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Identification of cuproptosis-
related subtypes,
characterization of tumor
microenvironment infiltration,
and development of a prognosis
model in breast cancer

Zhi Li1,2*†, Hua Zhang1†, Xixi Wang1†, Qun Wang1, Jiapeng Xue1,
Yun Shi1, Minghua Wang1, Geng Wang1 and Jianquan Zhang3*

1Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China,
2Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of
Medicine, Shiyan, China, 3Department of General Surgery, Affiliated Haikou Hospital of Xiangya
Medical College, Central South Univesity, Haikou, China
Breast cancer (BC) is now the most frequent and lethal cancer among women.

Cuproptosis is a newly identified programmed cell death process that has been

connected to tumor therapeutic sensitivity, patient outcomes, and the genesis

of cancer. Cuproptosis-related genes (CRGs) are involved in breast cancer,

although their roles and potential mechanisms are still unclear. First, we

examined the effect of gene mutations and copy number changes on overall

survival in 1168 breast cancer samples. Breast cancer patients were split into

two molecular categories as determined by the variation in CRG based on

clinicopathological traits, overall survival, and cell-infiltrating traits in tumor

microenvironments. In addition, we created and validated a CRG score to

calculate breast cancer patients' OS. Finally, we created a comprehensive

nomogram for the clinical use of the CRG score. Patients whose CRG scores

were low showed increased odds of developing OS, a larger mutation load, and

immunological activation than those with high CRG scores. The CRG score, the

cancer stem cell index, and the responsiveness to chemotherapy or targeted

therapies were also shown to be statistically significantly correlated. Our

thorough examination of CRGs in breast cancer patients demonstrated that

they may be useful predictors of prognosis, clinical characteristics, and tumor

microenvironment. These findings provide fresh insight into CRGs in breast

cancer and might inspire brand-new approaches to both diagnosing and

treating patients there.
Abbreviations: BC, Breast cancer; CRGs, cuproptosis-related genes; TCGA, the cancer genome atlas;

DEGs, differentially expressed genes; GSVA, gene set variation analysis; GEO, the gene expression

omnibus; TMB, tumor mutation burden; OS, overall survival; CSC, cancer stem cell; TME, tumor

microenvironment; ROC, receiver operating characteristic; TIICs, tumor-infiltrating immune cells.
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Introduction

There is a rapidly increasing incidence rate of breast cancer

in women, which ranks first in terms of incidence and second in

terms of mortality. The latest epidemiological statistics indicate

that breast cancer accounts for approximately 30% of all new

tumors in women (1, 2). With the continuous development of

new targets and drugs for the treatment of breast cancer and the

success of clinical trials involving new treatment protocols, the

treatment and prognosis of breast cancer have advanced greatly

(3–5). However, patients with advanced or high-risk conditions

continue to have poor treatment outcomes and prognoses (6, 7).

Early detection and rapid treatment would be very beneficial for

patients with breast cancer, as they would increase their

prognosis (8). In order to detect, diagnose, and treat breast

cancer early, it is necessary to identify markers of the disease that

are clinically very sensitive. Additionally, it is important to create

more potent prognostic models.

Cuproptosis, a recently identified kind of programmed cell

death, initiates an uncommon method of cell death, that is essential

for several biological functions, such as mitochondrial metabolism

(9). According to many studies, high copper levels in the blood and

tissues of cancer patients may be a sign of a bad prognosis (10, 11).

As a catalytic cofactor or structural component for cuproenzymes,

copper is an essential metal ion in the majority of aerobic organisms

and participates in a number of crucial biological processes (12).

Tetrathiomolybdate, a copper ionophores and copper chelators

used in anticancer therapy, has been linked to enhanced survival

in advanced breast cancer (13–15). Previous studies have

demonstrated that the serum copper level can potentially predict

the prognosis of patients with BC (16). The discovery of many

cuproptosis-related genes may provide fresh perspectives on

treatment approaches and the prognosis of breast cancer patients.

Recent studies have indicated that cuproptosis may play a

role in the occurrence, development and prognosis of a wide

variety of cancers, suggesting that it could be used as a potential

biological target in the diagnosis or treatment of these diseases

(17–19). Until now, there have been no studies examining the

role of cuproptosis in breast cancer and its tumor

microenvironment; therefore, our study is the first to

investigate the relationship between cuproptosis and breast

cancer and its microenvironment. Using the algorithms

CIBERSORT and ESTIMATE, the expression landscape of

CRGs has been r igorous ly asses sed and deta i l ed
02
immunological profiles have been produced. First, based on

the levels of CRGs expression, we divided 1168 patients with

breast cancer into two groups based on their molecular

characteristics. The patients were divided into four gene

subtypes based on the differentially expressed genes found for

the two subtypes of cuproptosis. In the end, we created the CRG

score method to forecast patients' outcomes by successfully

predicting their overall survival from breast cancer. In

conclusion, this study revealed that cuproptosis may serve as a

new target for the diagnosis and (or) treatment of breast cancer,

and that it thus provides a new research direction and/or idea

and/or idea for the diagnosis and (or) treatment of

breast cancer.
Materials and methods

Collections of data

Based on data from The Cancer Genome Atlas (https://

portal.gdc.cancer.gov/), information on RNA-sequencing raw

data of 1110 cancerous breast samples as well as 112 normal

human breast samples that included therapeutically

information, somatic mutation data and CNV data files, was

obtained. It was necessary to download processed gene

expression datasets, clinical samples collected from breast

cancer patients (n=58), as well as normal breast tissue (n=4)

from the Gene Expression Omnibus profile database (https://

www.ncbi.nlm.nih.gov/geo/) (ID: GSE61304). These raw data

were first standardized to fragments per kilobase million

expression levels prior to comparison and figuring out the

expression of CRGs. After that, CRG expression was

determined using the limma program (20). We integrated the

data once the data cleaning procedure was finished to get them

ready for analysis. The study that followed did not include

patients for whom there was inadequate data on their survival.
Analysis of CRGs using
consensus clustering

19 CRGs made up the signature that we were able to collect

from earlier publications (9, 21–25), the list of genes is in Table

S1. We were able to classify individuals into discrete molecular
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clusters based on their CRG expression using the

ConsensusClusterPlus R program (26). Through the use of

unsupervised clustering, this was done. The clinical usefulness

of CRGs in breast cancer was investigated using the Kaplan-

Meier approach in a Kaplan-Meier study. We used the survival

and survminer packages in R to examine the curves of survival as

well as display the results. After that, the ggplot2 software was

used to do a principal component analysis. The two subtypes'

biological processes were maintained by using the Gene Set

Variation Analysis tool (27). Malignant Tumour tissues

employing expression (28) and CIBERSORT (29) were also

utilized to represent the percentage of immune and stromal cells

in patients with breast cancer. The extent to which each immune

cell within each sample carried an enrichment score was also

assessed using an analysis of gene set enrichment on a single

sample (30).
Correlations between the subtypes
and clinical features, and
functional annotations

We associated the two cuproptosis-related subtypes with the

primary clinical and pathological parameters of breast

cancer patients, including their age, T phase, and N phase, as

well as their prognosis, as part of our inquiry into the possible

clinical functions of the two cuproptosis-related subtypes.

Additionally, Kaplan-Meier survival analysis technique was

utilized to look at differences in overall survival that were

verified amongst the various subtypes. We discovered the

differentially expressed genes between the cuproptosis-related

subgroup using the limma R program. These genes required to

possess an adjusted p-value < 0.05 and a fold change > 1.5. To

clarify the pathways that were considerably enriched, gene

ontology enrichment analysis and Kyoto Encyclopedia of

Genes and Genomes pathway enrichment analysis were also

conducted. To further explore the hidden roles among the

DEGs, the data were displayed using the ClusterProfiler

program (31).
Creating and confirming the
predictive CRG score

By computing the overall value of risk, the value of CRG

was established in order to identify the cuproptosis patterns in

specific patients. For a more thorough analysis, we utilized

unsupervised consensus clustering to separate the breast

cancer patients into four different subtype groups

(cuproptosis-related gene subtype A-D). The train sets were

then utilized to generate a CRG score for prognosis. A
Frontiers in Immunology 03
percentage of 1:1 was applied to all patient datasets in order

to divide them into train and test sets. The glmnet package in R

was used to perform least-squares regressions and selection

operator regressions in order to minimize the possibility of

overfitting the model (32). For the purposes of predicting the

OS of the patients in the training set, a multivariate Cox

regression with proportional hazards analysis was also

utilized. Both the train set and the test set were split into

groups of high-risk and low-risk based on their risk ratings. In

each set, Kaplan-Meier analyses of survival and ROC curves

were conducted.
Clinical correlations and CRG-related
prognostic model subgroup analyses

The relationships between the CRG score and the clinically

significant parameters, including age, T and N stage, were

examined using chi-square tests. On both the train and test

sets, univariable and multivariable analyses were conducted to

see if the CRG score was influenced by any other easily accessible

clinicopathological characteristics. Age, tumor grade, T and N

stage were also taken into account in subgroup studies to see

whether the CRG score still had the same predictive value it did

in our model earlier.
Creation and verification of a nomogram

A nomogram was created using the rms program to predict

overall survival based on clinically significant characteristics and

the CRG score. Each clinicopathologically significant

characteristic was given a score using the nomogram model,

and the overall score was obtained by summing all the

individual scores. By contrasting the area under the time-

dependent ROC curves of survival rates after one, three, and

five years, the nomogram's accuracy in predicting survival rates

was also validated. Additionally, model calibration was performed

to compare the predicted likelihood of survival outcomes across

the 1-, 3-, and 5-year periods with the actual survival occurrences.
Immune state and CSC index in high-risk
and low-risk populations compared

To calculate the total number of tumor-infiltrating immune

cells and subgroups of immune cells in each sample, we utilized

the CIBERSORT method for comparison of 23 immune cells

infiltrating the tumors between the high-risk and low-risk

groups. This was done to assess how many immune cells

altogether had invaded the tumor. The gene groups connected
frontiersin.org
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with 23 levels of immune cell infiltration were also found using

the CRG score. Additionally, we looked at the connections

between the CRG risk score and the cancer stem cell.
Analysis of drug susceptibility
to mutations

Depending on whether a sample was deemed high-risk

or low-risk, its tumor mutation burden was assessed for

each. Additionally, we used the maftools program to do a

somatic variant analysis on patients with breast cancer in

order to look at and analyse the somatic mutation data (33).

Using the pRRophetic software, we calculated the semi-

inhibitory concentrations (IC50) of frequently prescribed

medications in breast cancer patients depending on their

risk levels (34).
Analyses of statistics

The R-based statistical analysis was conducted with a

significance threshold of p 0.05 (version 4.0.2).
Results

19 CRGs in breast cancer: Expression,
genetic variants, and prognostic values

On the TCGA dataset, 1110 breast cancer patients'

expression levels of 19 cuproptosis-related genes were

examined, along with 112 normal human breast tissues

(Figure 1A). In the meanwhile, gene mutation analyses

revealed that 55 out of the 976 samples (5.64%) had CRGs

mutations, with ATP7A having the greatest gene mutation

rates (Figure 1B). The majority of CRGs were accumulated on

copy number loss or deletion, according to an examination of

copy number variations (Figure 1C), and all 19 CRGs had

frequent copy number alterations (Figure 1D). Additionally,

it was discovered via research of the impact of gene

expression patterns on overall survival in breast cancer that

those expressing high levels of ATP7A, DBT, DLAT, DLD,

GLS, PDHA1, and SLC31A1 had a bad prognosis. A higher

level of ATP7B, LIPT1, and NLRP3 expression is linked to

improved OS (Figure 1E–N, and Table S2). The findings

suggested that CNV alterations could modify the way CRGs

are expressed. Additionally, a relationship between CRG

expression levels and breast cancer prognostic variables was

discovered, pointing to a potential involvement for CRGs

in breast cancer. The biomarkers might be used as therapeutic

targets or prediction biomarkers for breast cancer.
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Subtypes of cuproptosis are identified
in breast cancer

The correlation network picture showed the 19 CRGs' strong

association with one another (Figure 2A). The cohort was

subdivided into two groups, group A (n = 534) and group B

(n = 605), based on a consensus cluster analysis of the

1168 breast cancer samples, which showed that a cluster of

k = 2 had the largest intragroup and lowest intergroup

differences (Figure 2B, and Figure S1). Differences in the

transcription patterns of the two subtypes of cuproptosis were

found using PCA (Figure 2C). Subtype B has a better prognosis

than subtype A, according to Kaplan-Meier survival calculations

(p = 0.001; Figure 2D). A heatmap was created as a consequence

of the relationship between features of clinical significance and

patterns of CRG expression (Figure 2E). The bulk of CRGs

expressed themselves more strongly in subtype A, whereas late-

phase breast cancer was represented in subtype B.
Analyses of TME infiltration and
functional enrichment in
distinct subtypes

We used gene set variation analysis enrichment analysis to

look at the two subtypes' possible effects on biological behavior

(Figure 3A). Compared to subtype B, subtype A had an

enrichment in the pathways linked to immunological

activation. According to a GSVA enrichment study, subtype A

is considerably enriched in metabolic-activated pathways, such

as the folate utilization of one carbon pool, lysine degradation,

the citrate cycle, RNAmetabolism, arachidonic acid metabolism,

and N-glycan biosynthesis. In each breast cancer sample,

we used the CIBERSORT method to assess the associations

between two subtypes as well as the 23 other subtypes of

immune cells in order to learn more about how CRGs work in

the tumor microenvironment. According to our research, there

are significant variations between the two subtypes in the

quantity of immune cells that infiltrate (Figure 3B). As

compared to subtype B, CD4 T cells, type 2 T helper cells,

regulation T cells, gamma delta T cells, immature dendritic cells,

and immature B cells were found to be more prevalent in

subtype A. Subtype A, on the other hand, exhibited

considerably reduced levels of neutrophil, eosinophil, mast cell,

and CD56 dim natural killer cell infiltration. Then, we did a

functional enrichment analysis to look into the two cuproptosis

subtypes' possible biological roles after using the limma

algorithm to identify 591 DEGs linked to them (Figure S2 and

Table S3). It was discovered that CRGs were mainly engaged in

membrane protein targeting, membrane protein localization

establishment, and pathway analysis using GO and

KEGG (Figures 3C, D, and Figure S3).
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Gene subtypes are identified using DEGs

Using a consensus clustering technique, 1139 breast

cancer patients were categorized into four molecular genetic

categories based on prognostic genes. Subtypes A (n = 350), B

(n = 502), C (n = 165), and D (n = 122) were found when k = 4

indicated that the breast cancer instances may be separated into

four subclasses (Figure 4A and Figure S4). Additionally, the

relationship between the clinical traits of breast cancer patients

and the gene subtypes was investigated (Figure 4B). The genetic

subtype D patients had the lowest OS, while patients with genetic

cluster C had the greatest OS, according to Kaplan-Meier curves

(p < 0.001; Figure 4C). The four cuproptosis gene subtypes'

expression of CRGs varied greatly, as expected by the

cuproptosis patterns (Figure 4D).
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Creating and confirming the
predictive CRG score

Based on DEGs related to subtypes, a LASSO-Cox regression

model was developed to provide a predictive CRG score for each

patient. Figure 5A illustrates the proportion of patients among

the two CRG score groups, the two cuproptosis subtypes, and the

four gene subtypes. There was a statistically significant variation

in CRG scores across cuproptosis subtypes. Subtype B had a

much higher CRG score than subtype A. Figure 5B displays the

risk score distributions for the two CRG subtypes. The highest

CRG scores were for subtype D, while the lowest were for

subtype C (Figure 5C).

Then, using R's caret package, patients were randomly

assigned to training groups (n = 570) as well as testing groups
A B

D

E F

G IH J

K L M N

C

FIGURE 1

The analysis of 19 CRGs' expression and association in the TCGA cohort. (A) The expression of the 19 CRGs in BC tissues and healthy breast
tissues (*p < 0.05; ***p < 0.001). (B) Data on the frequency of CRG mutations for 976 BC patients. (C) The sites of CNV variation in CRGs on the
23 chromosomes. (D) The distributions of CNV gain, loss, and non-CNV among CRGs. (E–N) The association between 10 CRGs and overall
survival in British Columbia.
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(n = 569) at a ratio of 1:1 (Tables S4, S5). Using LASSO and

multivariate Cox analysis, 22 OS-related genes were selected

using the least partial likelihood deviation from 591 cuproptosis

subtype-related prognostic DEGs (Figures 5D, E, and Table S6).

Based on a Cox regression analysis involving several variables,

Akaike information criteria value of 22 OS-associated genes was

utilized to identify six genes (PGK1, RPL14, PRDX1, PSME1,

MAL2, and SURF4) (Table S7). These findings led to the

following formula being chosen as the risk score formula: The

risk score is calculated as follows: (0.00375* PGK1 expression) +

(-0.00930*RPL14 expression) + (0.00278*PRDX1 expression) +

(-0.00668*PSME1 expression) + (0.00147*MAL2 expression)

+ (0.00672*SURF4 expression). 13 out of 17 hallmark genes

showed a significant variation in their expression of genes

between high-risk individuals and low-risk individuals

(Figure 5F). Based on their risk ratings, each theme was split

into high- and low-risk patient groups, and the median scores

were calculated for the training and test sets. According to their

values of risk, patients were split into two groups: those at low

risk and those at high risk (Figure 6). In terms of survival rates

and circumstances, there were significant differences among the

two groups based on Kaplan-Meier curves. Patient survival rates

and the distribution of CRG scores were analyzed independently

for the train and test sets.
Frontiers in Immunology 06
Creating a nomogram to
forecast survival

Using the data gathered, we created a nomogram using the

rms program to forecast the life expectancy of breast

cancer patients at the lifetime of 1, 3, and 5 (Figure 7A, and

Table S8). Each patient's total point values were determined

based on prognostic characteristics such as their age, level of risk

(low risk was indicated by a "low CRG score" and high risk

was indicated by a "high CRG score"), as well as the T and N

stage of their ailment. The harshness of the prognosis is directly

correlated with the patient's overall score. The calibration plots

showed that the nomogram performed better than an ideal

model would have (Figure 7B). Additionally, ROC analysis

indicated that the nomogram performed very well in terms of

prediction (Figures 7C–E).
Relationship of TME and Mutation
burden with CRG score

The CIBERSORT algorithm was used to assess the

relationship between the CRG score (Figure S5) and the

number of immune cells. However, the CRG score was
A B

D E

C

FIGURE 2

Biological and clinicopathological characteristics of CRG subtypes. (A) The interactions between CRGs in BC (the red and blue strings denote
positive and negative correlation, respectively; the intensity of the correlation is indicated by the color shades). (B) The consensus matrix's
heatmap of two clusters (k = 2). (C) A considerable transcriptome divergence between the two subtypes is seen by PCA analysis. (D) Subtype-
specific Kaplan-Meier OS curves. (E) CRG expression levels and clinicopathological traits vary across subtypes.
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negatively correlated with naive B cells, resting dendritic cells,

resting mast cells, monocytes, activated NK cells, plasma cells,

CD8 + T cells, and follicular helper T cells. A correlation was

found between the CRG score and activated memory CD4 + T

cells, M0 macrophages, M2 macrophages, activated mast cells,

and resting NK cells (Figure 8A). Additionally, our research

looked at the association between six genes and the amount of

immune cells. According to our study, the six genes affect the

bulk of immune cells (Figure 8B, and Table S9).

The TMB study revealed a significant association between

anticipated TMB level and cuproptosis gene subtypes (R = 0.28,

P < 0.001; Figure 8C). To give further support, we looked at the

variations in somatic mutation distribution across the cohort's

two CRG score groups. The top 10 most changed genes in each

of the two groups were PIK3CA, TP53, TTN, CDH1, GATA3,

MUC16, MAP3K1, HMCN1, and FLG. The most often mutated

genes in patients with a high CRG score are TP53 (46%) and

PIK3CA (28%), while PIK3CA (41%) is the most frequently

mutated gene in the low-risk category (Figures 8D, E).
Drug susceptibility testing and CSC index

Additionally, it was shown that there was a link between the

CRG score and the CSC index that was positive (R = 0.22, P <
Frontiers in Immunology 07
0.001), suggesting that cells from breast cancer with higher cell

retention gene scores demonstrated more stem cell features and

less differentiation (Figure 8F). Sensitivity analysis was done on a

few medications presently being used to treat breast cancer

among the two groups. For patients with high CRG scores, it

was found that the IC50 values of drugs including paclitaxel,

vinblastine, bleomycin, AUY922, ATRA, and AZD6244, among

others, were considerably higher. It is evident from these results

that CRGs are essential for the sensitivity of drugs

(Figures 9A–F).
Discussion

Breast cancer is a potentially deadly illness that places a

heavy burden on people worldwide (1–3). It is vital to first

identify people who are more likely to get the illness, and then

find measures to lower that risk, in order to decrease the

prevalence of breast cancer (35, 36). If more study is done on

innovative processes and treatments, a higher proportion of

patients will be cured (37). We are aware of very little research

that have looked at potential connections between CRGs

and breast cancer in the past. Our research showed that when

compared to normal tissues, breast cancer tissues expressed the

majority of CRGs at varying levels. Furthermore, cuproptosis
A
B

DC

FIGURE 3

Cuproptosis subtypes linked to TME invasion. (A) GSVA of two cuproptosis subtype-related cellular pathways (Red means activated and blue
means inhibited). (B) Correlations between immune cell infiltration levels in the two subtypes associated with cuproptosis. (C, D) DEG
enrichment studies across two cuproptosis-related subgroups using GO and KEGG. *p < 0.05, **p < 0.01, ***p < 0.001.
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A B

D

C

FIGURE 4

DEGs are used to identify gene subtypes. (A) Heatmap of the consensus matrix defining four clusters ( k = 4). (B) Differences in
clinicopathologic characteristics among the four gene subtypes. (C) The four gene subtypes' Kaplan-Meier OS curves. (D) Variations in the
expression of ten CRGs across four gene subtypes. **p < 0.01, ***p < 0.001.
A B

D E F

C

FIGURE 5

The CRG score was created in the TCGA and GSE61304 cohorts. (A) The subtype distributions among groups, CRG scores and survival
outcomes. (B) Variations in CRG scores among cuproptosis subtypes. (C) Variations in PRG scores among different gene subtypes. (D) CRG
regression using LASSO. (E) Cross-validation of LASSO regression parameter selection. (F) CRG score differences in ten CRGs. *p < 0.05, ***p <
0.001.
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FIGURE 6

The patient survival status and CRG score distribution vary between the train and test sets. (A, C, E) The patient survival status and CRG score
distribution in the train set. (B, D, F) The patient survival status and CRG score distribution in the test set.
A
B

D EC

FIGURE 7

Creating and evaluating a nomogram. (A) The nomogram used to calculate the survival rates of 1-, 3-, and 5-years for patients with BC. (B) Calibration
curve for nomograms. (C–E) ROC curves for the train set and test set, respectively, for forecasting 1-, 3-, and 5-year OS in the cohorts. *p < 0.05, ***p
< 0.001.
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may have prognostic or predictive value in patients with breast

cancer in accordance with the level of expression of these genes

in these individuals.

Several studies have connected copper to human cancer

tumor cell development, proliferation, and carcinogenesis (21–

25, 38–41). However, additional investigation is needed to

pinpoint the specific pathways, which include tumor initiator
Frontiers in Immunology 10
cells, growth, and metastatic spread, and to demonstrate causal

linkages between copper and human cancer. It has not yet been

completely determined how important these effects and immune

infiltration characteristics caused by several CRGs are. Our

research showed that both genetic and transcriptional

alterations occurred in CRGs in breast cancer. On the basis of

CRGs, our study identified two distinct molecular subtypes.
A

B

D E F

C

FIGURE 8

Comprehensive analysis of the CRG scores in BC. (A) Correlations between immune cell types and CRG score. (B) The six genes from the
proposed model are correlated with the number of immune cells. (C) CRG score and TMB spearman correlation analysis. (D, E) The somatic
mutation features waterfall plot determined by high and low CRG scores. One patient was represented by each column. The correct number
represented each gene's frequency of mutation, and the upper barplot displayed TMB. The proportion of each variant type was displayed in the
right barplot. (F) Associates between the CSC index and the CRG score.
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Patients with subtype A had more severe clinical characteristics

and shorter OS compared to those with subtype B. Individuals

with high expression of ATP7A, DBT, DLAT, DLD, GLS,

PDHA1, and SLC31A1 have a bad prognosis, while those with

high expression of ATP7B, LIPT1 and NLRP3 have a favorable

prognosis. The effect of gene expression patterns on overall

survival in breast cancer was also studied. Additionally, we

contrasted variations in the traits and immunologically-related

biochemical pathways of the two TME subtypes. As a result of

the activation of CD4 T cells, eosinophils, gamma delta T cells,

regulatory T cells, mast cells, active dendritic cells, neutrophils,

type 2 T helper cells, CD56 dim natural killer cells, immature

dendritic cells, and immature B cells, the immunological

activation of the breast cancer subtypes was also substantial.

Then, four gene subtypes were determined using the DEGs

between the two cuproptosis subtypes. In addition, we

developed the prognostic CRG score and demonstrated its

tendency for prediction. In comparison with patients with

low-risk CRG values and those with high-risk CRG values,

there were significant variations in overall survival, clinical

traits, mutations, TME, CSC index, and medication resistance.

Finally, to improve performance and make the CRG score

simpler to use, we developed a nomogram that was derived

from patient characteristics and the CRG score. The prognostic

model may encourage beneficial understandings of the

molecular basis of breast cancer as well as fresh approaches to

cancer treatment.

Recent studies have revealed that cuproptosis plays an

important role in human tumor. Bian Z, et al. examined the
Frontiers in Immunology 11
genetic alterations of cuproptosis-associated genes in clear cell

renal cell carcinoma (17). Han J, et al. investigated the prognostic

role of cuproptosis-related long non-coding RNAs in soft tissue

sarcoma and its correlation with the tumor microenvironment

(18). According to Zhang Z, et al., cuproptosis-related genes are

useful for clinical prediction of prognosis and treatment

guidance in hepatocellular carcinoma (42). The relationship

be tween cup rop to s i s and b r e a s t c anc e r and i t s

microenvironment has not previously been studied; thus, our

study serves as the first to examine this relationship. Our study

shows that copper death-related genes are differentially

expressed in breast cancer and are associated with OS in

patients with breast cancer, which may assist in predicting the

prognosis for breast cancer patients. Copper has been shown to

play an important role in tumor development and can be used to

predict the prognosis and treatment of tumors (13–16). Patients

with different cuproptosis-related0 subtypes exhibit different

characteristics and tumor microenvironment, and patients in

high and low risk groups differ in their sensitivity to treatment.

Consequently, we speculate that different treatment approaches

for different subtypes of patients may produce better outcomes,

however, this hypothesis requires further validation in vivo and

in vitro.

As is well known, the tumor microenvironment is made up

of both the tumor cells and the cells that surround them, such as

lymphocytes, tumor infiltrating immune cells, and the tumor

vasculature (41–43). There is strong evidence to back up the idea

that TME is essential for tumor formation, progression, and

therapy resistance (44–46). In the present investigation, we
A B

D E F

C

FIGURE 9

Relationships between the CRG score and susceptibility to chemotherapy or targeted therapies for BC. (A) paclitaxel. (B) Vinblastine. (C)
Bleomycin. (D) AUY922. (E) ATRA. (F) AZD6244.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.996836
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2022.996836
found that the TME features as well as the abundances of 23

TIICs were substantially varied across the two distinct molecular

subtypes and the various CRG scores. This result suggests that

CRGs are essential to the growth of breast cancer. When TIICs

are found in tumor tissues, breast cancer patients have a better

prognosis. Activated CD4 T cells, type 2 T helper cells, gamma

delta T cells, regulatory T cells, immature dendritic cells,

immature B cells, and activated dendritic cells were more

prevalent in Type A subtypes than Type B subtypes, according

to the findings of our study. It was discovered that subtype B had

much reduced numbers of eosinophils, mast cells, neutrophils,

and CD56 dim natural killer cells infiltration. Given the success

of immunotherapy in breast cancer, research on the tumor

microenvironment and immune cell infiltration can help

discover new directions and mechanisms of immunotherapy

for breast cancer.

This study has the following contributions. First of all,

this research is the first of its kind to identify subtypes

associated with cuproptosis and create a predictive model

based on CRGs in breast cancer. Because cuproptosis differs

from other recognized methods of cell death, it may provide

new therapeutic possibilities for treating cancer (47, 48).

Second, a variety of different techniques and databases were

employed. As a means of improving the reliability of our

findings, we also defined subtypes associated with cuproptosis

and created a predictive model for use in screening and

testing processes.

There are several restrictions on our research. First, the

studies solely used data from public sources; additional

validations using more accurate clinical data are required.

Additionally, it was not feasible to analyze data for several

critical clinical factors (surgery, chemoradiotherapy, and

radiation therapy), which would have had an impact on the

immune response and drug susceptibility prognosis. Since the

prognostic signature was created and verified using data from

publicly available sources, more experimental investigations as

well as extensive prospective studies are required to corroborate

our results.
Conclusion

In this study, we systematically analyzed the role of

cuproptosis-related genes in breast cancer prognosis and

correlation with tumor microenvironment and clinical

features, and constructed a better prognostic prediction model.

We also explored the effectiveness of CRGs as biomarkers of

response to therapy. In conclusion, our study reveals the clinical

importance of CRGs, which provides a valuable basis for further
Frontiers in Immunology 12
studies on the diagnosis or personalized treatment of breast

cancer patients.
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