, 2021b). The
LGBTQ student population in 2019 was greater than 18% in
New York, Connecticut, Alabama, New Mexico, South Carolina,
Florida, Nevada, and Vermont (CDC, 2021a), suggesting that
there will be a shift in sexuality among the American adult
population in the future. In addition, California, Nevada, Texas,
Mississippi, Alabama, Georgia, Florida, South Carolina, North
Carolina, Maryland, New Jersey, and Massachusetts had the
highest rates of HIV diagnosis among adults and adolescents
in 2019 (CDC, 2022d). It will be important to understand the
association between these risk factors and ADRD so future
ADRD research should include lifestyle-related risk factors,
gender and sexuality as variables.

Pathological risk factors for ADRD are present in certain
ethnic groups that were not highlighted previously in this
review due to lower relevance to Alabama. For example, Filipino
Americans are known to have a high risk for cardiovascular
disease, hypertension, type 2 diabetes, and metabolic syndrome
at lower body mass index levels, likely due to diet and genetics
(Abesamis et al., 2016). Despite a higher prevalence rate in non-
Hispanic White people, among APOE4 carriers, Asians had a
significantly steeper memory decline when compared to White
people (Makkar et al., 2020). Asian-Indians are also known to
have the highest coronary artery disease rates (Ardeshna et al.,
2018). As previously stated in this review, cardiovascular disease
is a known ADRD risk factor leading to impairment of the NVU
(Vanherle et al., 2020). Pulmonary diseases, a known risk factor
for ADRD, exist at high prevalence in states other than Alabama.
Patients with chronic obstructive pulmonary disease (COPD)
were found to have a higher risk for dementia (Liao et al., 2015).
In 2019, the mortality rate due to COPD ranges from 49.9 to 61.4
deaths per 100,000 people not only in Alabama, but Wyoming,
Oklahoma, Arkansas, Mississippi, Tennessee, Kentucky, Indiana,
and West Virginia as well (CDC, 2022a).

Cardiovascular and lifestyle risk factors for ADRD are also
present in countries other than the United States. For example,
Asians including Indonesians (Malays and Chinese ancestry),
Singaporean Chinese, Malays and Indians, and Hong Kong
Chinese have 3–5% higher body fat than White people at any
given body mass index (Deurenberg et al., 2002). A study
performed in India showed that South Asians are at high risk
for obesity-associated cardiovascular disorders thought to be due

Frontiers in Neuroscience | www.frontiersin.org 15 June 2022 | Volume 16 | Article 915405

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-16-915405 June 29, 2022 Time: 12:30 # 16

Saiyasit et al. Health Disparities in Alzheimer’s Disease

to low adipokine production, lower lean body mass, and ethno-
specific SES factors (Prasad et al., 2011). In Italy, high cholesterol
was found in over 40% of the subject population and abnormal
low density lipoprotein values were observed in about 30% (Sofi
et al., 2005). In Sub-Saharan Africa, rates of overweight and
obesity are rising in children and adolescents due to lifestyle
and social determinants of health such as physical inactivity,
unhealthy diets, SES, and gender (Choukem et al., 2020). The
same study also found many cardiovascular risk factors for
ADRD such as metabolic syndrome, hypertension, dyslipidemia,
diabetes, and glucose intolerance in the 86,637 children and
adolescents in the study (Choukem et al., 2020). A nationwide
study in France between 2008 and 2013 showed that 38.9% of
early onset dementia cases were alcohol-related and 17.6% of
cases had an additional alcohol use disorder (Schwarzinger et al.,
2018).

Health disparities due to differences in SES can also be seen
globally. A study estimating the global, regional, and national
burden of stroke showed that age-standardized low-income
groups had several times higher stroke incidence than high-
income groups (Feigin et al., 2021). A Danish study also revealed
societal inequalities, indicating that those of higher SES appear
to be diagnosed with dementia earlier (Petersen et al., 2021).
Environmental factors such as air quality, toxic heavy metals,
and trace elements have also been shown to be risk factors for
ADRD (Killin et al., 2016). Bangladesh (76.9 µg/mL) was found
to have the worst air pollution in 2020, followed by Chad (75.9
µg/mL) (IQAIR, 2022) based on particulate matter up to 2.5 µm
in diameter. A study focusing on the reasons for Finland’s high
dementia mortality rate found that environmental factors such
as climate leads to production of neurotoxins that contribute
to dementia pathophysiology (Eiser, 2017). The same study also
found that trace elements such as mercury is also found in
Finnish bodies of water, reducing the quantity and effectiveness of
glutathione’s ability to protect against neurotoxins (Eiser, 2017).

CONCLUSION

Black, Hispanic and Native Americans have a higher incidence
of NVU intrinsic and extrinsic risk factors and consequentially
ADRD when compared to White Americans (Alzheimer’s
Association, 2022). Black Alabamians, in particular, have a higher
prevalence of AD risk factors than other Alabama residents,
highlighting tangible health disparities that warrant immediate

action. These racial, ethnic, and geographic differences,
when compounded with additional disparities in the social
determinants of health, further increase the risk for early death
for Black Americans in Alabama. In this review, we identified
vascular risk factors linked to AD as well as pharmaceutical and
non-pharmaceutical treatments and prevention practices to slow
or prevent neurovascular dysfunction and cognitive decline as
demonstrated in Figure 3. However, individuals living in many
regions in Alabama face barriers to implementing these lifestyle
changes due to a number of factors such as low SES, the southern
rural health penalty, food deserts, and decreased access to quality
health care. Consequently, individuals living in Alabama, and
similar states, are more prone to adopt unhealthy diets and
habits including sedentary lifestyles as well as drug and alcohol
use. Ultimately, the combined effect of these inequities lead to
a higher risk of NVU dysfunction in Alabama. Community
engaged investigators will have to give intentional attention to the
mistrust for the health care system within AL’s Black American
community. Such engagement by investigators and community
members will foster broader community involvement in research
that is relevant to underrepresented communities. There is a clear
and dire need for future ADRD studies to include more diverse
populations with a specific focus on the individuals affected by
the disparities outlined in this review.
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