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Accurate cancer type classification based on genetic mutation can significantly facilitate cancer-related
diagnosis. However, existing methods usually use feature selection combined with simple classifiers to
quantify key mutated genes, resulting in poor classification performance. To circumvent this problem,
a novel image-based deep learning strategy is employed to distinguish different types of cancer.
Unlike conventional methods, we first convert gene mutation data containing single nucleotide polymor-
phisms, insertions and deletions into a genetic mutation map, and then apply the deep learning networks
to classify different cancer types based on the mutation map. We outline these methods and present
results obtained in training VGG-16, Inception-v3, ResNet-50 and Inception-ResNet-v2 neural networks
to classify 36 types of cancer from 9047 patient samples. Our approach achieves overall higher accuracy
(over 95%) compared with other widely adopted classification methods. Furthermore, we demonstrate
the application of a Guided Grad-CAM visualization to generate heatmaps and identify the top-ranked
tumor-type-specific genes and pathways. Experimental results on prostate and breast cancer demon-
strate our method can be applied to various types of cancer. Powered by the deep learning, this approach
can potentially provide a new solution for pan-cancer classification and cancer driver gene discovery. The
source code and datasets supporting the study is available at https://github.com/yetaoyu/Genomic-pan-
cancer-classification.
� 2021 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Cancer is considered as the deadly genetic diseases, character-
ized by abnormal cell growths [1,2]. Globally, more than 18 million
new cancer cases are diagnosed resulting to 9.6 million deaths in
2018 [3]. Genetic mutations have been shown to be associated
with different types of cancer [4–6]. Cancer classification based
on genetic mutations can be readily achieved through increased
usage of high-throughput sequencing techniques. A large amount
of mutation data has been generated and publicly released. Among
them, The Cancer Genome Atlas (TCGA) is a cohort cataloguing
genetic mutations data for more than 30 types of cancers from
more than 10,000 patients [7]. TCGA contains various genetic
mutations data, including single-nucleotide polymorphism (SNP),
small insertions or deletions (INDEL), copy number variations
(CNV), etc. By handling the massive amount of data, researchers
now are able to design new analytical methods for accurate cancer
classification and detection based on gene alteration. However,
accurate and reliable cancer classification is particularly challeng-
ing as a result of the complexity and scale of the data. Considering
the sequencing covers more than thousands of genes, but most of
genes did not contain informative mutations thus making classifi-
cation difficult by analyzing all those genes [8,9]. In order to avoid
the mutation data being too sparse (even all zero), most analytical
methods screen genes before classification [10,11]. These methods
are simple and effective in some cases, but important features (ge-
nes) may be removed during the screening process.

Recent advances in deep learning underpin a collection of algo-
rithms with an impressive ability to analyze molecular data with-
out prior feature selection or human-directed training. Prior deep
learning approaches usually work well for a specific type of cancer,
such as brain cancer [12], gliomas [13], acute myeloid leukemia
[14], breast cancer [15,16], soft tissue sarcomas [17] and lung can-
cer [18]. Given the complexity of pan-cancer data, directly using
those mentioned approaches might not be appropriate for multiple
types of cancer. Recently, some works are starting to consider the
importance of genetic mutations in multiple types of cancer classi-
fication. By analyzing more than 8000 samples’ genetic mutations
profiles from 12 cancer types obtained from the TCGA, Sun et al.
[19] reported a novel method, Genome Deep Learning (GDL), for
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cancer subtyping. However, more than 12 specific models were
constructed. Limited by the number of models, this approach will
be insufficient and unconfident in analysis of more types, and lar-
ger cancer mutation data. Yuan et al. [20] described DeepGene, an
advanced Deep Neural Network (DNN) based cancer type classifier.
Experimental results on 12 selected types of cancer from TCGA
demonstrated improved classification performance compared with
classifiers of Support Vector Machine (SVM), k-Nearest Neighbors
(KNN) and Naïve Bayes (NB). However, the DNN classifier only
has the optimal accuracy of 65.5%, which will prevent its develop-
ment as an accurate cancer classifier.

In addition, most of these studies usually used only one type of
genetic mutation data as input for cancer classification, which lim-
its the performance of the classifier. For instance, Yuan et al. pro-
posed DeepGene on somatic point mutation data for cancer
classification [20]. AlShibli et al. [21] proposed three deep learning
techniques to classify six cancer types based on CNV data.
Although these methods are effective, the characteristic informa-
tion is still not comprehensive enough. As far as we known, there
is no existing work specifically designed to combined multiple
types of mutation data.

As a result, a general algorithm for easy and reliable cancer clas-
sification based on multiple types of genetic mutation data is still
missing. Previous works tend to use a variety of modeling methods,
sometimes combine them together. In such a context merely
adopting deep learning approaches developed within other setting
might not be appropriate in pan-cancer classification based on dif-
ferent gene mutation data. Given these challenges, a new and sim-
ple approach is necessary.

Motivated by works of deep learning in image analysis, we
describe a novel image-based deep learning strategy for cancer
classification and mutated gene discovery. The proposed strategy
is consisting of three main steps: construction of genetic mutation
map, classification using deep Convolutional Neural Networks
(CNN) and identify cancer driver genes by Guided Grad-CAM (a
combination of Guided backpropagation and Gradient-weighted
Class Activation Mapping) visualization [22]. This novel strategy
makes the following research contributions:

(1) A genetic mutation map was constructed for each cancer
patient, documenting the gene alternations condition
including single-nucleotide polymorphism (SNP), insertion
(INS) and deletion (DEL) with chromosome position infor-
mation. Prior knowledge on the mutated genes selected is
not necessary, avoiding bias caused by hand-picking. The
correlation between mutated genes and cancer types can
be built without gene prescreening.

(2) Genetic mutation map and popular deep neural networks,
which used in combination, produce a high accuracy in
pan-cancer classification. Compared with other widely
used classification methods (such as SVM and KNN), our
test classifiers, including VGG-16 [23], Inception-v3 [24],
ResNet-50 [25] and Inception-ResNet-v2 [26], can effec-
tively extract deep features from complex genetic muta-
tion data, and significantly improve the classification
accuracy.

(3) The application of Guided Grad-CAM visualization to gener-
ate heatmaps were utilized to identify tumor type-specific
genes and pathways.

(4) The systematical examination of gene mutations in 36 types
of cancer from 9,047 patient samples demonstrates the
advancement of our method, allowing a deeper understand-
ing of the mutation landscape of cancer. The constructed
genetic mutation map dataset was publicly released at
https://github.com/yetaoyu/Genomic-pan-cancer-classifica-
tion/tree/master/DNN-models/dataset.
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2. Materials and methods

2.1. Cancer types and samples statistics

The genetic mutation data from various types of cancer in TCGA

are collected from the Firebrowse portal (http://firebrowse.org/).
The dataset is assembled by selecting the genes across all samples
for 36 cancer types that contain mutations. As shown in Supple-
mentary Fig. S1, the upper line chart represents the number of
mutation genes from each type of cancer, and the lower bar chart
represents the total number of mutation conditions from those
genes, including SNP, INS and DEL. As shown in the horizontal axis,
the sample number of each tumor type ranges from Cholangiocar-
cinoma (CHOL, n = 35) to Breast invasive carcinoma (BRCA,
n = 982). From 9,047 TCGA samples with 23,231 mutation genes,
we demonstrate the general applicability of our image-based deep
learning method on 36 types of cancers.

2.2. Mutation map construction

To construct the mutation landscape of cancer, we create the
genetic mutation map. Assuming that the size of the mutation
map is N � N, all the mutation genes from 36 types of cancers
are collected, grouped and located to the matrix map according
to their positions on the chromosomes.

Firstly, mutated genes from each type of cancer are sorted
according to their positions on chromosome (chromosomes 1–22,
X and Y). For cancer j, the list of mutated genes on chromosome i
is rij , where 0 6 i 6 23, 0 6 j 6 35 in this paper. Then the mutated
genes in the same chromosome from different types of cancer are
grouped according to their positions. For chromosome i, the length
of mutated gene set Ri� ¼ ri0 [ ri1 [ � � � [ ri35 collected from different
cancers is Li. Therefore, the number of columns occupied by the
genes on chromosome i in the mutation map is ki � 3, where

ki ¼ Li=Nb c þ 1; if Li%N–0
Li=N; if Li%N ¼ 0

�
. To be specifically, each gene

occupies three pixels in the same row of the mutation map, where
each pixel point represents the mutation condition of the gene.
These three pixels are colored with blue, green or red to represent
SNP, INS or DEL respectively. Genes on all chromosomes occupy K
columns, where

K¼P23
i¼03ki¼

P23
i¼03�

Li=Nb cþ1; if Li%N–0
Li=N; if Li%N¼0

�
and K6N

According to the above description, we can choose an appropri-
ate N value. In our experimental data, the value of N is 310. Next, a
collection of mutation genes are arranged and aligned vertically in
the matrix map, according to their positions and orders on the
chromosomes 1 to 22, X, and Y, thereby forming a N � N genetic
mutation map for each tumor sample (Fig. 1A). Each chromosome
occupies ki � 3 columns in the genetic map, containing
p p 6 ki � Nð Þ genes and the extra pixels in the image are set to
zeros. Finally, we output the genetic mutation maps for all of
9,047 patient samples from 36 types of cancer. All the mutation
maps are normalized by the maximum value over RGB channels.

2.3. Without mutation map construction

Given M patient samples, the input to machine learning models
without mutation map construction is composed of the class
labels, i.e., the tumor type for the M individuals, and then the
counts for mutation of all genes from the M patient samples are
fed into a classifiers as described below. Let Q be the number of
genes for which SNP data is available. Let C 2 0::: t � 1ð Þf gM be
the vector containing the class labels where t is the number of
cancer types, and let G 2 0 . . . sf gM�Q ; s 2 N be the matrix repre-
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Fig. 1. Schematic representation of image-based deep learning for genomic pan-cancer classification. (A) The protocol of genetic mutation map construction. The gene
mutation conditions including single-nucleotide polymorphism (SNP), insertion (INS) and deletion (DEL) with chromosome position information are transformed into the
genetic mutation map. Each chromosome occupies ki � 3 columns in the genetic map, containing p p 6 ki � Nð Þ genes. Each gene occupies three pixels in the same row of the
mutation map, where each pixel represents the mutation condition of the gene, colored blue, green, or red according to their labels to SNP, INS and DEL. Those pixel points are
arranged and aligned vertically in the mutation map, according to their positions on the chromosomes, there forming a N � N matrix map for each patient, referred as the
genetic mutation map. (B) Workflow of establishing the image-based deep learning models. All patient samples are transformed into the mutation maps and then divided
into training, validation, and testing sets, respectively. The images of mutation maps are fed into different deep learning architectures for training and testing on pan-cancer
classification. (C) Guided Grad-CAM are employed to generated heatmaps for the identification of top distinct candidate genes that help the pan-cancer classification. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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senting the number of mutations observed in each gene (i.e.,
G m; qð Þ ¼ s if gene q has s mutations in sample m).

2.4. Machine learning methods

Logistic Regression (LR) is a supervised learning classification
algorithm, which transforms its output using the logistic sigmoid
function to predict the probability of two or more discrete classes
[27].
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The Bayesian classification represents a supervised learning
method based on Bayesian Theorem, which combines knowledge
of the distributions of feature vectors and the prior probabilities
of the classes [28]. Naive Bayes assumes conditional independence
and uses the method of maximum likelihood in parameter estima-
tion. Gaussian Naive Bayes (GNB) is a variant of Naive Bayes that
follows Gaussian normal distribution.

KNN is a basic, supervised machine learning algorithm that is
widely used for classification and pattern recognition [29]. KNN
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classifier calculates the similarity between a new data point to
training data points based on distance measurement. In this study,
the nearness of points is determined by Euclidean distance formula
[30].

SVM, a supervised learning algorithm, is developed to classify
both linear and nonlinear data, which transforms the original data
into a higher dimension, fromwhere it can find an optimal separat-
ing hyperplane between the classes using essential training tuples
called support vectors [31,32]. In this study, we use Radial Basis
Function (RBF) kernel which transforms the data points to
higher-dimensional space.

Random Forest (RF), one of the most used supervised classifica-
tion algorithms that constructs multiple decision trees, using ran-
dom sampling to select subset of training data and variables [33].
RF is an ensemble of many decision trees and uses the Gini index
to measure the impurity of a node in deciding its splitting.

Gradient Boosting Decision Tree (GBDT) is also an ensemble
learning by combining multiple decision trees for classification.
GBDT is sequential ensemble learning technique where the perfor-
mance of the model improves over iterations. This method con-
structs the model in a stage-wise fashion, by combining a set of
weak learners into a single strong learner through iterative meth-
ods [34].

In this paper, the parameter settings used in LR, GNB, KNN, SVM
with RBF kernel and RF are the same as in the [35]. The GBDT sets
the maximum number of iterations of the weak learner n_estima-
tors = 200. All the classifiers were available from the Python pack-
age scikit-learn.

Most feature selection methods tend to perform effective
screening on genes and sample data in advance, and then uses
those features as input to the classifiers, however, machine learn-
ing methods with mutation map conversion uses the whole data
set as input. Therefore, in the comparative experiments on 36 types
of cancer data with or without mutation map transformation, we
did not perform feature selection for the classifiers without muta-
tion map transformation, ensuring the consistency of input
dataset.

2.5. Deep learning methods

The VGG-16 network is composed of 16 convolutional layers
and has a small receptive field of 3� 3. In one of the configurations,
it also utilizes 1� 1 convolution filters. It has five max-pooling lay-
ers of size 2� 2. There are 3 fully connected layers after the last
max-pooling layer. It uses the softmax layer as the final layer. All
hidden layers are equipped with the Rectified Linear Units (ReLU)
activation. The Inception-v3 network introduces the asymmetric
decomposition of the convolution kernel, which replaces any
n� n convolution by a 1� n convolution followed by a n� 1 con-
volution. The model is a CNN with 48 layers and consists of several
Inception modules. As to ResNet-50 model, a deep residual net-
work with a depth of 50 layers and residual connection is the most
significant idea in ResNet design [30]. A direct connection branch is
added between some weight layers, that is, the input features are
directly connected to the output to form a complete residual con-
nection module.

Suppose input images are X ¼ x1; � � �; xk; � � �; xMf gj 1 6 k 6 Mð Þ
with their class labels Y ¼ Y1; � � �;Yk; � � �;YMf gj 1 6 k 6 Mð Þ, where
M is the number of images. The convolutional neural network
mentioned above are used to extract discriminative features of X
iteratively, obtaining a satisfactory classification result of features.
Denote there are L layers in the convolutional neural network. For

image xk, the output of the first layer is h1
k ¼ r w1xk þ b1

� �
, where

w1, b1 are the convolutional weight and bias in the first layer
respectively, and r is the activation function. So
838
hl
k ¼ r wlhl�1

k þ bl
� �

is the output of the l� th layer ð1 < l < LÞ for
xk. The feature representation of xk from the last layer, is

hL
k ¼ r wLhL�1

k þ bL
� �

, which is fed into a softmax loss function,

L ¼ �
XM
k¼1

yklogh
L
k

From this loss function, the last layer of the network can output
the predicted category given an image. As for the network differ-
ence, Inception-Resnet-v2 is 164 layers deep and the basic struc-
ture is similar to Inception, but the residual connection
technology is added to the original Inception module to further
improve the network convergence speed and accuracy.
2.6. Image-based deep learning for pan-cancer classification

After constructing mutation map, we randomly partitioned all
9,047 mutation maps into a training, validation and test datasets
(Supplementary Table S1). Four popular image recognition deep
learning models, including VGG-16, Inception-v3, ResNet-50 and
Inception-ResNet-v2, are compared. These models are directly
called by keras applications package and have several hyperparam-
eters, including learning rate, optimizer, epochs, batch size, decay
factor, and others. These hyperparameters determined by using
ten-fold cross-validation were summarized in Supplementary
Table S2. In all CNNmodels, parameters are trained using the train-
ing set and tuned using the validation set. The training set weights
are saved when the loss for the validation dataset is convergence.
In the evaluation using the test dataset, the weights are loaded.
The CNN classifier is subsequently used to predict the class proba-
bility of the samples in the testing set. The predicted and true class
memberships are then compared to calculate the testing set pre-
diction accuracy, precision, recall and F1-score.
Accuracy ¼ TPþTN

TPþTNþFPþFN ; Precision ¼ TP
TPþFP ; Recall ¼ TP

TPþFN ; F1� score

¼ 2�Precision�Recall
PrecisionþRecall . Where TP; TN; FP; FN are true positive, true nega-

tive, false positive and false negative. When calculating the preci-
sion, recall and F1-score values of each experiment, considering
the imbalance of the sample, we set average=‘‘weighted”. All the
evaluation metrics were available from the Python package
scikit-learn metrics.

The prediction results may vary depending on which samples
are assigned to the training set. Given the large size of the cancer
genetic map dataset and the high computing resource demanding
of the algorithm, we repeated the above procedure three times,
each with an independent training/validation/testing partition to
avoid idiosyncrasies from use of a single random assignment. By
multiplying experiments with maximum epochs as 1,000, we
found that the model has converged when the number of epochs
is less than 100 and has remained relatively stable after converged.
Therefore, we finally use 100 as the number of training epochs for
the initialization of models. All results presented in the manuscript
are based on samples from testing sets that are not involved in the
training process.

To compare the performance of the four models, we used the
same hyperparameter settings. In each model, we used random ini-
tialization weights. Then, the weights of the whole model were
trained together. Stochastic Gradient Descent (SGD) method was
employed to tune the parameters of the models. The learning rate
was set to 1e�3, and the batch size was set to 16. To improve the
performance of models, we also utilized the ReduceLRonPlateau
schedule with patience of 3 epochs, decay factor of 0.5 to dynamic
decrease the learning rate. The learning rate will be decayed to
1e�5 along with the training. In addition, we adopted an early
stopping strategy with patience of 5 epochs to effectively prevent
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overfitting. The training will stop when the minimum validation
loss is not improving in 5 rounds or epochs are up to 100. Although
Adam optimizer is popular, SGD optimizer is more suitable for
fine-tuning parameters. As shown in the Supplementary Table S3
and Supplementary Figs. S2–S4, all four deep learning models have
achieved excellent results when using SGD but not Adam.
2.7. Method for heatmaps generation

Visualization techniques Guided Backpropagation [36],
Gradient-weighted Class Activation Mapping (Grad-CAM) or
Guided Grad-CAM have been used to better understand decisions
made by deep convolutional neural networks during the pan-
cancer classification. Back-propagation is a neural network algo-
rithm employing gradient descent for classification. Rules are
extracted from trained neural networks to help improve the inter-
pretability and visualization of the learned network [37].

Grad-CAM is also a visual interpretation of CNNs based on gra-
dients of targets. Given a specific category and layer, Grad-CAM can
perform weighted summation on the feature maps in the convolu-
tional network to obtain the channel weights of the layer and can
further produce a localization map highlighting important regions
in the image [22].

The final heatmaps are generated by Guided Grad-CAM, a com-
bination of Guided Backpropagation and Grad-CAM. We input all
the testing samples into the trained CNNs. For each patient sample,
we record the activation map of the last convolutional layer during
the forward passing process. After that, we further record the label-
specific gradient of each neuron in the last convolutional layer
through the back-propagation process. These gradients represent
the contribution of neurons to the classification results [38]. Using
a weighted sum of activation maps to calculate Grad-CAM, and
then multiply the gradient of the input layer to generate the
Guided Grad-CAM heatmap for each sample. Finally, we average
all the testing heatmaps from the same category and obtain the
heatmap of each category after the Min-Max normalization. The
intensity of each pixel represents the significance score of the cor-
responding gene to the pan-cancer classification.
2.8. Validation of top genes

Top genes are selected according to the ranking of significance
scores in the heatmaps. We apply functional analysis on these
top genes to further prove that the genes are tumor-type specific.
Top genes within 1,000 from the prostate and breast cancer are
selected and validated to find their relations to the corresponding
tumor.

To obtain a functional representation of the lists of potential
mutation genes identified by heatmap, we perform Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) pathways enrichment analy-
ses using the online database and tool DAVID (version 6.8,

https://david.ncifcrf.gov).
2.9. PC and software used for calculation

For all calculations, a custom-mode PC with a CPU (Core i7-
8700 Intel Xeon CPU E5-2640 v4 @ 2.40 GHz) and 4 GPU (Tesla
K80, NVIDIA GK210GL) are used. The installed OS is Ubuntu

16.04 LTS. We use TensorFlow- version 1.12.0 (https://github.-

com/tensorflow/tensorflow/releases/tag/v1.12.0) and Keras ver-

sion 2.2.5 (https://github.com/keras-team/keras/releases/tag/2.2.

5) to build the models.
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3. Results

3.1. Overall design of image-based deep learning

Our newly developed model is an image-based deep learning
approach for pan-cancer classification and gene mutation discov-
ery, consisting of three main steps:

1) Transformation of gene mutation data into genetic mutation
map (Fig. 1A). For each patient sample, a genetic mutation
map is constructed, documenting the gene alternations con-
dition including SNP, INS and DEL with chromosome posi-
tion information.

2) Genomic pan-cancer classification using image-based deep
learning. Taking the obtained genetic mutation map as
input, we next train a classifier using deep learning net-
works. By comparing trainable multilayer convolutional
neural networks, including popular VGG-16, Inception-v3,
ResNet-50, and Inception-ResNet-v2 networks, deep learn-
ing networks takes the advantage of genetic mutation map,
which are more comprehensive and informative (Fig. 1B).

3) To identify the key genes that aiding cancer classification in
the genetic mutation map, we then employ Guided Grad-
CAM visualization to generate the heatmap. By inspecting
the produced heatmaps, we obtain localized discriminative
molecular patterns extracted from the original maps that
help the CNN classification. The results imply that a visual
discriminative pattern or pixel could be used in order to dis-
cover what sort of genes that most strongly associated with
one particular type of cancer (Fig. 1C).

3.2. The importance of mutation map construction

To evaluate the importance of mutation map, we first test sev-
eral widely used machine learning methods on 36 types of cancer
data with or without mutation map transformation. As shown in
Table 1, all classifiers with mutation map construction show better
performance in terms of accuracy and F1-score. This might be the
reason that data without mutation map transformation are essen-
tially row vectors with limited information, compared to ones with
mutation map conversion are two-dimensional vectors containing
more mutation information. In addition, the feature matrix is more
sparseness due to feature selection is not performed in advance, so
it is difficult to extract meaningful features.

Although mutation map construction results in relatively signif-
icantly improved in performance with LR and GNB method, it can
more dramatically enhances the classification performance of
KNN, SVM with RBF kernel, RF and GBDT algorithm. The methods
outlined above achieve the best classification accuracy of 93.1%
in SVM-based image analysis. Improved classification results on
SVM-based method, and other various methods suggest an impor-
tant role of mutation map construction. However, those traditional
classifiers cannot identify genes that most strongly associate with
one particular type of cancer. Therefore, a new approach is neces-
sary for pan-cancer classification and also gene mutation discovery
with a high accuracy. Deep neural networks have recently
attracted great attention, and might potentially provide a new
solution for this challenge.
3.3. Image-based deep learning model for pan-cancer classification

Although the traditional machine learning methods with muta-
tion map construction can achieve high accuracy, they cannot fur-
ther identify candidate genes that help the classification. Widely
used deep learning networks including VGG-16, Inception-v3,
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Table 1
Evaluation of pan-cancer classification performance by different models. Average testing accuracy, precision, recall and F1-score of several machine learning and deep
learning methods on 36 types of cancer with or without mutation map transformation are calculated from three independent experiments.

Method Mutation map Construction Accuracy(%) (±SD(%)) Precision(%) (±SD(%)) Recall(%) (±SD(%)) F1-score(%) (±SD(%))

Machine learning methods
LR w/o 37.18 ± 0.818 39.56 ± 0.331 37.18 ± 0.818 37.17 ± 0.414

w/ 59.78 ± 0.563 66.18 ± 0.268 59.78 ± 0.563 61.23 ± 0.424
GNB w/o 12.81 ± 0.000 13.98 ± 0.002 12.81 ± 0.000 10.66 ± 0.001

w/ 32.43 ± 0.002 30.99 ± 0.001 32.43 ± 0.002 29.85 ± 0.000
KNN w/o 5.63 ± 0.279 10.93 ± 0.224 5.63 ± 0.279 3.03 ± 0.165

w/ 66.85 ± 0.002 69.85 ± 0.003 66.85 ± 0.002 66.72 ± 0.002
SVM w/o 34.03 ± 0.139 40.27 ± 0.297 34.03 ± 0.139 34.67 ± 0.161

w/ 93.11 ± 0.003 93.37 ± 0.002 93.11 ± 0.003 92.98 ± 0.001
RF w/o 30.18 ± 0.158 38.87 ± 0.564 30.18 ± 0.158 28.38 ± 0.213

w/ 92.69 ± 0.049 93.14 ± 0.028 92.69 ± 0.049 92.52 ± 0.040
GBDT w/o 32.88 ± 0.169 37.91 ± 0.609 32.88 ± 0.169 33.08 ± 0.249

w/ 86.66 ± 0.123 87.12 ± 0.039 86.66 ± 0.123 86.48 ± 0.096
Deep learning methods

VGG-16 w/ 99.71 ± 0.075 99.72 ± 0.075 99.71 ± 0.075 99.71 ± 0.075
Inception-v3 w/ 95.33 ± 1.494 95.52 ± 1.445 95.33 ± 1.494 95.12 ± 1.582
ResNet-50 w/ 99.63 ± 0.038 99.63 ± 0.036 99.63 ± 0.038 99.63 ± 0.038

Inception-ResNet-V2 w/ 99.12 ± 0.113 99.22 ± 0.057 99.12 ± 0.113 99.14 ± 0.097

‘w/’: with mutation map transformation. ‘w/o’ : without mutation map transformation. SD = Standard deviation. LR : Logistic Regression. GNB : Gaussian Naive Bayes. KNN :
k-Nearest Neighbors. SVM : Support Vector Machine. RF : Random Forest. GBDT : Gradient Boosting Decision Tree.
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ResNet-50 and Inception-ResNet-v2 are tested with the genetic
mutation maps for pan-cancer classification (Fig. 1B). Genetic
mutation maps of 36 types of cancer patients are constructed
and further subgrouped into training, validation, and testing data-
set (see Supplementary Table S1). Accuracy and cross-entropy loss
in the training and validation datasets are plotted against the train-
ing step during the training of different deep learning networks
(Supplementary Fig. S2). The training is stopped when the loss
does not improve in 5 epochs or epochs are up to 100 (iterations
through the entire dataset). In comparison with machine learning
methods, all deep learning algorithms achieve higher classification
accuracies, ranging from 95.33 to 99.71 (Table 1). Area Under the
Curve (AUC) in the Receiver Operating Characteristic (ROC) curves
achieve the highest accuracies of 1.0 for four deep learning models
(Supplementary Fig. S5).

To further illustrate the accuracy of these predictions, confusion
matrixes are plotted, suggesting that almost all samples of cancer
types could be correctly classified (Fig. 2). What more interesting
is that high classification accuracies were achieved with cancer
types of smaller sample sizes, such as Cholangiocarcinoma (CHOL,
n = 35), Lymphoid neoplasm diffuse large B-cell lymphoma (DLBC,
n = 48), Uterine carcinosarcoma (UCS, n = 57), Kidney chromo-
phobe (KICH, n = 66), Rectum adenocarcinoma (READ, n = 69). A
close examination of the misclassified samples suggests the main
reason might be similarity in the tumor types. As shown in
Fig. 2, Colon adenocarcinoma (COAD) and Colorectal adenocarci-
noma (COADREAD) are misclassified, both of which originated
from colorectal tissues. In addition, the samples of Glioma
(GBMLGG) are mis-assigned to Brain lower grade glioma (LGG),
as both types of samples are brain tumors. Kidney renal papillary
cell carcinoma (KIRP) samples are misclassified as the Pan-kidney
cohort (KIPAN), which including KICH, Kidney renal clear cell car-
cinoma (KIRC) and KIRP tumors.

To examine the extent to which the image-based deep learning
model is capable of distinguishing different types of cancer, we
visualize the internal features revealed by the networks, using t-
distributed stochastic neighbor embedding (t-SNE) [39] (Supple-
mentary Fig. S6). The output features before the last classification
features to the layer are compressed into two dimensions by t-
SNE. A total of 1,250 test data maps are compressed and plotted
in two-dimensional space. 36 types of cancer are clearly separated
into different clusters in different image-based deep learning mod-
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els, further suggests that the features learned through training can
be used for pan-cancer classification. Cluster points are closer
between similar types of cancer in the middle of the plot, such as
COAD to COADREAD, GBM to GBMLGG, which are consistent with
the results from confusion matrixes.

3.4. Gene mutation discovery

Neural networks have often been thought of as black boxes due
to the difficult in understanding what and how they learn. To
understand how those deep learning algorithms classify the muta-
tion maps, a number of visual explanations are produced to high-
light the discriminative region where the deep learning networks
focused upon the classification. Grad-CAM, a class-discriminative
localization technique, uses the gradient information flowing into
the final convolutional layer of the networks to produce a coarse
localization map highlighting the important regions in the image
for pan-cancer classification by deep learning networks.

Using Prostate Adenocarcinoma (PRAD) and Breast Cancer
(BRCA) samples as an example, heatmaps of deep learning algo-
rithms VGG-16, Inception-v3, ResNet-50, and Inception-ResNet-
v2 were generated. As shown in Fig. 3(b,d,f,h) and Supplementary
Fig. S7(b,d,f,h), Grad-CAM can easily localize the regions for corre-
sponding cancer classification; however, it is difficult to accurately
localize the key discriminative pixels (genes) in the low-resolution
heatmaps. While Grad-CAM visualizations are class-discriminative
and localize relevant image regions well, they lack the ability to
show fine-grained details. Guided Backpropagation are pixel-
space gradient high-resolution visualization method, but are not
class-discriminative [22].

Therefore, Guided Grad-CAM visualization is employed by com-
bining both Guided Backpropagation and Grad-CAM visualizations
via point-wise multiplication to create high-resolution and class-
discriminative visualization. As shown in Fig. 3(c,e,g,i) and Supple-
mentary Fig. S7(c,e,g,i), Guided Grad-CAM highlights fine-grained
details in the image with high resolution compared with Grad-
CAM in Fig. 3(b,d,f,h) and Supplementary Fig. S7(b,d,f,h). The heat-
map could help to locate discriminative molecular patterns
extracted from the original mutation maps that aiding the pan-
cancer classifications. Top distinct candidate genes relative to the
original pixel in the map can then be identified. By comparing
the Guided Grad-CAM visualization generated by different deep



Fig. 2. The confusion matrix for pan-cancer classification. Rows represent the true classification of cancer types, and the columns represent the predicted cancer types. The
diagonal cells correspond to cancer types are correctly classified. The off-diagonal cells correspond to incorrectly classified samples. Different colored circles indicate the
similarity of misclassification between different models.
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learning algorithms in a specific type of cancer, we find that there
are similar discrimination visualization areas between different
patient samples by the same model (Fig. 3 or Supplementary
Fig. S7, rows). However, for the same sample, the molecular pat-
terns recognized by different networks are quite different (Fig. 3
or Supplementary Figure S7, columns). There are some overlapping
areas or patterns need to be identified.

3.5. Validation of top-ranked discriminative genes

The size of pixel values in the heatmap are used as an indica-
tive of the importance of the corresponding genes for pan-cancer
classification. Using prostate cancer and breast cancer as exam-
ples, the gene significance score (pixel value) curves of four algo-
rithms are plotted (Fig. 4A and B). According to Fig. 4A and 4B,
we find that when the significance score is greater than 150,
the declining slope decline is more obvious. Therefore, the aver-
age heatmap of the PRAD (46 patient samples) and BRCA (136
patient samples) generated by four models are set to a threshold
of 150 for fixed threshold segmentation, and average heatmap
schematics Fig. 4C and 4D are obtained. In the Guided Grad-
CAM heatmap, we find that the declining trends of the signifi-
cance score curves of the four models are quite similar, first
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decrease sharply, and then become gradually smooth from
around 1000th genes. The slopes of the intensity change in the
first 1,000 genes are larger than the following several thousand
genes, therefore we chose the top genes within 1,000 for further
validation. The identified top ranked genes within first 1,000
genes are then uploaded to the online software DAVID database

(https://david.ncifcrf.gov/) for KEGG pathway analysis. The DAVID
database is a widely used gene enrichment and biological func-
tional annotation database integrating comprehensive set of func-
tional annotation tools for high-throughput gene function analysis
[40]. The enriched pathways and corresponding cancer driver
genes are identified. Literature searching confirms most of those
pathways are oncogenic signaling pathways reported in prostate
cancer (Fig. 5, Table 2) and breast cancer (Supplementary
Fig. S8, Supplementary Table S4). In comparing the difference
between different models, we overlap the KEGG pathways analy-
ses based on top ranked genes inputs. As shown in Fig. 5 for pros-
tate cancer, there is overlap in pathways between different
models, mainly enriched in the PI3K-Akt (four models), focal
adhesion (VGG-16, Inception-v3 and ResNet-50), extracellular
matrix (ECM)-receptor interaction (Inception-v3 and ResNet-50),
olfactory transduction (Inception-v3 and ResNet-50) signaling
pathways, etc.

https://david.ncifcrf.gov/


Fig. 3. Generation of heatmaps for deep learning networks visualization in prostate cancer. (a) Original genetic mutation map of a prostate cancer sample TCGA-HC-
8264-01_PRAD. (b-c) Support for the prostate cancer classification according to different visualizations for VGG-16. (b) Grad-CAM: localizes class-discriminative regions. (c)
Combining (b) and Guided Backpropagation gives Guided Grad-CAM, which gives high-resolution class-discriminative visualizations. (d-e) are different visualizations for
Inception-v3. (f-g) are different visualizations for ResNet-50. (h-i) are different visualizations for Inception-ResNet-v2. Note that in (b,d,f,h), red regions correspond to high
score for class. The rows represent the heatmaps representation of prostate cancer samples generated by the corresponding model. The columns represent the heatmaps
representation of the same patient sample generated by different models. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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Among them, the PI3K-Akt pathway is the best characterized
somatic genetic mutation pathway. The well-known cancer path-
ways PI3K–Akt controls multiple cellular processes, and plays an
important role in the occurrence and development of prostate can-
cer [41]. In prostate cancer, the frequency of PI3K pathway alter-
ation rises substantially when mutations occurred in
the INPP4B and PHLPP, the PIK3CA gene itself, and the PIK3CA reg-
ulatory subunits PIK3R1 and PIK3R3 [42]. Interestingly, our image-
based deep learning approaches also identify different prostate
cancer driver genes affecting the PI3K-Akt pathway, including
PIK3R3, PIK3CD, PIK3C2B, PIK3AP1, PHLPP2, INPP5B, and many
other genetic alterations (Table 2). Olfactory Receptors (ORs),
belonging to the class of G-protein-coupled Receptors (GPCRs),
plays an important role in tumor progression by inducing cell inva-
siveness through GPCRs activation of PI3K pathway in prostate
cancer [43,44].

Further data analysis in breast cancer reveals that similar path-
way alterations (PI3K-Akt and olfactory transduction pathways)
occur in different type of tumor, but altered genes affecting those
pathways are different (Supplementary Fig. S8, Supplementary
Table S4). By comparing differences in pathways between those
two different types of cancers, many other signaling pathways
are also involved in the pathogenesis of breast cancer, such as
Ras, MAPK, TGF-beta, AMPK signaling pathway, etc. The under-
standing of these additional pathways and altered genes may assist
in the regulation mechanisms in breast cancer.
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These results demonstrate different deep learning models can
extract the distinct molecular patterns from heatmaps to correlate
with the underlying biological characteristics of cancer subtypes.
The image-based deep learning approaches when combined can
draw the general landscape of cancers and identify hundreds of
cancer driver genes. Although the roles of many of them need fur-
ther clarification, several major oncogenetic signaling pathways
seem to be altered.
4. Conclusions and discussions

Various computational approaches have been reported to clas-
sify different types of cancers, but few single methods that are
designed for all cancer types. TCGA documents comprehensive,
well-curated genomic data of over 10,000 patient samples across
more than 30 types of cancers. Taking a classic machine learning
approach to such dataset often requires to perform feature selec-
tion in advance, which is cumbersome.

In the present work, we describe a novel image-based deep
learning approach for genomic pan-cancer classification. The main
novelty of the paper is the proposal of constructing the genetic
mutation map and then fed into the deep learning networks. Each
pixel in the mutation map represents the mutation conditions of a
gene, colored with blue, green, or red according to their labels to
SNP, INS, or DEL. Those pixel points are arranged and aligned



Fig. 4. The changes of gene significance scores for prostate adenocarcinoma (PRAD) (A) and breast cancer (BRCA) (B) with four deep learning models. The x-axis indicates the
rank of genes and the y-axis denotes significance score of heatmap. The average heatmap schematics of the PRAD (C) and BRCA (D) are generated from 46 PRAD patient
samples and 136 BRCA patient samples by four models.
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vertically in the mutation map, according to their positions on the
chromosomes. The genetic mutation data from 36 types of cancer
in TCGA are evaluated to demonstrate the advancement of our
method. Our approach achieves overall higher accuracy (over
95%) compared with other widely adopted classification methods
such as LR, KNN, SVM with RBF kernel, RF and GBDT algorithms.
With mutation map construction, all tested machine learning
approaches exhibit improved classification accuracies, which serve
as an outstanding tool for pan-cancer classification.

In contrast to those traditional machine learning methods, our
image-based deep learning approach is able to discover a complete
catalog of genes truly associated with cancer. The approach takes
advantage of deep learning approach in image analysis for pan-
cancer classification. We compare the performance of several pop-
ular deep learning frameworks, including VGG-16, Inception-v3,
ResNet-50, and Inception-ResNet-v2. Genetic mutation map and
deep neural networks, when used in combination, produce a high
accuracy in classification, thereby illustrating the power and the
generality of image-based deep learning approach. Moreover, dif-
ferent mutation conditions, including SNP, INS, and DEL, can be
plotted in a single image and trained in a joint manner for pan-
cancer classification. One major advantage of the use of genetic
mutation map over mutation data is its ability to directly visualize
deep learning networks. Different from the traditional approaches,
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prior feature selection is not necessary, avoiding bias caused by
human-directed training. As a result, the proposed combinatorial
approach will enable comprehensive genomic profiling in cancer.
The systematical examination of mutation genes in large-scale
cancer patients will potentially enable to prioritize cancer-
causing genes, allowing a deeper understanding of the muta-
tion landscape of cancer.

To extract the discriminative molecular patterns from the orig-
inal maps that help the deep networks classifications, we utilize
Guided Grad-CAM visualization. The networks output the precise
pixel position of the potential key genes that could be associated
with a type of cancer. This approach is more generally applicable
and can be tested on any type of cancer. As a proof of concept,
we have successfully applied the system to prostate cancer and
breast cancer. The genetic mutation map is learned through four
deep learning models to generate heatmaps. The top-ranked dis-
criminative genes associated with prostate and breast cancer are
determined by analyzing the heatmap generated by Guided
Grad-CAM visualization.

Although different deep learning networks are able to taught
themselves to accurately predict the cancer type, the general
observation from heatmap is that networks do not necessarily have
to have the same rules for classification. In terms of top-ranked
discriminative gene discovery, we find those deep learning



Fig. 5. KEGG pathway enrichment analysis of top-ranked prostate cancer driver genes in four deep learning models. (A) VGG-16 model. (B) Inception-v3 model. (C) ResNet-50
model. (D) Inception-ResNet-v2 model. The vertical ordinates are the terms of the KEGG pathways. Gene ratio is the proportion of the number of genes vs. the total number of
genes in the same KEGG pathway. The color represents p-value. Gene counts represent the number of genes enriched in the pathway.
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methods performance varies substantially across the examined
type of cancer. The features used by different deep learning net-
works for classification might be different. It is unclear which pat-
terns or learning rules are adapted by different deep networks.
Changes in the networks structure, or in the learning processing,
together with the stochastic nature of the optimization procedures,
might also produce notably different results, making it extremely
difficult to sift methods that significantly outperform others.
Therefore, it is likely that some of methods are complementary
to each other, and integration of such methods are able to identify
a complete catalog of genes truly associated with cancer.

Herein, using prostate cancer and breast cancer as examples, we
are able to identify significant enriched pathways of PI3K-Akt,
olfactory transduction, and many other oncogenic pathways.
Although some pathways and altered genes affecting those path-
ways have been previously reported to be associated with cancer,
the proposed combinatorial approach reveals potentially novel
pathways and cancer driver genes. The roles of these novel gene
candidates in cancer need to be confirmed experimentally. Our re-
sults demonstrate that using the image-based deep learning
approach can successfully identify biologically relevant and
tumor-type-specific gene mutations.

However, the proposed approach has some limitations such as
incapability of analyzing a small dataset due to the requirement
of the size of the model input picture. In addition, the internal rules
in our image-based deep learning models for pan-cancer classifica-
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tion and key genes discovery are not fully investigated. Labeled
color and gene arrangement in the mutation map might be also
important features used by the deep-learning model for classifica-
tion. Guided Grad-CAM visualization can highlight pixels (genes) in
the heatmaps are most strongly associated with one particular
type of cancer, but the reason why those areas or pixels used by
the deep learning models are not well understood. Therefore, to
build an integrative model for accurate cancer profiling, further
experiments understanding those factors need to be carried out.

In summary, we represent a generalized approach that can
potentially be applied to a wide range of molecular data (e.g., gene
expression, copy number variation, DNA methylation) for multiple
types of disease classification. Our image-based deep learning
approach can be a useful tool to assist pathologists in disease clas-
sification and the discovery of disease-causing molecules.
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Table 2
KEGG pathway analysis of top-ranked prostate cancer driver genes in four deep learning models.

Model KEGG terms Ref P-value Genes

VGG-16 hsa04510:Focal adhesion [45–47] 7.75E-03 Count 14: LAMA2, ARHGAP5, ROCK1, MYLK3, COL27A1,
ITGB5, ITGA2, PRKCG, LAMC2, HGF, PIK3R3, LAMB1, CRK,
SHC4

hsa04015:Rap1 signaling pathway [48] 9.08E-03 Count 14: GRIN2A, SIPA1L3, PRKCG, HGF, APBB1IP, RALGDS,
PRKD1, PLCB4, ADCY9, TEK, RAPGEF4, PIK3R3, CRK, ANGPT4

hsa04611:Platelet activation [49] 3.80E-02 Count 9: PLCB4, ROCK1, ADCY9, LYN, MYLK3, COL27A1,
ITGA2, PIK3R3, APBB1IP

hsa04020:Calcium signaling pathway [50,51] 3.87E-02 Count 11: GRM5, PLCB4, ADCY9, MYLK3, PHKA1, GRIN2A,
RYR1, PPP3CC, PRKCG, HTR2C, HTR5A

hsa04151:PI3K-Akt signaling pathway [41,52–54] 4.81E-02 Count 17: PHLPP2, CSH2, IFNA10, ITGB5, ITGA2, HGF, CDC37,
LAMA2, COL27A1, TEK, GYS1, PIK3AP1, LAMC2, LAMB1,
PPP2R2B, PIK3R3, ANGPT4

hsa04915:Estrogen signaling pathway [55,56] 7.18E-02 Count 7: PLCB4, ADCY9, FKBP4, GPER1, PIK3R3, MMP2, SHC4
Inception-v3 hsa04151:PI3K-Akt signaling pathway [41,52–54] 4.12E-02 Count 24: EGFR, HRAS, PHLPP2, HSP90AA1, COL3A1, ITGB5,

HGF, IGF1R, VWF, LAMA4, CDKN1B, COL6A5, CHRM1,
COL27A1, ITGA8, IFNA4, ITGA7, GNB5, PIK3AP1, LAMB1,
PPP2R2C, FGF3, IFNA17, FGF4

hsa04512:ECM-receptor interaction [57,58] 4.36E-02 Count 9: VWF, LAMA4, COL6A5, COL27A1, ITGA8, COL3A1,
ITGA7, ITGB5, LAMB1

hsa04740:Olfactory transduction [44] 6.30E-02 Count 26: OR2A25, OR5L1, OR1J1, OR5L2, OR4A5, OR52D1,
OR4C3, OR9Q2, OR13C5, OR10G8, OR5B17, OR52R1, OR2S2,
OR2A5, OR5R1, OR1K1, OR8G5, OR7A5, OR9G4, OR2AE1,
OR5T3, OR5M8, OR4X2, OR4A15, OR13D1, OR51A7

hsa04114:Oocyte meiosis [58] 6.53E-02 Count 10: PGR, PLCZ1, ANAPC2, IGF1R, SLK, ANAPC5, PLK1,
CPEB3, FBXW11, ITPR2

hsa01212:Fatty acid metabolism [59] 6.56E-02 Count 6: ACADS, EHHADH, FADS2, ACAT1, ACSBG1, ACOX3
hsa04144:Endocytosis [47] 8.09E-02 Count 17: EGFR, HRAS, KIF5B, KIF5A, KIAA0196, VPS37B,

ARFGEF1, IGF1R, SH3GLB2, FOLR1, WWP1, ARPC5L, ZFYVE16,
SPG20, AGAP3, ARAP1, HSPA8

hsa04510:Focal adhesion [45–47] 8.60E-02 Count 15: EGFR, HRAS, COL3A1, ITGB5, HGF, VAV2, BIRC2,
IGF1R, VWF, LAMA4, COL6A5, COL27A1, ITGA8, ITGA7,
LAMB1

ResNet-50 hsa04512:ECM-receptor interaction [57,58] 4.86E-02 Count 9: GP5, COL6A3, HSPG2, ITGA10, AGRN, LAMC1,
COL5A2, THBS3, FN1

hsa04740:Olfactory transduction [44] 4.95E-02 Count 27: OR2AK2, OR10A6, OR2T2, OR10T2, OR10G4,
OR2L2, OR2G2, OR2T10, OR2G6, OR2T6, OR10R2, OR6N1,
OR2M7, OR5P3, OR2B11, OR11L1, OR10J3, OR2M2, OR2M3,
OR4D6, OR10Z1, OR2T27, OR6K3, OR6K2, OR6K6, OR10K1,
OR10K2

hsa04370:VEGF signaling pathway [60,61] 6.30E-02 Count 7: SH2D2A, PLA2G4A, PIK3CD, PLCG2, BAD,
MAPKAPK2, PIK3R3

hsa04070:Phosphatidylinositol
signaling system, including
Endocytosis, PI3K-Akt, and Focal
adhesion pathways

8.51E-02 Count 9: PIK3C2B, PIK3CD, PLCG2, ITPKB, PIP5K1A, PI4KB,
CDS1, PIK3R3, INPP5B

Inception-
ResNet-v2

hsa05202:Transcriptional
misregulation in cancer

[62–65] 2.61E-02 Count 15: KMT2A, CEBPE, RXRB, RELA, MET, AFF1, MMP3,
ITGAM, ATM, SS18, TAF15, HOXA10, HIST1H3G, PLAU,
MLLT3

hsa04151:PI3K-Akt signaling pathway [41,52–54] 3.57E-02 Count 25: PPP2R1B, HSP90AB1, COL4A2, RELA, MET, ITGB4,
ITGA1, FGF10, ITGA2, LPAR1, PCK2, CCNE2, LAMA2, GH1,
ITGA9, EIF4E, COL6A6, PRLR, IFNA4, RAC1, TEK, CREB3L2,
EFNA5, PPP2R2B, ANGPT2

hsa04614:Renin-angiotensin system [66–68] 9.21E-02 Count 4: AGTR1, ACE, CMA1, CTSG
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