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Abstract
Background: Classification using aCGH data is an important and insufficiently investigated
problem in bioinformatics. In this paper we propose a new classification method of DNA copy
number data based on the concept of limited Jumping Emerging Patterns. We present the
comparison of our limJEPClassifier to SVM which is considered the most successful classifier in the
case of high-throughput data.

Results: Our results revealed that the classification performance using limJEPClassifier is
significantly higher than other methods. Furthermore, we show that application of the limited JEP's
can significantly improve classification, when strongly unbalanced data are given.

Conclusion: Nowadays, aCGH has become a very important tool, used in research of cancer or
genomic disorders. Therefore, improving classification of aCGH data can have a great impact on
many medical issues such as the process of diagnosis and finding disease-related genes. The
performed experiment shows that the application of Jumping Emerging Patterns can be effective in
the classification of high-dimensional data, including these from aCGH experiments.

Background
Introduction
Array-based Comparative Genomic Hybridization
(aCGH) is a powerful technique used to detect DNA copy
number variations (CNV) across the genome. One of the
most important aims of this technique is diagnosis, which
can be achieved with help of classification of aCGH data.

One of the most important problems with the classifica-
tion of aCGH data is dealing with a great number of
attributes, which often exceed the number of given sam-
ples. In a typical experiment one can deal with dozens of
samples, while microarray may consist of millions of
spots. It is a real challenge to select from the huge amount
of data the most interesting features, while most of them
are not related to the given classification problem.
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In reference to this issue, reduction of the dimensionality
of data by applying feature elimination algorithms has
been proposed in the previous works [1,2]. One of the
most interesting approaches, which is based on interval
merging, has been presented in [1]. Unfortunately, the
solution described by the authors contains some fallacies,
which result from an improper mix of training and test
data in their algorithm. In the Methods section, we revise
interval merging approach and we propose a new cor-
rected version.

The other problem of processing aCGH data is the unbal-
ance in class distribution. For instance, it is quite common
that the number of samples from one class exceeds by sev-
eral times the number of samples from the other class.
This makes classification much harder, and most of algo-
rithms assume an uniform class distribution.

Moreover, very often, one specified class is much more
important than others. Let's suppose, we want to distin-
guish two groups of individuals: healthy and unhealthy.
We will concentrate more on unhealthy class. The mistake
made by classifying the unhealthy as healthy (False Nega-
tive) is more costly than an opposite mistake (False Posi-
tive). It implies the necessity of being careful in analysing
and comparing the quality of classification models.

On the other hand, it is common in practice, that
researchers present the results of classification perform-
ance by showing only the accuracy [2,1,3]. Obviously, it is
an insufficient measure, when unbalanced data are given.
This problem is discussed more deeply in the Results and
Discussion section. Obviously, the wrong assumption
about evaluation measures leads to incorrect conclusions
about classifiers performance. In this paper, we show that
the classification methods considered most successful for
high-dimensional data extremely decrease their perform-
ance dramatically when the samples distribution is out of
balance. Therefore we decided to develop a new classifica-
tion method, which is based on the concept of Jumping
Emerging Patterns (JEP). The difficulties of algorithmic
design, such as computational complexity and limita-
tions, are explained in detail in the Methods section.

Thanks to very high discriminative power of JEP's, our
limJEPClassifier could be more appropriate in classifying
aCGH data than other methods. In order to compare our
new algorithm to SVM [4], we prepare an experimental
pipeline, precisely described in the section Methods.
Finally, in the Results and Discussion section, we present
the results of this comparison.

In the following section, we present details of aCGH tech-
nology.

aCGH technology
Comparative Genome Hybridization (CGH) is a tech-
nique which allows for detection of segmental DNA copy
number changes (CNC's) [5-7]. Recently, CGH has been
widely used in many medical applications. In particular, it
helps in the diagnosis of cancer [8] or genomic disorders
[9], improves our knowledge about genes responsible for
diseases and advances studies on personal genomic differ-
ences between humans [10].

In array-based CGH (aCGH) experiment, two differen-
tially labeled samples are co-hybridized to targets, where
the copy number between the two samples is reflected by
their signal intensity ratios. In Figure 1 we present essen-
tial steps in this technique.

Through the years, the technology was upgraded to obtain
a higher resolution by reducing length of DNA targets
(probes). Nowadays, some aCGH platforms (e.g. oligonu-
cleotide aCGH) support arrays with more than 1,000,000
probes.

Another kind of technique is SNP arrays (single nucle-
otide polymorphism), which differs from aCGH technol-
ogy by its higher resolution. It allows to detect very small
DNA changes.

Because of the huge amount of data, which are processed
in aCGH experiments and some imperfections in technol-
ogy, it becomes necessary to use the wide range of infor-
matics and statistical tools at each stage of the analysis.

The first algorithmic challenge appears already in the
preparation step. The issue is how to choose suitable
probes, which will not cross-hybridize with other targets
in the array. In this context several approaches have been
proposed [11,12].

Workflow of aCGH experimentFigure 1
Workflow of aCGH experiment. Representation of 
aCGH technique [30].
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The next problem is related to the post-processing of sig-
nal data obtained from microarray. Because of many cir-
cumstances, which may affect results, it is essential to
perform a normalization procedure, described in [13].

To obtain more clear results, smoothing, segmentation
and aberration calling are usually used [2,14-16]. Nowa-
days, it is the most investigated area of aCGH analysis.

As we mentioned above, aCGH data is used in a diagnos-
tic process. At this point a classification method has to be
applied. In several papers, it has been suggested that the
most accurate is a Support Vector Machine (SVM) [4]. In
the next sections, we will evaluate this statement, by com-
paring SVM to our new classifier based on Jumping
Emerging Patterns.

Related works
In recent works, we have found a lot of information about
processing aCGH data, such as smoothing and clustering
[2,14-16]. However, there are many fewer papers, which
deal with a classification problem.

In [17] and [18] the classifications of combined data
(aCGH and gene expression or steorological data) are
considered.

Another work [3] investigates the tumor classification
based on DNA copy number aberration determined using
SNP arrays. In that paper three classification methods:
Naive Bayes, K-nn, and SVM have been tested with a vary-
ing number of features. Although the K-nn achieved the
best leave-one-out cross-validation accuracy, the perform-
ances of other methods were comparable. The second
conclusion of this work was that the best performance of
classifiers was achieved when 5–30 features were selected.
This fact reveals the importance of feature reduction algo-
rithm in the classification of high-dimensional data. A
new feature elimination methods for cancer classification
using aCGH data have been proposed in the article [1].
Authors introduce a feature reduction algorithm based on
an Interval Tree. In order to prove its efficiency, they com-
pare the performance of a SVM classifier on two types of
data: 1) raw log2ratio data; 2) data processed by their fea-
ture reduction algorithm. The results show that their
approach led to a significantly better classification.
Although the feature reduction procedure described by
authors seems to be very useful, we have to point out
some fallacies that we have found in their argumentation.

The first problem concerns the improper use of cross-val-
idation. The cross-validation assumes that at the begin-
ning of each run, data should be split into training and
test data sets, and then all the operations before testing
step should be done on both sets separately. However, in

the system presented in [1], the feature reduction based
on Interval Tree was performed on training and testing
data together. In other words, the knowledge about test
samples is utilized indirectly to train the model, which is
clearly improper. The second major drawback of experi-
mental design is that the authors used only one measure
to evaluate a classification performance – the accuracy.
We assume that it is insufficient and does not show a real
classification performance, since one of the tested data
sets (TP53) [19], is strongly unbalanced. In our paper, we
investigate the same TP53 data set with revised experi-
mental pipeline and more adequate evaluation measures.
Beside testing the SVM, we also check our new method –
limJEPclassifier.

Methods
Jumping Emerging Patterns
The classifiers based on Emerging Patterns (EP) or Jump-
ing Emerging Patterns (JEP), have been considered one of
the most successful classification systems [20]. However,
it has hardly ever been tested with high-throughput data,
because of the high computational complexity of EP. In
this paper, we show how to overcome this issue by using
"Limited JEP's".

First of all we present the definition of Jumping Emerging
Patterns.

Definition 1. Given two data sets D1, D2 we define a
Jumping Emerging Pattern from D1 to D2 as an itemset X
(an attribute value pairs), for which suppD1(X) ≠ 0 and
suppD2(X) = 0.

We will denote each JEP from class P to class N by
attribute-value pairs.

Definition 2. The minimal JEP from P to N, which con-
tains pattern (itemset) X, is such a JEP for which, does not
exist a JEP, which contains pattern Y and Y ⊂ X. In other
words, JEP is minimal when all the patterns contained in
its itemset do not form any other JEP.

Example 1. Consider a decision table – Table 1. We have
given two data sets – classes P and N. By the definition
patterns: {(a2, 1)}; {(a3, 1), (a4, 1)}; {(a2, 1), (a3, 1),
(a4, 1)} are examples of JEP's, from class P to N. However
the JEP {(a2, 1), (a3, 1), (a4, 1)} is not minimal, because
it contains itemsets {(a2, 1)}, which form other JEP.

In this paper we consider only minimal JEP's.

Limited JEP's
Definition 3. Limited JEP's at the level K are a set of min-
imal JEP's, for which the number of attributes in each
Page 3 of 10
(page number not for citation purposes)



BMC Bioinformatics 2009, 10(Suppl 1):S64 http://www.biomedcentral.com/1471-2105/10/S1/S64
itemset equals K. We denote limited JEP's at level K by
limJEPK.

Example 2. According to the table 1, there are:

• one limJEP1 from P to N - {(a2, 1)};

• one limJEP2 from P to N - {(a3, 1), (a4, 1)} and three
limJEP2 from N to P - {(a3, 0), (a4, 1)}, {(a2, 0), (a4, 1)},
{(a2, 0), (a3, 1)};

• no limJEP3 and limJEP4.

The major problem with classifiers based on JEP's is their
high complexity, which increases rapidly with the number
of attributes. In [21] the authors show that the emerging
pattern problem is MAX-SNP hard. In order to overcome
this issue several algorithms were developed, which signif-
icantly reduce the computation time: JEPproducer [22],
CP-tree [23], FP-tree [24,25], classifier based on local pro-
jected JEP [26]. However, even with those methods it is
still not possible to search all JEP's when the number of
features exceeds few dozens.

In this paper, we claim, that in the case of high-through-
put data, we can build a classifier based on limited JEP's
for lower limJEP levels only, instead of computing all the
patterns. In the following sections, we will show that this
solution leads us to the construction of an efficient, and
successful classifier. Below, we present how the discrimi-
native power of JEP's may vary among levels of limited
JEP's.

REAL and UNREAL JEP's
We introduce the concept of REAL and UNREAL JEP's to
illustrate the quality of patterns at different limJEP levels.

Definition 4. Let U denote a decision table of itemsets,
where two classes (P and N) are given. From table U we
select a subset of samples denoted by A. We say that the
pattern p is a REAL JEP in decision table A ⇔ if the p is still
a JEP in table U. Otherwise p is UNREAL. We will denote
all JEP's (REAL ∪ UNREAL) as ALL.

Example 3. Consider Table 1 as U. Suppose we select from
U rows 3,4,5 and 6. We denote the new table by U'. Con-
sider two patterns: p1 = {(a1, 0)} and p2 = {(a2, 1)}. Both
patterns are JEP's in U', however only p2 is still a JEP in U.
In reference to definition 4, p1 is UNREAL JEP, and p2 is
REAL JEP in U'.

In our study ratios of REAL to ALL JEP's are used, to meas-
ure the quality of limJEP's at the given limJEP level.

Proposition 1. For a given decision table U with the
number of rows |U|, let U' be a training data set derived
from U. Similarly, we denote U" as a set of rows selected
from U'. We assume, that |U'| - |U"| <<> |U"|. It means
that a great majority of rows was selected. Then, if we com-
pute JEP's for tables U, U' and U", we can easily determine
the number of REAL JEP's in U" with respect to U' and the
number of REAL JEP's in U' in respect to U for each of the
limJEP level. We put it that for a given limJEP level the ratio
REAL/ALL JEP's is almost constant among tables U" and
U".

The proposition 1 allows us to infer from the training data
about the quality of JEP's at a given limJEP level without a
knowledge about test samples. Note, that in order to
obtain the quality of investigated decision table U, we
need to use only the training data (U') and the table U"
which is derived as a subset of U'.

We tried to confirm proposition 1 by testing TP-53 data
set, described in the next section. Because of the high com-
putational complexity, we used a decision table with the
number of features reduced to 50. Data set was processed
10 times, as follows:

1. From original data set (U) we select randomly 80% of
rows as training data (U').

2. From U' we select 90% of rows, and denote it by U".

3. We compute all JEP's at limJEP levels 1, 2 and 3 for
tables U, U' and U".

4. We calculate and compare REAL/ALL JEP's ratios in U'
and U" at each level.

In Table 2 we present three samples of REAL/ALL ratios at
each limJEP level and mean ratios from whole experiment
(10 runs).

As we can see, REAL/ALL ratios behave similarly for U' and
U". For a fixed limJEP level the differences in ratio between
U' and U" at each run are relatively low. What is more, all
the rows preserve the same, descending order of ratios.
The best score is observed for limJEP1, next for limJEP2 and

Table 1: Example of decision table

nr a1 a2 a3 a4 Class

1 0 0 0 0 P
2 1 0 0 0 P
3 0 1 1 0 P
4 0 1 1 1 P
5 1 0 0 0 N
6 1 0 0 0 N
7 0 0 1 0 N
8 0 0 0 1 N
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limJEP3. We have mentioned above that proposition 1
gives us the possibility to predict a quality of JEP's at given
limJEP level. It seems reasonable, that in a similar way, we
can investigate other features of our data set, such as the
distribution of REAL JEP's in classes. This could be valua-
ble information, especially when we build a classifier,
which works with unbalanced data.

Hierarchical strategy of classification
The fundamental application of JEP's is a classification.
During the training step a classification model is built,
which means that JEP's contained in training data are
computed. In order to classify new data, the test sample is
compared with all JEP's from the model. If the given JEP
matches the sample, the algorithm increments the sup-
port for a class, which is associated with this JEP. Finally,
the class with the greatest support is selected as a result.

Example 4. Suppose that the Table 1 is the given training
data set. In this case, the derived model will contains two
minimal JEP's from class P to N: {(a2, 1)}, {(a3, 1), (a4,
1)}; and three from N to P: {(a2, 0), (a3, 1)}, {(a2, 0),
(a4, 1)}, {(a3, 0), (a4, 1)}. Consider the test instance {1,
1, 1, 1}. The classifier searches for all JEP's in the model
which match this instance. In particular example there are
two such JEP's from class P to N and no JEP's from class N
to P. Based on this knowledge, the algorithm can easily
decide that test sample should be classified as class P.

The strategies of classification with JEP's usually take into
consideration the whole population of found JEP's [20].
Several algorithms filter or weight JEP's in reference to
their support in the training data set [23].

Unfortunately, these approaches did not prove useful in
the case of aCGH data. The accuracy of classification per-
formed by traditional JEP techniques was revealed to be

lower than the accuracy of other classifiers such as SVM.
What is more, these methods are computational intensive
when we deal with high-throughput data.

These facts motivated us to look for a more accurate strat-
egy of JEP's classification. In this paper, we propose a new
algorithm of classification with Jumping Emerging Pat-
terns named limJEPClassifier which is based on the
knowledge of variability of discrimination power at differ-
ent limJEP levels. To the best of our knowledge, up to now
there was no strategy that refers to limJEP levels. The steps
of algorithm are presented below.

For a given model, computed sets of limJEP's at levels 1,
2,..., m, where m ≤ number of attributes, limJEPClassifier
processes a test sample as follows:

1. Sorts levels of limJEP's in reference to REAL/ALL ratio in the
way explained in proposition 1.

2. Selects the best level and tries to classify the sample with
JEP's from this level.

3. If success (support of one class dominates another one),
returns the result; or else removes the last-considered level and
goes back to point 2.

4. If no class is selected, chooses the most frequent class or ran-
domizes it from appropriate distribution.

It is important that the REAL/ALL ratio is derived from the
table U", which is constructed based on the samples
selected from a training data.

The other thing which is worth noticing, is that in our
implementation of presented algorithm, we mainly use
only the first two limJEP levels: limJEP1 and limJEP2. We
found out that applying more levels does not improve the
performance of classifier.

In the result section, we will show the advantages of our
approach over other classification methods.

Classification pipeline
In order to test various classification models, we have
developed a pipeline which includes preprocessing,
model building and result analysis steps. The whole pipe-
line is presented in Figure 2. Below, we describe each step
in detail.

Thresholding
In this step, we apply thresholding for all the data in order
to determine normal, gain and loss regions. This proce-
dure is done with the two values which indicate positive
and negative thresholds, as follows:

Table 2: REAL/ALL ratios Comparison of REAL/ALL ratios at 
different limJEP levels between tables U' and U'.

REAL/ALL JEP's

limJEP1 limJEP2 limJEP3

run 1-U' 0.97 0.96 0.65
run 1-U" 1 0.97 0.67

run 2-U' 1 0.98 0.63
run 2-U" 1 0.96 0.68

run 3-U' 0.97 0.96 0.65
run 3-U" 1 0.97 0.67

mean-U' 0.97 0.9 0.53
mean-U" 0.98 0.85 0.5
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• If the value of spot is above the positive threshold, we
mark it as a gain.

• If the value of spot is below the negative threshold, we
mark it as a loss.

• In other cases, spot is marked as normal.

For each spot, we assign new values: 0 for normals, 1 for
gains and -1 for losses.

Sampling training data
In order to perform cross-validation we sample training
data from the table achieved in the previous step. The fol-
lowing operations are performed only on training data
until testing stage.

Feature reduction
Feature elimination is divided into the following two
steps:

• Applying feature reduction algorithm based on interval
tree (mentioned in the previous section).

• Selecting the most valuable features obtained by Infor-
mation Gain approach.

Below we present both algorithms in detail.

Merging intervals
The core idea of this algorithm is to compress the data by
merging segments (continuous sequences of spots with
equal values). Arisen intervals can be used as new features.
In the procedure all continuous sets of columns with the
same values in each row are retrieved and transformed
into one single column.

It is clear that the derived-in-this-way attributes, contain
more statistical information about distribution in classes
than the previous set with separated columns. This state-
ment was confirmed in the paper [1], in which it was
shown that the usage of this procedure significantly
improved the accuracy of classification. It is worth notic-
ing that the presented algorithm was applied only for
training data, unlike in article [1]. We claim that such an
attitude is more proper in relation to classification prob-
lem, because we do not use any test data during the train-
ing step.

However, this approach involves some complicating cir-
cumstances. Note that each sample from the test data has
to be adjusted into a structure of a table derived from the
training data set. In order to do that, it is required to trans-
form a test sample by combining the same sets of col-
umns, which were merged in the training data table. The
main problem is how to assign proper values for merged
attributes. In the case when all the values are equal, it is
trivial and we assign this value. Otherwise, we select heu-
ristically the value which appears most frequently in the
given interval. We claim that this problem should be more
deeply investigated in future research.

Information gain
Although applying the merging interval algorithm signifi-
cantly reduces the number of attributes, there are still a
great number of columns left. We decided to use an Infor-
mation Gain approach [27] to weight the importance of
each feature and sort them in a descending order. The
algorithm measures the number of bits of information
obtained for category prediction by knowing the presence
or absence of a feature. The Information Gain of feature F
is defined as:

where yi : i = 1...m are the set of categories and V set of pos-
sible values of f. At the end, the fixed number of top-
ranked features are selected in order to form a final deci-
sion table.
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Experimental pipeline. Experimental pipeline for testing 
classifiers.
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Classification
When we obtain a final decision table, we train on it two
classification models SVM (Support Vector Machine) [4]
and limJEPClassifier.

The first classifier, SVM, was selected because it is com-
monly used in the case of high dimensional data. What is
more, there can be found many applications of SVM to
microarray gene-expression data, which are quite similar
to aCGH data.

The core idea of SVM is to construct a separating hyper-
plane in the space of n-dimensional data between two sets
of vectors (samples from two classes). The hyperplane
should maximize the margin, defined as a sum of dis-
tances from hyperplane to the closest positive and nega-
tive samples [1].

The second classification method is our new approach –
limJEPClassifier which was described in the previous sec-
tion.

Data source
In our study we used a commonly investigated data set –
TP 53, published by [19]. The data are freely available at
[28]. The aCGH data come from BAC arrays hybridized
with oral squamous cell carcinomas (SCCs). The data set
contains 14 TP53 mutant samples (unhealthy subjects)
and 61 wildtype samples (healthy subjects). Each sample
in a data set is featured by 1975 clones (log2ratio values).

Results and discussion
Evaluation measures
A typical problem with aCGH data is an unbalanced class
distribution. In the case of the considered TP53 data set,
the proportion between classes is 14:61. Moreover, the
weight of each class is different. The rare class of sick sub-
jects (14 samples) is more significant than the large set of
samples of a control group. Traditionally, the rare and
more important class is marked as "positive", while prev-
alent class is called "negative".

When one tries to investigate a classification with unbal-
anced data, one has to be very careful in selecting the
measure of classification performance. In particular, the
accuracy alone, is insufficient, because it does not tell us
about a performance of predicting the positive class.

The common approaches of deriving alternative evalua-
tion measures are based on confusion matrix, where all
tested samples are grouped in four categories: "True posi-
tives" (TP), "False positives" (FP), "True negatives" (TN)
and "False negatives" (FN), with respect to the classifica-
tion results.

The sensitivity and the specificity of classifier are defined as
follows:

• 

• 

In order to obtain a single measure of classifier perform-
ance, the sensitivity and the specificity can be integrated into
the geometrical mean:

Experimental setup
In this section, we present a comparison of two classifica-
tion methods – SVM and limJEPClassifier. Both algo-
rithms were tested according to the pipeline and on the
data set, described in Methods section. We decided to
compare our method with SVM, because it is considered
to be the best algorithm used for classification of aCGH
data and it has been commonly tested in other works. We
did not compare our algorithm with other methods based
on JEP's, because traditional strategies of JEP's classifica-
tion are slow and ineffective.

LimJEPClassifier, as well as the whole experimental pipe-
line were implemented in the R language [29]. In order to
process log2ratio data, we used the freely available
"aCGH" package, designed to deal with aCGH data.
Another popular R package – "e-1071" was used to per-
form tests with SVM classifier.

Classifiers were tested with cross-validation where the
training to test data ratio was 80%. In order to investigate
the influence of the thresholding procedure on the classi-
fication results we performed the two runs of experiment
with different pairs of positive and negative threshold val-
ues: (0.25, -0.25) and (0.5, -0.5). For each pair of thresh-
old levels the cross-validation was repeated 10 times with
various numbers of selected features (10, 20,..., 100).
Note that feature selection, based on both interval merg-
ing and information gain approach, were applied under
cross-validation.

limJEPClassifier vs SVM
In Figures 3, 4 and 5 we present the comparison of classi-
fication performance of SVM and limJEPClassifier. In each
figure the different measure of performance is reported.
The (a) and (b) versions of plots correspond to two pairs
of threshold levels applied in the experiment.

sensitivity TP
TP FN= +

specificity TN
TN FP= +

G mean sensitivity specificity- = × .
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Figures 3a and 3b show the accuracy of classifiers for var-
ious numbers of features. In both cases the values change   

Sensitivity of limJEPClassifier vs SVMFigure 4
Sensitivity of limJEPClassifier vs SVM. Comparison of classification sensitivity of SVM and limJEPClassifier for two thresh-
old levels: (a) 0.25 and -0.25; (b) 0.5 and -0.5.

Accuracy of limJEPClassifier vs SVMFigure 3
Accuracy of limJEPClassifier vs SVM. Comparison of classification accuracy of SVM and limJEPClassifier for two threshold 
levels: (a) 0.25 and -0.25; (b) 0.5 and -0.5.
Page 8 of 10
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between 0.74 and 0.85. For the threshold (0.25, -0.25) the
differences between SVM and limJEPClassifier are negligi-
ble. In figure 3b we see that the accuracy is still similar,
however, a little supremacy of SVM could be observed.

On the other hand, it is worth noticing that the number of
features have a very low impact on accuracy that is not a
proper measure of classification performance in the case
of unbalanced data. The last observation seems to confirm
this statement.

Figures – 4a and 4b, show the comparison of sensitivity
which is the performance of a prediction of the class of
affected subjects. We can observe from the results that for
both threshold levels, limJEPClassifier is much better than
SVM. Furthermore, the sensitivity of SVM is below 0.5
which means that the classifier cannot really distinguish
between positive and negative class. The other difference
between two classification methods is the way how the
sensitivity changes along the X axis. In case of limJEPClas-
sifier the sensitivity is relatively low at the beginning and
increases with the number of features, while for SVM we
cannot observe such a tendency.

The last pair of plots (Figure 5a and 5b) present the G-
mean value in which the sensitivity and specificity are

included. Like in the previous case, the limJEPClassifier
significantly predominated over SVM.

Conclusion
It is clear that improving a classification of aCGH data can
contribute to great progress in many medical applications.
Unfortunately, because of the imperfections of this tech-
nology, low signal to noise ratio and rapidly increasing
microarray resolutions, classification still remains a very
difficult problem.

In this paper, we have investigated the problem of the
classification  using DNA copy number data which are
characterized by an extremely high dimensionality and
unbalanced distribution. We have introduced the concept
of limited JEP's and we have shown how they can be
applied in aCGH data classification. What is more, we
suggest that the performance of a given limJEP level can be
measured by analysing the structure of the training data.

To confirm the performance of our approach we have
developed an experimental pipeline and we have com-
pared limJEPClassifier with SVM. Experiments have been
performed using widely tested TP-53 data set [19].
Although the SVM is considered one of the most success-
ful methods of classifying high-throughput data, limJEP-
Classifier has revealed a much better performance in
predicting the class of sick subjects. The main advantage of
limJEPClassifier over SVM is that it deals more effectively

G-mean of limJEPClassifier vs SVMFigure 5
G-mean of limJEPClassifier vs SVM. Comparison of G-mean measure of SVM and limJEPClassifier for two threshold lev-
els: (a) 0.25 and -0.25; (b) 0.5 and -0.5.
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with unbalanced data. We have not confronted our results
with the previous one, presented in article [1], because we
claim they are incomparable. We put it, that both experi-
mental setup and results presentation showed in [1] were
done in an improper way.

In this research, we have found out that applying limited
JEP's can be useful in aCGH data classification. However,
this issue should be investigated more deeply in future
studies. It would be interesting to test limJEPClassifier
with other data sets. Furthermore, it would be valuable to
check the influence of different segmentation methods on
the performance of limJEPClassifier.
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