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Abstract

The foundations of geometric morphometrics were worked out about 30 years ago

and have continually been refined and extended. What has remained as a central

thrust and source of debate in the morphometrics community is the shared goal of

meaningful biological inference through a tight connection between biological theory,

measurement, multivariate biostatistics, and geometry. Here we review the building

blocks of modern geometric morphometrics: the representation of organismal geom-

etry by landmarks and semilandmarks, the computation of shape or form variables via

superimposition, the visualization of statistical results as actual shapes or forms, the

decomposition of shape variation into symmetric and asymmetric components and

into different spatial scales, the interpretation of various geometries in shape or form

space, and models of the association between shape or form and other variables,

such as environmental, genetic, or behavioral data. We focus on recent developments

and current methodological challenges, especially those arising from the increasing

number of landmarks and semilandmarks, and emphasize the importance of thorough

exploratory multivariate analyses rather than single scalar summary statistics. We

outline promising directions for further research and for the evaluation of new devel-

opments, such as “landmark-free” approaches. To illustrate these methods, we ana-

lyze three-dimensional human face shape based on data from the Avon Longitudinal

Study of Parents and Children (ALSPAC).
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1 | INTRODUCTION

About 30 years have passed since the foundations of geometric mor-

phometrics were laid out. Thin-plate spline deformation grids were

published by Fred L. Bookstein in 1989, and the Procrustes method,

earlier developed by Gower (1975) in a psychometric context, was
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extended to landmark data by F. James Rohlf and Dennis E. Slice in

1990 (but see also Boas, 1905 and Sneath, 1967 for earlier geometry-

based approaches). In his seminal 1991 book, Bookstein worked out a

novel style of morphometric analysis by applying numerous multivari-

ate statistical methods, including principal component analysis, multi-

variate regression, partial least squares analysis, and factor analysis to

landmark data. This “orange book” also outlined methods to include

curve information via semilandmarks and to disentangle symmetric

and asymmetric shape variation. In 1993, Jim Rohlf and Les Marcus

summarized these developments and coined them a “revolution in

morphometrics.” The mathematical and statistical theory of shape

analysis had been synthesized in the following years (Adams et al.,

2004; Bookstein, 1996; Dryden & Mardia, 1998; Goodall, 1991;

Goodall & Mardia, 1993; Rohlf, 1999; Small, 1996), based on the ear-

lier work by David Kendall and others (Kendall, 1981, 1984). Since

then, geometric morphometrics has been continually refined and has

found countless applications in biological, anthropological, paleonto-

logical, medical, psychological, archeological, and industrial fields (for

reviews see, e.g., Adams & Otárola-Castillo, 2013; Bookstein, 2018;

Cardini, 2020; Elewa, 2010; Halazonetis, 2004; Klingenberg, 2010;

Lawing & Polly, 2010; MacLeod, 2018; Mitteroecker, 2020;

Mitteroecker & Gunz, 2009; Schaefer et al., 2009; Slice, 2005; Wiley

et al., 2005; Zelditch et al., 2012). The geometric morphometric toolkit

has also been connected to other methodologies, including biome-

chanics (e.g., O'Higgins et al., 2019; Parr et al., 2012; Polly et al.,

2016; Weber et al., 2011), systematics and phylogenetics

(e.g., Adams, 2014; Klingenberg & Gidaszewski, 2010; Monteiro,

2013; Rohlf, 2002), image analysis (e.g., Mayer et al., 2014, 2017),

quantitative genetics (e.g., Adams, 2011; Baab, 2018; Klingenberg &

Leamy, 2001; Martínez-Abadías et al., 2009; Pavličev et al., 2016;

Schroeder & von Cramon-Taubadel, 2017), genetic mapping

(e.g., Klingenberg et al., 2001; Mitteroecker et al., 2016; Pallares et al.,

2015; Var�on-González et al., 2019), evolutionary psychology and brain

imaging (e.g., Walla et al., 2020; Windhager et al., 2012, 2018) as well

as molecular and developmental biology (e.g., Arif et al., 2013;

Buchberger et al., 2021; Hallgrimsson et al., 2015; Marchini et al.,

2021; Martínez-Abadías et al., 2018). Recent implementations of geo-

metric morphometric methods into R and Mathematica facilitated

analyses (Adams & Otárola-Castillo, 2013; Dryden, 2021; Dryden &

Mardia, 2016; Polly, 2017; Schlager, 2017).

Here we review the “building blocks” of modern Procrustes-

based geometric morphometrics with an emphasis on recent method-

ological developments and current challenges, especially those

resulting from the typically large number of morphometric variables.

This paper is not meant as an introduction into geometric morpho-

metrics; it addresses practitioners with some basic experience in mor-

phometrics, but we avoid mathematical notation. It is also not a

perfectly balanced representation of current morphometric practice

as we emphasize the topics that we consider important, controversial,

or promising. A main focus of this paper is the biological interpretabil-

ity of morphometric and multivariate statistical analyses. We exem-

plify these methods and their interpretation by a series of analyses of

three-dimensional human face shape, using data from the ALSPAC

study (Avon Longitudinal Study of Parents and Children; Boyd et al.,

2013; Fraser et al., 2013); see Figure 1 and Acknowledgements for

more details. We present these analyses and their results in the fig-

ures, basically as a picture story in parallel to the main text, which

focuses on the methodological topics. Some specific details and tech-

nical comments are presented in endnotes.

We are fully aware of how morphometric analyses of human

faces and bodies have been misused in the racist 20th-century

anthropology and of the problematic usages they can still offer today,

such as the identification of ethnic minorities or the study of human

remains (e.g., Hirst et al., 2018; Márques-Grant & Errickson, 2017). In

recent years, voices have become louder arguing that evolutionary

and morphometric studies of human nature are altogether inappropri-

ate. But studies of human morphological diversity are not only funda-

mental to the investigation of the human past, they are also

indispensable for modern medical diagnostics and individualized treat-

ment, forensics, textile design, and ergonomics (e.g., see Slice, 2005,

and the references above). We believe that it is important to appreci-

ate and study human diversity without intermingling biological differ-

ences with social or political narratives. Nonetheless, modern

morphometric research can touch upon the boundaries set by our

research policies and ethical guidelines. For instance, studies of

human facial characteristics and personality, professional success, or

sexual orientation are prone to be misused and must, if at all, be con-

ducted with great care. Morphometric and statistical rigor can help to

approach these challenges. For example, instead of superficial reports

of statistical significance (which can always be achieved in sufficiently

large samples), it is important to estimate and properly report effect

sizes, such as average effects and explained variances, to show that

even if such associations exist, reliable prediction of individual human

behavior from face shape is not possible. In our opinion, the mere

description and evolutionary interpretation of morphological differ-

ences between human groups is not problematic per se. For instance,

Betti (2021) convincingly argued that understanding global variation

in the form of the human pelvic canal can enhance and decolonialize

obstetric care. In stark contrast, the application of morphometrics to

identify politically persecuted groups is not compatible with scientific

integrity. While several authors have addressed the history and

political entanglement of early statistics and morphometrics (e.g.,

Bookstein, 1996; Cole, 1996; MacLeod, 2017; Stigler, 1999), a

nuanced discussion of the role and potential misuse of modern mor-

phometrics and statistical inference in anthropology is overdue but

goes beyond the scope of this paper.

2 | SIZE, SHAPE, AND FORM

All geometric morphometric methods are based on two-dimensional

or three-dimensional landmark coordinates that represent biologically

or geometrically corresponding point locations on the measured

objects. Geometric morphometric methods differ in the way that

shape (the geometric information independent of location, scale, and

orientation) and form (geometric information independent of location
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and orientation, but not scale) of the landmark configurations are

parameterized. The most common approach is based on a superimpo-

sition, or registration, of the configurations that standardizes for varia-

tion in position, orientation, and—if desirable—also scale. Other

methods, such as Euclidean distance matrix analysis (EDMA; Lele &

Richtsmeier, 1991), quantify form in a way that is invariant to changes

in location and orientation in the first place; it does not require regis-

tration. This advantage, however, comes at the relatively high price of

a complex geometry of shape or form space (Rohlf, 2000) and ineffi-

cient ways of visualization, both of which hamper the biological inter-

pretation of results.

The most common registration method in geometric morphomet-

rics is Generalized Procrustes Analysis (GPA), which translates all con-

figurations to the same centroid, scales them to the same centroid

size (root summed squared distance of the landmarks from their cen-

troid), and rotates them in order to minimize the summed squared dif-

ferences between the configurations and their sample average

(Rohlf & Slice, 1990). The translation and rotation steps in GPA are

least squares approaches; the scaling to unit centroid size is geometri-

cally convenient but does not minimize the squared differences

between landmarks. For a discussion of different variants of GPA,

including a full least squares approach, see Rohlf and Slice (1990) and

Zelditch et al., (2012). A maximum likelihood version (Theobald &

Wuttke, 2006) and a robust version (median-based “resistant fit”;
Slice, 1996) of Procrustes superimposition have been published, but

they are not frequently used. After superimposition, the resulting

shape coordinates can be statistically analyzed and the results can

directly be visualized as shapes or shape deformations (Figure 1 & 2).

Standard GPA superimposes the configurations by reducing the

differences between all measured landmarks, which is a clear improve-

ment over earlier registrations that were often based on a more or

less arbitrary choice of only two or three reference landmarks

(e.g., the “Frankfurt horizontal” in cephalometrics). Nonetheless, some

situations may warrant a registration on a subset of landmarks only,

F IGURE 1 Our analyses of human face shape are based on a random sample of 100 female and 100 male white (based on parent's self-
reported ethnic background) adolescent individuals from the British cohort study ALSPAC (out of originally 15,454 pregnancies). Sex and date at
birth had been obtained from the birth notifications. The average age in our sample was 15.5 years in both sexes (age range 14.7–16.8). Facial
surface scans (Konica/Minolta laser scanners) along with the 3D coordinates of 21 anatomical facial landmarks were provided by ALSPAC (Toma
et al., 2008). We created a template of 229 surface semilandmarks on one surface, which was warped onto all other surfaces based on the
anatomical landmarks and then projected onto the surfaces. After sliding the semilandmarks by minimizing bending energy, the
200 configurations of 250 landmarks were superimposed by Procrustes analysis. (a) Sample mean shape with the 21 anatomical landmarks (red)
and the 229 semilandmarks (gray). All facial depictions in this paper are the result of statistical analyses and do not reflect individual participants.
(b) Scree plot for the shape coordinates (blue), the Boas coordinates (orange), and the size-shape coordinates (green dashed). Only the first
20 dimensions are shown. (c) Visualizations of the first three principal components (PC) of face shape as warped surfaces corresponding to 3 or 4
standard deviations (SD) from the mean shape. PC 1 represents the overall width-to-height ratio of the face, PC 2 reflects the relative size of the
nose and jaws, and PC 3 contrasts concave and convex facial profiles. Together, the first three PCs account for 54% of total shape variance
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for instance, when some substructures of the studied anatomy are

known to be more stable than others. Fornai et al. (2021) studied

sacral vertebra shape in recent and extinct hominids and found a

greater group separation when registering the configurations on the

landmarks of the body of the first sacral vertebra only, as compared

with a Procrustes registration based on all landmarks. It turned out

that the relative size and shape of the sacral alae are more variable

and also more species-specific than those of the sacral body, but stan-

dard GPA intermingled these different signals.

Traditionally, most geometric morphometric analyses have been

targeted at organismal shape, and the size of the studied structures is

either ignored or analyzed separately. This makes sense if size is

meaningless (e.g., because of unscaled images) or shows a different

developmental or evolutionary behavior than shape. For instance, size

is often much more variable than shape across species and more sub-

ject to phenotypic plasticity than shape within species. Furthermore,

some functions may be primarily determined by the shape of an ana-

tomical structure, not necessarily by its size. Nonetheless, other

analyses may profit from a joint analysis of shape and size (i.e., form).

When species differ both in size and shape, discrimination and classifi-

cation studies are more successful when based on form rather than

on shape. In our face sample, for instance, 87% of the individuals

could be correctly classified as male or female based on form, but only

81% based on shape (leave-one-out cross-validation using quadratic

classification based on the first 10 principal components of the

shape/form coordinates). Social perception of human faces, such as

first impression formation and overgeneralizations, are strongly

influenced by the shape of these faces, which is considerably corre-

lated with facial size and stature (Butovskaya et al., 2022; Krenn,

2016; Schaefer et al., 2013; Windhager et al., 2011). Likewise, studies

of growth, allometry, and heterochrony can be performed both in

shape space and in form space (Cardini & Polly, 2013; Gerber et al.,

2007; Klingenberg, 2016; Mitteroecker et al., 2004, 2005, 2013). In

the absence of any prior expectations about size and shape variation,

an initial exploratory analysis should also include the entire form infor-

mation. Against the common tradition in morphometrics, we thus

F IGURE 2 (a) Average shapes of the 100 female and 100 male face scans of the ALSPAC sample, along with three-fold extrapolations of
these differences (e.g., three times the mean difference between males and females was added to the female mean shape to yield the
extrapolated male shape). (b, c) Average face forms as computed from the Boas coordinates and the size-shape coordinates, respectively.
Both methods yield very similar results and differ from panel a by depicting relative sizes also
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suggest starting with an analysis of organismal form, not only shape.

Discarding size and focusing only on shape should be biologically jus-

tified (Bookstein, 2018; Klingenberg, 2016; Mitteroecker et al., 2013).

For a sample of p measured landmarks in k dimensions (2 or 3),

GPA gives rise to pk shape coordinates, which are the landmark coor-

dinates after standardizing location, scale, and orientation of the con-

figurations. Form coordinates can be generated either by skipping the

scaling step or by re-multiplying the shape coordinates by centroid

size. The ensuing superimposition standardizes location and orienta-

tion, but not scale. Bookstein (2018, 2021) referred to these coordi-

nates as “Boas coordinates,” after Franz Boas who described them

back in 1905. We will use this term here as well (see Klingenberg,

2016, for a review of different terminologies). A second, more com-

mon approach to derive form variables for landmark coordinates is to

augment the pk shape coordinates by the natural logarithm of cen-

troid size (log cs) as a separate variable, thus yielding pk + 1 form vari-

ables (Dryden & Mardia, 1998; Kendall, 1989; Mitteroecker et al.,

2004). These variables have been termed size-and-shape coordinates,

or simply size-shape coordinates. For most analyses, the two

approaches yield indistinguishable results, only for large size variation

can the results deviate because size-shape coordinates express size at

a log scale whereas size is a linear factor in the Boas coordinates. In a

multivariate analysis, the size of the configurations must be estimated

indirectly from the Boas coordinates (e.g., as the first principal compo-

nent of the data; see below), whereas it is an explicit variable in the

size-shape coordinates. Regression coefficients or principal compo-

nent loadings for size can thus be directly inferred for size-shape

coordinates and represented via a biplot. But while the visualization

of statistical results as forms is computationally straightforward for

Boas coordinates, it requires a separate scaling step for size-shape

coordinates (Mitteroecker et al., 2013). The preferred kind of form

variables thus depends on the focus of the analysis or the implemen-

tation in the software of choice, but the results will be similar for both

approaches (see Figures 1b and 2b,c).

Centroid size is a convenient size measure in geometric morpho-

metrics as it is based on all measured landmarks, and for small isotro-

pic variation of the landmark coordinates around their sample mean

(i.e., the same amount of uncorrelated variance in every direction, as a

model of “pure noise”), centroid size is uncorrelated with shape.

Under this so-called Mardia-Dryden distribution, the sample distribu-

tion is isotropic in shape space as well as in form space (both for Boas

coordinates and size-shape coordinates). This guarantees that pure

noise in the landmark coordinates translates into pure noise in shape

and form space.

Real data deviate from a Mardia-Dryden distribution, and cen-

troid size can be geometrically associated with shape features of

interest. For example, because centroid size is computed from the

squared distances between the landmarks and their centroid, land-

marks along a circle have a smaller centroid size than corresponding

landmarks along an ellipse of the same area (Bookstein, 2018). Hence,

the centroid size of some neurocranial landmarks can vary and corre-

late with endocranial shape even if the endocranial volume was

exactly the same for all specimens. Similarly, a wider gonial angle in a

sample of mandibles might be associated with a larger centroid size

because of the more elongated shape. Such correlations should not be

misinterpreted as an allometric relationship; they are a geometric arti-

fact. This does not preclude centroid size as a measure of scale in

morphometric analyses (there is no “perfect” size measure that suits

all purposes), but results should be interpreted carefully in this regard.

Some analyses may also utilize other size measures that are more spe-

cifically targeted at the question or data at hand. For instance,

endocranial volume and centroid size of endocranial landmarks

strongly correlate and may often lead to similar results, but inferences

about subtle differences in brain size may be more safely inferred

from endocranial volume than from centroid size, especially in the

presence of strong endocranial shape variation. Similarly, in a study of

allometric shape variation in the human face, Mitteroecker et al.

(2013) found that both facial centroid size and body height led to sim-

ilar results for ontogenetic allometry as both measures are highly cor-

related throughout ontogeny. But for static allometry they yielded

different results because adult facial size is influenced by factors

unrelated to body height (e.g., body fat percentage).

In most morphometric samples, size varies more than shape. The

first principal component (PC 1) of form variables thus is typically

dominated by a combination of size variance and allometric shape var-

iance, and the PC 1 scores may serve as a measure of “allometric size”
(Bookstein, 1991, 2021). For form variables, PC 1 usually accounts for

a larger fraction of total variance as compared with PC 1 of shape var-

iables (Figure 1b). In a sample of multiple groups that differ both in

size and shape, PC 1 can also be influenced by these group differ-

ences. In this case, size should better be estimated explicitly by cen-

troid size or by the projections of the vectors of Boas coordinates on

the mean vector, and allometry is best estimated by regressing the

shape coordinates on a size measure, such as centroid size or body

height. For multiple groups, different patterns of allometry can be

compared as vectors in the first few principal components of shape or

form space, but differences in length and orientation of these allome-

try vectors can also be assessed more directly (e.g., Schaefer et al.,

2004; Simons et al., 2018). For more detailed reviews of allometry in

geometric morphometrics see Mitteroecker et al. (2013), Klingenberg

(2016), or Bookstein (2018).

3 | VISUALIZATION AND STATISTICAL
SIGNIFICANCE OF SHAPE AND FORM
DIFFERENCES

For two-dimensional landmarks, thin-plate spline (TPS) deformation

grids have proven very useful for visualizing shape differences, espe-

cially for identifying local shape features (Bookstein, 1991, 1997,

2000). Piras et al. (2020) reviewed several further methods for visual-

izing local shape deformations. Three-dimensional shape or form

differences often are best represented by a series of reconstructed

shapes or forms, usually by deforming a mean landmark configuration

along a given shape or form vector, such as a mean difference vector,

principal component, or vector of regression coefficients. The
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biological interpretation is greatly enhanced by connecting landmarks

into “wireframes” in an anatomically meaningful way, or by morphing

(thin-plate spline warping) a reference image or detailed surface repre-

sentation (typically, the vertices of a triangulated reference surface)

along with the actually measured landmarks, such as in Figure 2. This

“morphing approach,” however, requires a sufficiently dense set or

landmarks and often also semilandmarks (see below).

Linear extrapolation of differences allows one to display a given

shape pattern at a greater magnitude, which can crucially facilitate the

biological interpretation of subtle signals. For instance, the actual dif-

ferences between female and male mean face shapes in Figure 2 are

small and difficult to identify at the first glance, whereas the differ-

ences between the threefold extrapolations are obvious. Together,

these four shapes effectively represent both the pattern and the mag-

nitude of facial sex differences in this particular sample.

Landmark displacement vectors and superimposed surfaces can

be less effective, especially for visualizing complex 3D deformations,

because not all parts of the visualized structures may be visible

(Figure 3a,b). Unlike deformation grids and reconstructed shapes,

landmark displacement vectors are subject to superimposition-

specific artifacts, such as the Pinocchio effect (Klingenberg, 2021;

Richtsmeier et al., 2002). The reason is that shape is a relational

property of multiple landmarks, and the coordinates of single land-

marks should not be interpreted separately (see Section 9 and,

e.g., Klingenberg, 2013).

Recently, it has become more common in geometric morphomet-

rics to represent shape differences by color maps (Figure 3c). There

are many ways of translating differences in landmark positions or

surfaces into colors, such as distances orthogonal to the surface or

between homologous locations, currents, differences in surface area,

and magnitudes of local deformation or bending. The general weak-

ness of color maps is that two- or three-dimensional differences

(2D or 3D vectors) are reduced to single quantities (scalars that are

mapped onto a color gradient), which entails a considerable loss of

information. Color maps are widely used in brain imaging, where the

colors may really represent a scalar quantity, for example, cortical

thickness or brain activity. But for visualizing shape or form differ-

ences, color maps often are insufficient. For instance, Figure 3c indi-

cates an increase of nasal size and, to weaker magnitude, of jaw and

brow ridge size, along with a narrowing of the cheeks. But none of

the other details depicted by Figure 2a are visible here. We thus sug-

gest using color maps only together with deformation grids or

reconstructed shapes (e.g., Neubauer et al., 2020), if at all, when

attempting to visualize shape or form differences.

Because of the intrinsically multivariate nature of geometric mor-

phometric data and the difficulties of interpreting single landmark

coordinates, statistical significance tests are generally multivariate and

usually based on permutation tests (e.g., Adams & Collyer, 2015;

Collyer & Adams, 2018). In most morphometric applications, however,

multivariate null hypotheses of absolutely no effect do not align well

with any biological hypothesis, and the alternative hypotheses

(namely that at least one of the shape/form coordinates or linear com-

bination of coordinates shows an effect) are not particularly informa-

tive. Most geometric morphometric studies thus heavily rely on

multivariate exploratory methods and extensive visualization (see

below for examples), thus requiring sufficiently large sample sizes

F IGURE 3 Visualization of average sex differences in face shape by (a) landmark displacement vectors (scaled by a factor of 4),
(b) superimposed surfaces, and (c) a color map. The orthogonal differences between the two average facial surfaces were mapped onto a color
gradient ranging from red (negative) to white (no difference) and green (positive). Compared to the surface morphs in Figure 2, these three figures
are less effective in visualizing the shape differences. In particular, the color map is reducing three-dimensional vectors to scalar quantities, thus
omitting a considerable part of shape information. Whereas the males' larger nose and less defined cheeks can easily be recognized in panel c, the
exact shape differences in these features as well as additional sex differences, such as comparably smaller eyes, a larger and more angular jaw and
more prominent chin, cannot easily be inferred from these plots
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(e.g., Cardini & Elton, 2007, and Section 5.2). Significance tests primar-

ily serve to test against pure noise and to permit further exploratory

analyses but rarely lead to relevant biological insights per se.

4 | SLIDING LANDMARKS

Many modern morphometric studies have included semilandmarks to

capture the geometry of curves or surfaces together with anatomical

point locations. Typically, semilandmarks have only one coordinate

that carries anatomical information, namely that orthogonal to the

curve or surface. Their positions along the curve or surface are mean-

ingless; they cannot be homologized across specimens based on ana-

tomical criteria and—for the purpose of statistical analysis—must be

estimated in a way that reduces artificial signals in the data resulting

from arbitrary placement. Bookstein (1991, 1997) proposed the slid-

ing landmark algorithm that “slides” the semilandmarks along tangents

to the curve in order to minimize shape differences in the sample.

Gunz et al. (2005) extended this approach to 3D surfaces. Reviews

and comparisons of methods and software include Perez et al. (2006),

Gunz and Mitteroecker (2013), Botton-Divet et al. (2015), and Bardua

et al. (2019). The initial placing of curve semilandmarks can often be

performed manually, but the placing on surfaces usually requires some

semi-automated algorithm. For instance, semilandmarks can be placed

manually or automatically on a reference specimen and are then

warped to all other specimens based on the measured anatomical

landmarks, which brings the semilandmarks close to each surface.

Finally, they are projected onto the actual surfaces and subjected to

the sliding landmark algorithm. We used this approach for the face

data analyzed here. Alternative methods are discussed in Rolfe et al.

(2021).

When sliding the landmarks, one can choose to minimize either

the bending energy or the Procrustes distance between each configu-

ration and the sample mean shape. Bending energy is a measure

derived from the TPS algorithm and quantifies the magnitude of local

shape deformation. Shape differences at small scales (i.e., of closely

adjacent landmarks) have a higher bending energy than large-scale dif-

ferences. Procrustes distance is the square root of the summed

squared distances between the corresponding landmarks in two sup-

erimposed configurations. Unlike for bending energy, the spatial con-

figuration of landmarks does not affect the Procrustes distance

because the squared differences are just summed up landmark by

landmark. Bending energy measures only non-affine (localized) shape

differences; affine shape differences (linear scaling and shearing) are

not reflected by bending energy.1 Nonetheless, when shape variation

is small and the sliding of semilandmarks is sufficiently constrained by

anatomical landmarks, both approaches typically lead to similar

results. But in some situations, they can differ considerably. For

instance, when affine shape variation is not sufficiently determined by

anatomical landmarks, shape variance can even increase by reducing

bending energy. In this case, Procrustes distance should be minimized

(e.g., Bertl et al., 2016). In most situations, however, minimizing bend-

ing energy reduces—but not minimizes—total shape variance. Instead,

it leads to the “smoothest” possible TPS deformation grids. Minimiz-

ing Procrustes distance does minimize total shape variance in the sam-

ple, but this may not necessarily imply a biologically plausible

homology criterion (Gunz & Mitteroecker, 2013). By minimizing Pro-

crustes distance the deviations are minimized for each landmark inde-

pendently, therefore, a semilandmark can pass across an anatomical

landmark, which may be at odds with biologically possible shape varia-

tion. A change in the sequence of landmarks is almost impossible to

achieve by minimizing bending energy because such small-scale shape

changes are highly penalized. In some situations, however, this may

be desirable. For example, in cephalograms (lateral cranial X-rays) the

anterior part of the mandibular ramus often projects above the poste-

rior part of the palate, but we may not want that the position of the

palate influences the sliding of semilandmarks on the mandible.

The sliding landmark algorithm involves multiple iterations, in

each of which the tangent directions or tangent planes to the curve or

surface are recomputed and the sample mean shape is updated.

Whereas minimizing Procrustes distance leads to a convergence of

the algorithm (i.e., at some point the mean shape stays unchanged and

the semilandmarks do not slide any more), minimizing bending energy

typically does not lead to convergence because the affine part of

shape variation is not penalized. But in most situations, sliding reduces

strongly after a few iterations and leads to a good correspondence of

semilandmarks across configurations. Omitting the updating step of

the mean shape can stabilize the algorithm.

If curves or surfaces are strongly bent, sliding along tangents can

move the semilandmarks off the actual structure. This can be reduced

by sliding only a given fraction of the computed distance along the

tangents. As a result, the tangents are re-estimated at smaller steps

and trace the curvature more accurately. The increased number of

iterations does not impose considerable computational costs. For all

these reasons, it is advisable to carefully supervise the sliding process

and to check if the slid semilandmarks stay close to the curve, cover

the structures of interest, and represent biological or geometric

correspondences.

Some authors have criticized the use of semilandmarks. For

instance, Cardini (2020) wrote that “positions of the semilandmarks

can be optimized, but they are fundamentally arbitrarily decided by an

operator or an algorithm” (p. 514). This is incorrect: In contrast to

entirely “homology-free approaches” (see Section 9), semilandmarks

must be placed on the same curve or surface (structures that are

treated as biologically or geometrically homologous), for example, the

neurocranium, and should be surrounded by homologous anatomical

landmarks. Cardini criticized that, for instance, cranial semilandmarks

close to the frontoparietal suture could slide on the frontal bone in

some specimens and on the parietal bone in other specimens, and

hence are not biologically homologous. But as explained above, the

coordinates of semilandmarks along the surface are meaningless, and

one cannot interpret the position of single semilandmarks, only the

surface geometry that all semilandmarks describe together. If one

cares about the frontoparietal suture, one must measure it by anatom-

ical landmarks and/or curve semilandmarks (then, surface semi-

landmarks cannot arbitrarily slide across the suture, at least when
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minimizing bending energy). Clearly, based on surface semilandmarks

only, no inference can be made about the bones constituting the mea-

sured surface; only the overall surface geometry can be interpreted.

Whether or not this is sufficient depends on the research question.

Cardini (2020) further argues that “none of the methods to slide the

semilandmarks increases the accuracy of their mapping onto the

underlying biological homology: […] none of them is based on a biologi-

cal model, and the assumption of universal equivalence between geo-

metric and biological correspondence is unverified, if at all verifiable.”
(p. 513). Indeed, neither Procrustes distance nor bending energy are

based on a biological model, as is the case for basically all other statisti-

cal metrics and methods. Moreover, many different and partly incon-

gruent notions of anatomical, functional, geometric, developmental,

and evolutionary homology have been employed in the biological litera-

ture. Therefore, all measurements, not only semilandmarks, need to be

interpreted within a specific scientific context and with respect to its

measurement system. In practice, sliding the semilandmarks often

improves their correspondence and the interpretability of morphomet-

ric analyses, but a “universal equivalence between geometric and bio-

logical correspondence” is, of course, impossible.

5 | THE GEOMETRY OF SHAPE AND FORM
SPACE

The visualization and interpretation of statistical results as a two- or

three-dimensional geometry of k measured landmarks, i.e., as an actual

shape or form, is a key strength of geometric morphometrics. But there

is also another geometry that is often interpreted in morphometric ana-

lyses, namely the geometric relationships among the cases or groups in

the 2k- or 3k-dimensional shape/form space.2 Such interpretations

comprise the clustering of shapes or forms into different groups

(e.g., age groups, populations, species), the location of shapes or forms

relative to such clusters (e.g., to infer taxonomic affiliation or evolution-

ary relatedness), and the geometry of developmental or evolutionary

trajectories to infer processes such as allometric scaling, heterochrony,

and developmental or evolutionary divergence.

The basic principle of interpreting such geometries appears to

be obvious: Each shape or form is represented by a point in shape/

form space; the distance between two points in shape/form space

(Procrustes distance) is a measure of overall shape/form difference.

Points along a linear trajectory in shape/form space represent a

continual shape/form transformation; a bent in the trajectory indi-

cates a changed transformation. The angle between two linear tra-

jectories measures the deviation in the pattern of these two shape/

form transformations. However, this classic rationale has been

developed for small numbers of biologically meaningful and geo-

metrically independent traits. In recent years, it became increas-

ingly clear that such geometries are not always straightforward to

estimate and to interpret for geometric morphometric data, espe-

cially when the number of landmarks is large and the distribution

and density of landmarks across the organisms is arbitrary. Where

is the problem?

5.1 | Affine invariance

The standard interpretation outlined above treats all shape or form

coordinates equally, regardless of whether they are x, y, or z coordi-

nates, closely adjacent or distant landmarks, or whether they are

located in a densely or loosely sampled area of the organism. Con-

sider, for instance, a set of landmarks measured on primate crania: say

20 landmarks on the face and 20 on the neurocranium. Now consider

four species, where species A and B have a very similar facial shape

but differ in the neurocranium. Species C and D, by contrast, differ in

the face but share a similar neurocranial shape. For the entire cranium,

we will thus find similar Procrustes distances between A and B and

between C and D. But what if we had measured 30 landmarks on the

face and 10 landmarks on the neurocranium (which is actually more

realistic)? This would weight the facial differences higher than the

neurocranial differences, and based on overall Procrustes distance or

its ordination via PCA we would conclude that A and B are more simi-

lar in cranial shape than C and D are. As the density of landmarks is

often arbitrary (especially when using semilandmarks) or based on the

available Type I and II landmarks, the “weighting” of the different ana-

tomical regions by the number of landmarks may not be interpretable

in a meaningful way. In other words, distances along different direc-

tions in shape or form space may not necessarily be comparable in

total magnitude. These shape differences can of course be visualized

and interpreted; only expressing their magnitude by a single quantity

can be problematic if we are comparing “apples and oranges,” that is,
qualitatively different shape deformations.

Similarly, in these standard interpretations all the shape or form

variables are considered geometrically independent, that is, one

assumes that one variable can, in principle, change without affecting

other variables. This notion is reflected by orthogonal axes of data

space.3 But shape or form variables typically are not geometrically

independent. After Procrustes registration, the pk shape coordinates

are geometrically linked (only the pk�4 or pk�7 dimensions of tan-

gent space are geometrically independent; see Section 9). More

importantly, the landmarks are biologically linked: spatially closely

adjacent landmarks cannot vary independently. For instance, a covari-

ance of, say, 0.001 between the two distant cranial landmarks nasion

and lambda would be biologically more interesting than a covariance

of 0.001 between nasion and glabella, which we expect to covary due

to their adjacency anyway. But in standard analyses, they are all

treated equally. Giving up the assumption of geometrical indepen-

dence of variables implies that we give up the orthogonality of the

axes in data space, which entails that angles of shape or form trajecto-

ries in different directions may not be comparable.

These arguments are uncommon in morphometrics and deeply

unpleasant as they question the fundamental geometries on which

many conclusions in the morphometric literature rest: distances and

angles in shape or form space. If we take that seriously, at least as a

worst case scenario, is there something left that we can safely infer

from these geometries? Luckily, yes.

Increasing the density of landmarks in an anatomical region leads

to a higher weighting of this region in multivariate distances and
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related statistics (e.g., Figure S1). Geometrically, this implies that the

corresponding direction in an ordination (e.g., the first PCs) of shape

space is “stretched” (i.e., approximately linearly scaled by the square

root of the number of redundant variables; Bookstein et al., 2003;

Huttegger & Mitteroecker, 2011). Similarly, changing the geometric

dependence among variables is approximately equal to a change in

the angle of the corresponding axes of data space. Therefore, at least

in a first approximation, changes in the spatial density and subjective

weighting of landmarks as well as changes in the geometric depen-

dencies (e.g., spatial distance) among landmarks translate into linear

scaling and shearing of a low-dimensional ordination of shape/form

space (Huttegger & Mitteroecker, 2011; Mitteroecker & Huttegger,

2009). As these weightings and dependencies often are either

unknown or entirely arbitrary, we would consider only those conclu-

sions meaningful that do not depend on any assumptions about these

weightings and dependencies. In other words, only those findings are

meaningful that are invariant to linear scaling and shearing of shape/

form space, that is, invariant to any affine transformation of the space4

(Huttegger & Mitteroecker, 2011; Mitteroecker & Huttegger, 2009;

Narens, 2002). Clearly, distances and angles are not invariant, but a

number of other geometries are, such as incidence relationships. For

example, points within a cluster remain in this cluster under all linear

transformations, and two intersecting trajectories remain intersecting.

Likewise, linear trajectories remain linear and parallel trajectories

remain parallel under linear transformations. In addition, ratios of dis-

tances along the same direction are affine invariant. As a result, a

point in between two other points remains in between after affine

transformations. Finally, ratios of volumes in shape or form space are

affine invariant, which implies that ratios of generalized variances are

invariant (see Section 7).

In practice, this means that one cannot uniquely quantify the

overall magnitude of the shape differences between species A,B and

C,D in the above example because they deviate in different shape fea-

tures or directions in shape space (but we can visualize and describe

them). Any such quantification would be influenced by the more or

less arbitrary decisions about the spacing and numerosity of land-

marks. Only if two species E and F differed in the same cranial shape

features as the species A and B (parallel directions in shape space)

could we meaningfully compare their total magnitude. Likewise, find-

ings that two shape trajectories are parallel or that one shape is in

between two other shapes do not depend on any assumptions about

number and spacing of landmarks. Within the first few PCs of shape

space, also classification likelihoods and Mahalanobis distances are

largely independent of the spacing of landmarks (Huttegger &

Mitteroecker, 2011). This implies that statements about group overlap

and separation, classification, and the proportionality of distributions

(which underlies many null models in evolutionary quantitative genet-

ics and multivariate significance testing) are meaningful. One cannot

interpret absolute values and differences of multivariate or general-

ized variances, but ratios of generalized variances as well as relative

eigenvalues based on the first PCs (Section 7) are largely independent

of the spacing of landmarks (Bookstein & Mitteroecker, 2014;

Huttegger & Mitteroecker, 2011). But all geometries based on

distances and angles in different directions of shape or form space

should be interpreted with great care; they implicitly assume that all

landmark coordinates count equally and independently. If this

assumption is biologically implausible, one should avoid interpreting

these geometries. In our example, the landmarks are relatively evenly

distributed across the face so that facial areas of the same size are

equally weighted in the analyses, which is sensible but biologically also

arbitrary (e.g., variation in the forehead is much higher weighted than

variation in the lips).

A meaningful interpretation of multivariate distances along differ-

ent directions usually requires a plausible biological or mechanical

model. A simple classic example is Mahalanobis distance, which

expresses the difference between two group means relative to the

within-group variance along this direction. For a polygenic quantita-

tive trait, the expected amount of phenotypic change due to genetic

drift is proportional to the genetic variance within the population.

Consequently, for multiple, equally heritable traits, the between-group

covariance matrix is expected to be proportional to the within-group

covariance matrix (Lande, 1979). Distances between group means rel-

ative to the within-group variance (i.e., Mahalanobis distances) thus

relate to the probability that the population differences have evolved

by drift. For multivariate normal distributions, Mahalanobis distance

also relates to the likelihood of classification into this group.

Mahalanobis distances and their ordination via canonical variate anal-

ysis (CVA) fell out of fashion in geometric morphometrics because

they discard the Procrustes metric and require dimension reduction

prior to computation. In specific evolutionary or classification con-

texts, however, it can be a useful affine-invariant metric.

5.2 | The curse of dimensionality

Another challenge arises from the sheer number of variables in geo-

metric morphometrics. Consider a set of landmarks, measured on two

specimens with a certain magnitude of independent measurement

error for every coordinate. In addition to the actual anatomical form

differences, these errors contribute to the Procrustes distance

between the two configurations because it is highly unlikely that the

same measurement error has occurred in both specimens. Measuring

more landmarks on the same two specimens adds further measure-

ment error and increases the Procrustes distance. Hence, the magni-

tude of shape or form differences in a sample is also a function of the

number of measured variables, even if no real anatomical differences

exist. This effect is often negligible for strong anatomical differences,

but it can be relevant if the number of landmarks is large and the

actual difference small. Similarly, consider a juvenile and an adult

specimen of two species each, constituting two simple developmental

trajectories. Even if both species show the same developmental shape

transformation, the angle in shape space between the two trajectories

increases with the number of measured variables because of increas-

ing independent measurement error.

These are well-known phenomena in multivariate statistics, often

referred to as the “curse of dimensionality.” In high-dimensional data
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spaces, all points are far apart and all angles are high.5 Clearly, this fur-

ther challenges the interpretation of Procrustes distances and of

angles between shape or form trajectories. It also complicates the

estimation of multivariate distributions, classification likelihoods, clus-

ter analysis, significance tests, and methods such as CVA, canonical

correlation analysis, and relative eigenanalysis: The higher the dimen-

sion, p, of the data space (here the number of landmark coordinates)

for a given sample size n, the more dimensions are “empty” or “almost

empty” and the sample shows zero or very little variance in these

dimensions. As a result, we cannot relate distances to the variance in

these directions as this would entail a division through zero or a very

small number (the inversion of a rank-deficient or ill-conditioned

covariance matrix), and these statistics cannot be reliably computed.6

In recent years, the geometric morphometrics community has

intensely discussed these phenomena in the context of CVA and

between-group PCA (Bookstein, 2019; Cardini et al., 2019;

Mitteroecker & Bookstein, 2011; Rohlf, 2021). In both methods, the

separation of groups increases with the number of measured variables,

even if the cases are sampled from the same distribution. Between-

group PCs are just the PCs of the group means, and the projections of

the cases on these axes thus maximize the variance between the pro-

jected group means. For two groups, the single between-group PC is

just the multivariate vector through the two group means (Figure 4). As

explained above, the distance between the group means tends to

increase with the number of variables, even if the within-group

variance along this direction remains the same. As a result, the separa-

tion of the groups (i.e., the distance between the group means relative

to the within-group variance in this direction—the Mahalanobis dis-

tance) increases with the number of variables relative to the number of

cases (Figure 5). This artificial group separation is even much more pro-

nounced in CVA, where the variance between group means is maxi-

mized relative to the variance within groups. As increasingly many

dimensions in data space are “almost empty” (i.e., with little variance)

when p increases relative to n, CVA finds directions where the group

means are far apart relative to the tiny within-group variance (even if

the group mean differences in this direction are also small and biologi-

cally irrelevant, e.g., just due to measurement error). As a result, CVA

always separates groups, even along meaningless dimensions in data

space, unless the sample size is much larger than the number of vari-

ables (Figure 6; Mitteroecker & Bookstein, 2011).

5.3 | How shall we deal with this?

For two of the most common morphometric analyses, the computa-

tion of mean shapes and shape regressions, the number of landmarks

does not impose a constraint because the averages or regression coef-

ficients are computed for every shape coordinate separately and inde-

pendently. PCA is based on all variables jointly but can also be

computed if the number of variables exceeds the number of cases. In

(a) (b)

(c) (d)

F IGURE 4 Schematization of
principal component analysis

(PCA), between-group PCA
(bgPCA), and canonical variate
analysis (CVA). (a) When all
groups have an isotropic
distribution, the three methods
yield the same results. (b) They
also lead to the same result when
the direction of the group mean
differences is orthogonal or
parallel to the major axes of
within-group variation, unless the
within-group PC 1 dominates
over the group mean differences
as in panel (c). (d) When the
group mean differences are
oblique to the major axes of
within-group variation, all three
methods yield different results
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fact, PCA is the standard tool for dimension reduction in this situation.

Furthermore, PCA is only based on the covariance matrix of the entire

sample, not on any information about group affiliation, so that group

separation in PCA does not generally increase with the number of var-

iables, yet group separation is often underestimated in PCA (Figure 4).

Most other multivariate methods do depend to some degree on

the number of variables relative the number of cases. Methods that

maximize variances or covariances weakly depend on this ratio. For

example, the artificial group separation in between-group PCA is rather

small for realistic geometric morphometric data that do show real

group differences (Figure 6; see also Cardini et al., 2019). Similarly, the

covariances that are maximized in partial least squares analysis (the sin-

gular values) depend on the number of variables (Mitteroecker &

Bookstein, 2007; Bookstein, 2017), even though the shape patterns

(singular warps) are relatively stable for realistic morphometric data. By

contrast, methods that maximize a variance relative to another variance,

such as CVA, canonical correlation analysis, relative eigenanalysis and

related statistics, are more strongly affected by the number of vari-

ables. If p ≥ n, these methods cannot be computed from the original

variables at all, but in our experience, reliable results require at least

(a)

(c)

(b)

(d)

F IGURE 5 To illustrate properties of discrimination and classification, we consider three “groups” here: (1) the 100 males, (2) the first

50 females in the sample, and (3) the remaining 50 females. This random grouping of females shall represent two groups with the same statistical
distribution. As variables we choose the Boas coordinates because males and females differ both in shape and size. (a) In a standard PCA, the two
female groups completely overlap, whereas part of the male distribution deviates from the female distribution, as expected. Based on these two
PCs, 64% of the cases are correctly classified as male or female (quadratic class., leave-one-out cross-validation), and 50% of the females are
classified as Group 1 or 2, as expected for completely overlapping distributions. (b) When using more PCs, over 80% of the cases can be correctly
classified as male or female, suggesting that the first two PCs do not completely represent group differences. (c) Between-group PCA better
represents the separation between sexes (74% correct classification based on the two bgPCs), but also the two female groups slightly deviate in
their distribution here, even though they should not. (d) When bgPCA is based on the first four PCs instead of all Boas coordinates, still 75% can
be correctly classified as male or female, but the two female groups differ less
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5 to 10 times as many cases as variables. In practice, this always

requires dimension reduction or regularization prior to these methods

(also because shape coordinates are never of full rank7). For instance,

CVA can be based on the first few principal components that capture

the majority of variation (as inferred from a screen plot) instead of the

shape coordinates.

The number of variables also affects the explained variance in

shape or form regression. In Figure 7, for example, we studied the

effect of body mass index (BMI) on face shape via shape regressions

separately in both sexes. Clearly, BMI affects several aspects of face

shape, especially the fat deposits in the cheeks, but most dimensions

in shape space are unrelated to BMI. Averaging the explained variance

over all shape coordinates thus resulted in a relatively small fraction

of explained total shape variance (1.7% for our data). The larger the

number of landmarks, the smaller would this fraction be because the

number of dimensions in shape space without association increases.

When computing this multivariate explained variance from an increas-

ing number of PCs of face shape, we found that the first 10–15 PCs

completely captured the signal (Figure 7d); adding more PCs weakly

decreased the explained total variance because every further PC

added a small amount of shape variance that is unrelated to BMI. An

alternative summary statistic is the bivariate coefficient of determina-

tion, R2, between the predictor variable and the regression score (the

projections of the vectors of shape coordinates on the vector of

regression coefficients, also referred to as “net partial predictor” by

Bookstein, 1991), here the R2 between BMI and the shape features

depicted in Figure 7a,b. This yielded more realistic values of explained

variance, 18% in females and 16% in males, because it quantifies the

association only along the direction in shape space with maximal associ-

ation, not along those many dimensions that are unrelated to the pre-

dictor variable. However, as in PLS, this correlation increases with p/n.

For our data, after the signal was captured by the first 15 PCs, the R2

increased slightly with every further PC (Figure 7e). For both statistics,

therefore, absolute values of explained variance are difficult to inter-

pret, but they can be compared across subsamples of similar size.

Especially when the number of landmarks is large, we suggest

computing the abovementioned statistics (including bgPCA and PLS)

as well as distances and angles in shape or form space also after

dimension reduction, at least for comparison with those computed

from all variables. Sample differences in explained variance can be

clearer and more stable if computed from the first few PCs instead of

the original shape/form coordinates. Some statistics, especially those

related to prediction and classification, may be more effectively com-

puted via regularization than dimension reduction. But dimension

reduction by PCA usually is very effective in morphometrics because

of the highly correlated variables, and it has the advantage that one

can inspect which shape or form features contribute to subsequent

computations.

F IGURE 6 Canonical variate analysis (CVA) of the three “groups” from Figure 5. (a) When CVA is based on the first four PCs of the Boas
coordinates, group overlap and classification rates are comparable to bgPCA. The CV axes can be directly visualized as form deformations (despite
opposite claims in the literature; cf. Mitteroecker & Bookstein, 2011). CV 1 is similar, but not identical to the mean differences depicted in
Figure 2 (e.g., the eye region does not strongly load on the CV). (b) When based on the first 100 PCs, which is still half the number of cases, CVA
completely separates males and females, and also the two female groups differ strongly. This is an artifact resulting from the large number of
variables. The form deformations corresponding to the CV axes are not interpretable; they represent just noise that happens to separate the
groups. Clearly, new cases could not be successfully classified based on these features
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If ordinary PCA does not suffice to represent group separation

(Figure 4), we suggest using between-group PCA or CVA on the first

few ordinary PCs. In our experience, increasing the number of PCs

for further computation usually increases group separation and clas-

sification success until all relevant factors of variation are captured

(for the data sets that we analyzed, these were in the order of 5 to

15 PCs; see also Figure 5b). Thereafter, group separation does not

increase considerably, until to the point when too much noise is

added and the separation increases due to the sheer number of vari-

ables. Generally, statements about group overlap and separation

should be supported by the cross-validation of actual classification

rates, for example, by leave-one-out or k-fold cross-validation of

confusion tables, which can also guide the selection of PCs. Cardini

and Polly (2020) and Thioulouse et al. (2021) also showed that the

cross-validation of bgPC scores largely alleviates the problem of spu-

rious group separation.

More methodological research on dimension reduction in geo-

metric morphometrics is needed, as this is such a crucial step for many

analyses. PCA is a well-understood and generally effective method,

but it does not account for the specific nature and spatial structure of

shape and form coordinates; it is not specifically designed for geomet-

ric morphometric data. When the signals of interest are known to be

of a particular spatial scale, partial warps or principal components

weighted by bending energy (Bookstein, 1991) may be possible.

Bookstein (2015) proposed the use of “relative intrinsic warps,” which

are the relative eigenvectors of the non-affine part of shape with

respect to bending energy. Instead of detecting the shape features

that vary most (as in ordinary PCA), they detect the shape features

with the maximal variance relative to the variance expected at this

spatial scale under a self-similar shape distribution8 (see Section 9).

These directions of research seem promising, and there is ample space

for new innovations, too.

(a)

(c) (d) (e)

(b)

F IGURE 7 Effect of body mass index (BMI) on face shape, estimated by the regression of all 750 shape coordinates on BMI in females (a) and
males (b). The reconstructed faces correspond to 20 units of BMI below and above the mean BMI value, which is a fourfold extrapolation of the
actual BMI range in our sample. The BMI-related shape pattern is very similar in both sexes, but the subcutaneous fat distribution in the cheek
region differs slightly between the sexes. Despite these overall similarities, the angle between the vectors of regression coefficients in full shape
space is 59�, which pools over all shape coordinates regardless of their spatial adjacency and may—incorrectly—be interpreted as a strongly
divergent shape pattern. (c) Here this angle between male and female coefficient vectors is computed from an increasing number of PCs. The first
15 PCs (accounting for 86% of total variance) seem to contribute to the angle; adding more PCs slightly but continually increase the angle
because they add further noise. (d) The multivariate R2 (fraction of total shape variance explained by BMI) is as low as 1.7% in both sexes because
it pools over all shape variables. Also here the first 10–15 PCs account for most of this explained variance. Adding further PCs decreases the
multivariate R2 because they are not really associated with BMI but inflate the total variance. (e) Another statistic of multivariate association is
the R2 between BMI and the regression scores (projections of the vectors of shape coordinates on the coefficient vector), which is 18% in
females 16% in males. These statistics measure the association of BMI with the shape patterns depicted in panels a and b, not with all shape
features. Again, the first 15 PCs constitute the signal, while all subsequent PCs inflate the R2 because weak, random associations with BMI
accumulate
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6 | HOW MANY LANDMARKS
DO WE NEED?

After having finished and interpreted a geometric morphometric anal-

ysis, one may be tempted to think that it would have been possible to

arrive at the same conclusions with fewer landmarks. The problem is

that before knowing the results, it can be difficult to say which

landmarks are the important ones. Questions, disagreements, and

studies about the necessary number of landmarks, and especially of

semilandmarks, have fueled numerous discussions in the geometric

morphometrics community (e.g., Cardini, 2020; Evin et al., 2020;

Goswami et al., 2019; Oxnard & O'Higgins, 2009; Rolfe et al., 2021;

Watanabe, 2018).

Designing a landmark scheme is a crucial step in any morphomet-

ric study that requires time, biological knowledge, and a careful

inspection of multiple specimens to gauge the range of variation to be

represented. The biological or geometrical homology criteria underly-

ing the landmark definitions are key to the interpretation of results

(Bookstein, 1991; Oxnard & O'Higgins, 2009). Often, the major pat-

terns of variation and group separation can be inferred from relatively

small sets of anatomical landmarks, particularly if the relevant shape

features are known a priori and the landmarks can be chosen accord-

ingly. But if the features are unknown or of small spatial scale,

a denser set of landmarks is necessary.

In general, the number and spacing of landmarks should be

determined by the variation and spatial scale of interest, but also by

the aim of the study. For a classification study, anatomical details are

irrelevant as long as classification is successful. A functional or com-

parative study, by contrast, may depend on a more detailed repre-

sentation of anatomical structures. Fossil reconstruction by

geometric morphometric methods typically requires a very dense set

of landmarks and semilandmarks (Benazzi et al., 2011; Freidline

et al., 2012; Gunz et al., 2009). Biological background knowledge,

visual inspection of specimens or preliminary studies inform about

locations that vary strongly or at small scales, which should be cap-

tured by more landmarks.

An important strength of geometric morphometrics is the effec-

tive visualization of results, which allows for powerful exploratory

studies. Based on such visualizations, one can identify features that

one did not expect and would not have explicitly measured. Detailed

shape or form visualizations typically require a sufficiently dense set

of landmarks and often also semilandmarks. As a rule of thumb, one

can try to imagine if connecting the landmarks by lines or polygons

would sufficiently represent the structure at the intended level of

detail.

Increasing the number of landmarks typically adds shape features

of small scale, that is, partial warps with high bending energy. In most

morphometric analyses, the first few principal components are domi-

nated by large scale shape variation (this is why increasing the spatial

density of landmarks may have little effect on the first few PCs), but

one can focus on particular levels of spatial scale by a PCA weighted

by bending energy (“relative warps,” Bookstein, 1991), or one can per-

form a PCA of shape variation relative to the variation expected for

the spatial scale under a self-similar shape distribution (“relative intrin-

sic warps,” Bookstein, 2015, 2018).
In our opinion, it is often advisable to start out with a large land-

mark set. It is easy to skip irrelevant or unreliable landmarks through-

out the analysis, but it is time-consuming or impossible to add further

landmarks after the main data collection. It has been suggested that

the statistical challenges arising from a large number of variables out-

weigh the advantage of spatial resolution in geometric morphomet-

rics. However, the “curse of dimensionality” is gradual and already

arises from a relatively small set of landmarks. In particular, methods

that involve the inversion of a covariance matrix always require prior

dimension reduction or matrix regularization, regardless of the num-

ber of landmarks, because shape coordinates are never of full rank

and most sample sizes do not sufficiently exceed the number of shape

or form coordinates. It has also been argued that a dense landmark

set increases spatial autocorrelations and complicates studies of mor-

phological integration and modularity (e.g., Cardini, 2019; Goswami

et al., 2019). But again, spatial autocorrelations are always present in

morphometric data and should be modeled appropriately if covari-

ances among shape or form coordinates are to be interpreted (see

Section 9).

7 | QUANTIFYING AND COMPARING
FORM VARIATION

Measures of phenotypic variation among individuals within species or

populations have been important in diverse scientific contexts as they

can reflect genetic and environmental heterogeneity, developmental

instabilities as well as past regimes of stabilizing selection. Contrasting

phenotypic variation among population mean forms with individual

variation within these populations can reveal traces of divergent or

stabilizing selection among populations (e.g., Bookstein &

Mitteroecker, 2014; Grabowski & Roseman, 2015; Marroig &

Cheverud, 2004). In medical contexts, understanding “normal” varia-

tion of traits is often pivotal to identify pathological forms. However,

for highly multivariate data, such as in geometric morphometrics,

quantifying and comparing variances can be challenging. Pooling vari-

ance over many variables, regardless of their spatial and anatomical

relationships, can hinder biological interpretation for the reasons

explained in Section 5. It is also problematic because different shape

or form features often have very different variational properties,

which are concealed by simple summary statistics.

The most common statistics to quantify the total magnitude of

variation in multivariate data are the total variance (sum of all vari-

ances, or equivalently, the sum of the variances of the PCs) and the

generalized variance (determinant of the covariance matrix, or equiva-

lently, product of the variances of the PCs). The generalized variance

can only be computed based on the first few PCs (otherwise one

would multiply by zeros), but ratios of generalized variances (e.g., the

ratio of the generalized variances of two populations) are affine invari-

ant and thus largely independent of landmark spacing (Huttegger &

Mitteroecker, 2011). Both statistics, however, pool over all variables
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and do not allow for any exploration of different variational dynamics.

By contrast, PCA decomposes the data into different linear combina-

tions (shape/form features) with successively lower variances, but

these variances are not necessarily interpretable because they cru-

cially depend on the spacing of landmarks. Consider, for instance, a

sample of crania with comparable magnitudes of variation in the face

and the neurocranium. If the face had more landmarks than the neuro-

cranium, facial variation would more strongly impact measures of total

variation and it would also dominate PC 1. More landmarks on the

neurocranium than on the face would lead to the opposite result. For

the same reason, large-scale patterns of shape variation (e.g., the

overall width-to-height ratio of the face) typically constitute PC 1 just

because many correlated variables load on this component (compare

Figure 1c).

Unlike variances, variance ratios are invariant to linear scaling. For

instance, a statement such as: “Population A has a 30% higher vari-

ance in body mass than population B” does not depend on whether

body mass is measured in grams or kilograms, even though each of

the two variances do depend on the measurement scale. Instead of

maximizing variance as in PCA, we may thus want to find linear com-

binations that maximize the variance ratio between two groups. This

approach is called “relative eigenanalysis” or “relative PCA” (Flury,

1985; Bookstein & Mitteroecker, 2014). As relative PCA involves the

inversion of a covariance matrix, it requires dimension reduction or

F IGURE 8 Total variance in face shape is about the same in both sexes (0.0014), but the generalized variance in males is 2.2 times higher
than that in females. Both statistics, however, conceal the fact that different facial features differ in their variational properties. (a) Eigenvalues of
males relative to females, that is, the maximal variance ratios in face shape, computed from the first five PCs of the data (plotted on a log scale).
The first relative PC is about twice as variable in males as in females. The associated shape pattern (the first relative eigenvector shown in panel
b) mirrors the sex differences depicted in Figure 2. Due to the earlier completion of puberty in females, this may reflect a higher variance in sex-
hormone related face development in males of this age group. (c) The second relative PC is still 1.7 times more variable in males and mainly

reflects the height of the lower face relative to that of the upper face—a pattern generally attributable to allometric growth. (d) Relative PC
3 (chin protrusion) and PC 4 (forehead protrusion) have similar variances in both sexes (not shown), whereas the last relative PC (relative PC 5;
a combination of overall width-to-height ratio and relative midface size) is 1.6 times as variable in females compared with males, maybe due to a
slightly higher variance in BMI. Note that these variance ratios are affine invariant and thus largely independent of landmark spacing; their
product equals the ratio of generalized variances
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regularization prior to computation. Bookstein and Mitteroecker

(2014) and Le Maître and Mitteroecker (2019) presented morphomet-

ric applications of relative PCA to investigate the generation and can-

alization of variance during development, population differences in

variance patterns, and also an example of medical classification.

Figure 8 shows an application to our face data.

Another field of application is in evolutionary biology. As a stan-

dard null-model of neutral evolution, we expect the variance between

population means to be proportional to the genetic variance within

the ancestral population (often approximated by the pooled pheno-

typic within-population variance of the descendant populations). For

multivariate data, this implies that deviations from proportionality of

the between-group covariance matrix and the within-group covari-

ance matrix can be indicative of divergent or stabilizing selection. Sev-

eral authors (e.g., Ackermann & Cheverud, 2004; Marroig & Cheverud,

2004; Martin et al., 2008) published significance tests of the propor-

tionality of these two matrices but could not disentangle the features

that drive the deviation from proportionality. When applied to the

between-population and within-population covariance matrices, rela-

tive PCA provides a tool for exploring these features. For instance,

using classic morphometric data, Bookstein and Mitteroecker (2014)

found that facial height relative to neurocranial breadth has likely

been subject to divergent selection in human populations because it

was the feature that varied most between populations relative to the

variance within populations (relative PC 1). By contrast, the relative

size of the nasal cavity was the feature with minimal between-

population variance relative to the within-population variance (last rel-

ative PC) and is thus likeliest to have been under stabilizing selection,

if any trait was.

The sum of squares of the log relative eigenvalues serves as an

affine-invariant metric for covariance matrices, which has been used

to study developmental and evolutionary changes of variance–

covariance patterns (Gonzalez et al., 2011; Mitteroecker & Bookstein,

2009), but also other metrics have been proposed (Aguirre et al.,

2014; Dryden et al., 2009).

Apart from univariate and multivariate variances, further metrics

of “disparity” have been used in ecology and evolutionary biology to

assess the morphological diversity (sometimes termed “morphospace

occupation”) of different species or higher taxa (e.g., Guillerme et al.,

2020; Hopkins & Gerber, 2021; Zelditch et al., 2012). These metrics

include means and (trimmed) ranges of pairwise Procrustes distances.

While such statistics can be useful in certain contexts and tend to be

more robust against outliers than variances, their statistical properties

cannot easily be linked to quantitative genetic theory and other multi-

variate methods.

8 | DISENTANGLING SYMMETRIC AND
ASYMMETRIC FORM VARIATION

For bilaterally symmetrical shapes, geometric morphometrics allows

for a disentangling of symmetric and asymmetric shape features and

a corresponding decomposition of total shape variation (Benítez

et al., 2020; Bookstein, 1991; Klingenberg & McIntyre, 1998; Mardia

et al., 2000; Schaefer et al., 2006). This applies both to object sym-

metry (e.g., the human face) and to matching symmetry (e.g., left and

right hands). These methods have also been extended to more com-

plex patterns of symmetry, such as rotational and nested symmetries

(e.g., Klingenberg, 2015; Savriama & Gerber, 2018; Savriama &

Klingenberg, 2011). For bilateral symmetry, the basic principle is to

contrast a shape with its relabeled reflection. A perfectly symmetric

shape is identical to its reflection. The difference vector between a

shape and its reflection describes the object's asymmetry. The

corresponding Procrustes distance (the length of this vector) can be

interpreted as the total magnitude of shape asymmetry, and the

angle in shape space between two asymmetry vectors as the devia-

tion in asymmetry pattern, subject to the caveats mentioned in

Section 5. The classic asymmetry literature further distinguishes

between directional asymmetry (the average pattern of asymmetry

in a sample) and fluctuating asymmetry (the individual deviations of

asymmetry from the average pattern). Fluctuating asymmetry has

been linked to both environmental (diet, climate, toxins) and genetic

(aneuploidy, heterozygosity, inbreeding) stressors and thus is widely

used as a measure of developmental instability (e.g., Graham &

Özener, 2016; Klingenberg, 2015; Schaefer et al., 2006). Directional

asymmetry, by contrast, often reflects genetically determined devel-

opmental differences between left and right body sides

(Klingenberg, 2015).

The average of a shape and its relabeled reflection is a perfectly

symmetrical shape. By exploiting this property, one can “symmetrize”
the landmark configurations and thus remove asymmetric variation,

including asymmetric noise, from the data. For small samples, this can

lead to more regular visualizations and lower p-values (because

“unexplained” variance is reduced). If asymmetry studies are based on

semilandmarks, as in our face example, the mean shape in the sliding

landmark algorithm must be symmetrized to remove asymmetry

resulting from an asymmetric initial placement of semilandmarks. As

symmetric shape components usually vary much more across individ-

uals than asymmetric shape, the first principal components of shape

tend to capture symmetric variation only. For our face data, asymmet-

ric variation accounted for only 7.8% of total shape variance, and the

first PCs as well as the mean differences and shape regressions were

all approximately symmetric (Figures 1–3).

In contrast to symmetric shape features, the asymmetry vectors

have a natural origin: a vector of all zeros indicates perfect symmetry.

In an ordination analysis of shape asymmetry, it is thus useful to rep-

resent the individual asymmetries as vectors from the origin (not just

as points as in standard PCA), so that both pattern and magnitude of

asymmetry are comparable (Figure 9). Standard principal components

maximize the variance, that is, the average squared deviation from the

mean. But for asymmetry vectors it is more effective to maximize the

average squared deviations from zero (perfect symmetry), which can

be achieved by a singular value decomposition of the uncentered data

matrix (Neubauer et al., 2020). This way, the directional asymmetry

patterns of face shape were captured by the fifth and sixth dimension

of the modified PCA (Figure 9c). In an ordinary PCA of the asymmetry
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vectors, which maximizes only the fluctuating component of asym-

metric shape variation, no directional pattern was visible among the

first 15 dimensions of our data.

Both the symmetric and asymmetric shape features can be

regressed on other variables. Associations between symmetric and

asymmetric shape features can be studied via PLS or by regressing

(a) (b)

(c)

(e)

(d)

F IGURE 9 Asymmetry analysis of face shape. (a–c) The first six principal components of the asymmetry vectors maximize the variance
around zero (not the mean as in ordinary PCA), which corresponds to perfect symmetry. Asymmetry vectors in shape space can differ in
orientation (spatial asymmetry pattern) and length (total magnitude of asymmetry), but males and females do not seem to differ for any of these
components here. The light gray vector represents directional asymmetry, that is, the sample average of all these asymmetry vectors. In contrast
to the first four components, PCs 5 and 6 show a directional trend. (d) The visualization of directional asymmetry by a tenfold extrapolation of the
difference between the average face shape and its relabeled reflection reveals a tendency for a larger left facial side compared to the right side,
which was also reported by Dane et al. (2002, 2004). (e) Visualizations of the first six PCs of asymmetry as deviations from perfect symmetry
(shown only in one direction)
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symmetric shape features on the magnitude of asymmetry, for exam-

ple, to assess if certain shapes are particularly prone to some direc-

tional asymmetry patterns or higher magnitudes of asymmetry,

respectively. For our face data, for instance, we found that more

projecting faces with a longer nose tend to show a higher magnitude

of total asymmetry as compared to flatter faces. But as symmetric and

asymmetric components of shape constitute orthogonal subspaces of

tangent shape space, they cannot be compared by methods such as

relative eigenanalysis, which apply only to the comparison of two

groups for the same variables. Similarly, angles between shape vectors

(e.g., PCs or vectors of regressions coefficients) of symmetric and

asymmetric shape components cannot directly be compared because

they are in orthogonal subspaces.

In the classic as well as in the geometric morphometric literature

it is common to contrast the magnitudes of fluctuating and directional

asymmetry via a sum-of-squares decomposition (Procrustes ANOVA)

and to statistically test a null hypothesis of zero directional asymmetry

(Klingenberg, 2015; Klingenberg & McIntyre, 1998; Mardia et al.,

2000). For our face data, directional asymmetry accounted for only

4% of the total sum of squares in both sexes, but a H0 of no direc-

tional asymmetry was clearly rejected. As usual, however, such a sca-

lar summary of complex multivariate data can conceal a more nuanced

picture. For example, the asymmetric shape feature depicted in Figure

9d showed a very strong directionality (compare Figure 9c), whereas

all other shape features showed virtually no directional asymmetry

(the mean vectors in Figure 9a,b have a length of almost zero).

Because fluctuating asymmetry is often subtle, it can be difficult

to distinguish it from measurement error, which also tends to be

asymmetric. Many studies of asymmetry thus involve repeated mea-

sures of at least some of the measured specimens. Procrustes ANOVA

can then be used to decompose symmetric variation, asymmetric vari-

ation, and measurement error (Klingenberg, 2015).

9 | MORPHOLOGICAL INTEGRATION,
MODULARITY, AND SPATIAL SCALE

Different anatomical structures of organisms develop, vary, and evo-

lve jointly. Biologically, this is almost a truism: Because of develop-

mental interactions among adjacent tissues, growth factors with

widespread effects, and the expression of genes in multiple tissues

and time periods, different parts of an organism do not develop in iso-

lation. Statistically, we observe that the dimensions of such parts

covary across individuals, which in turn affects how a population

responds to natural selection of one or more of these parts. Studies of

these relationships are usually performed under the heading “morpho-

logical integration,” after the eponymous book by Olson and Miller

(1958). The more modern literature has also focused on “modularity,”
that is, the fact that these associations are not uniform across traits:

some structures are less integrated (more modular) than others. It

turned out, however, that a biologically meaningful geometric mor-

phometric analysis of these intuitively appealing concepts is quite

challenging. For instance, Olson and Miller interpreted the raw

correlation coefficient between two measured traits as the strength

of their integration, but this interpretation does not hold for larger

sets of interlandmark distances or shape coordinates. In particular, a

correlation of zero does not serve as a meaningful null model of no

integration.

The first reason of this—perhaps unintuitive—fact is of a geomet-

rical nature. Consider, as a simple example, four 2D landmarks that

vary isotropically around a mean shape. In other words, the eight raw

landmark coordinates are all uncorrelated and have the same variance,

which is the typical null-model of pure noise in geometric morphomet-

rics (the Mardia-Dryden distribution). The form of these configurations

has only five degrees of freedom because we ignore variation in the

overall location (2 df) and orientation (1 df), whereas shape has four

degrees of freedom as we additionally ignore variation in scale (1 df). If

we consider the six interlandmark distances for each configuration, we

find all the distances that share a landmark to be correlated even

though the landmark coordinates are all uncorrelated (these correla-

tions reach a magnitude of about r = 0.35, regardless of the amount of

isotropic noise). Similarly, after Procrustes superimposition the eight

shape coordinates also show nonzero correlations (correlations up to

about +/�0.5). These correlations necessarily occur as there are more

variables than degrees of freedom for shape or form. Put more geo-

metrically, shifting one landmark would affect more than one inter-

landmark distance. In fact, it is geometrically impossible to alter just

one of the six distances while keeping all others constant. Likewise, the

Procrustes shape coordinates are all geometrically linked. For example,

moving one landmark away from the centroid necessitates moving the

other landmarks closer to the centroid in order to keep the centroid

size constant (and similarly for location and orientation). Therefore, it is

geometrically impossible for interlandmark distances and shape coordi-

nates to have only zero covariances. Minimizing bending energy during

the sliding landmark algorithm further introduces covariances between

the shape coordinates (e.g., Cardini, 2019).

The second reason is a biological one: it is not clear what a

completely nonintegrated organism would look like; this would be

incompatible with life in higher organisms. Genetic and epigenetic

effects in early embryonic stages can affect many cells, and several

circulating hormones control prenatal and postnatal growth of basi-

cally all body parts. Hence, most dimensions of an organism show

some degree of integration, but certain parts might nonetheless be

characterized by tighter developmental interactions and more local

growth factors as compared with other parts. In other words, ontoge-

netic development imposes a hierarchy or “palimpsest” (Hallgrímsson

et al., 2009) of variational factors with different and overlapping spa-

tial scales, including local ones, but not a simple parcellation of the

organism into distinct nonoverlapping variational units, not even a

strictly modular genotype–phenotype map (Mitteroecker, 2009;

Pavličev & Wagner, 2012). Uncovering these local or “modular”
growth patterns first requires the modeling of more global growth fac-

tors and interactions (Mitteroecker & Bookstein, 2007). Terentjev

(1931) and Wright (1932) modeled the covariance structure of

selected length measurements of frogs and chicken, respectively, by

first estimating large-scale factors and then estimating local factors
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from the residual covariances. Mitteroecker and Bookstein (2007,

2008) expanded on these approaches and linked them to modern mul-

tivariate methods, but the current morphometric literature is still dom-

inated by the interpretation of raw covariances or correlations in the

tradition of Olson and Miller (1958), even for shape coordinates. We

disagree with this practice.

These studies typically also fail to account for differences in vari-

ance between groups that inevitably affect the detected magnitudes

of covariance and correlation. For instance, some studies reported

higher “integration” (i.e., covariance) in upper and lower jaws in chim-

panzees as compared to humans. But clearly, the developmental and

mechanical mechanisms of integration are the same in both species,

chimps just vary much more in their degree of prognathism, which

also inflates the covariances (e.g., Mitteroecker et al., 2012).

A central problem in this context is the ignorance of spatial auto-

correlation among morphometric measurements (Bookstein, 2015;

Gonzalez et al., 2019; Mitteroecker & Bookstein, 2007). Adjacent

parts of an organism cannot vary independently in their dimensions,

just for spatial reasons. Hence, a set of adjacent measurements is

expected to show higher covariances than more distant traits, even in

the absence of specific modular factors. This “rule of neighborhood”
(Lewenz & Whiteley, 1902) can account for most findings of “modu-

larity” in the morphometric literature as they usually report spatially

contiguous modules, typically along the most elongated axis of the

studied anatomy (Mitteroecker, 2009). For our face data, for instance,

the correlations between shape coordinates strongly relate to the

average distance between the landmarks (r = �0.65, r = �0.66, and r

= �0.24 for the x, y, and z coordinates, respectively). This raises the

question as to what is a good null model in geometric morphometrics.

The Mardia-Dryden distribution of exactly uncorrelated landmark var-

iation may sufficiently idealize independent measurement error, but

not any realistic biological variation because it does not account for

spatial autocorrelation. Contrary to our biological intuition, closely

adjacent landmarks show the same amount of variance and covariance

as distant landmarks under the Mardia-Dryden distribution. In other

words, the variation of, say, four adjacent landmarks and four distant

landmarks is the same, but if we scale them all to the same centroid

size, we would find that the smaller landmark configurations show

more shape variance than the larger configurations9: shape variance

actually decreases with spatial scale in the Mardia-Dryden

distribution.

This fallacy led Kanti Mardia, Fred Bookstein, and colleagues

(Bookstein, 2015; Mardia et al 2006) to propose another distribution,

the so-called self-similar shape distribution, where the non-affine

shape variance is the same at every spatial scale (hence the term

“self-similar”). This distribution does show a spatial autocorrelation:

the covariance among landmarks decreases with their spatial distance.

The two distributions thus differ fundamentally in their biological

interpretation. Under the Mardia-Dryden distribution, the landmark

coordinates vary independently and isotropically, whereas under the

self-similar distribution the elements of the spaces in-between the

landmarks vary independently and isotropically (Figure 10). This can

be interpreted as an idealized model of completely irregular and

uncoordinated tissue growth: independent variation in the shape of

constituting elements (e.g., cells or bones), as opposed to independent

variation in the landmarks on the borders between elements. Clearly,

this is also not how higher organisms grow, but it serves as a

null-model where no particular growth regulation occurs.

The self-similar shape distribution is also interesting as it differen-

tiates between two alternative scenarios. If non-affine shape variance

decreases with spatial scale, larger structures are more canalized in

their shape variance than smaller substructures. This would reflect

compensatory behavior of the underlying tissue (sensu Mitteroecker

et al., 2020; Bookstein, 2015, referred to this as “disintegrated” shape
variation). For instance, if one element shows a particularly strong

elongation in one direction, the adjacent elements would compensate

for this by reduced elongation along this direction, and vice versa for

a particularly weak elongation. Despite considerable variation of every

element, these elements together (i.e., at a larger scale) would then

show only little variance. In the opposite scenario, the elements show

a similar behavior, for example, if one element shows an elongation

along one direction, the adjacent elements tend to have a similar elon-

gation. Mitteroecker et al. (2020) referred to this as coordinated varia-

tion, which leads to an increase of non-affine shape variance with

spatial scale, that is, larger structures tend to be more variable in

shape than smaller structures.

In practice, these behaviors can be assessed by plotting the vari-

ance of partial warp scores against the inverse of bending energy as a

measure of spatial scale (Bookstein, 2015, 2018; Mitteroecker et al.,

2020). Under a self-similar shape distribution, non-affine shape vari-

ance increases linearly with spatial scale. Regression of partial warp

variance on the inverse of bending energy at a log–log scale thus

yields a slope of 1 for 2D landmarks and of 2 for 3D landmarks,

respectively. Coordinated variation, by contrast, leads to a greater

regression slope and compensatory variation to a smaller slope. As a

rough surrogate, one can also plot the non-affine shape variance of

different landmark configurations (different substructures, e.g., the

different bones of the cranium) against their squared average centroid

size. An increase of non-affine shape variance with squared centroid

size would indicate coordinated variation and a decrease compensa-

tory variation. Exceptions of some structure or partial warps from

such a general scaling trend may indicate some deviant local pro-

cesses. For instance, Mitteroecker et al. (2020) found that in the

human cranium the shape variance clearly decreases with spatial scale,

that is, the shape of the separate cranial bones varied much more than

overall cranial shape. This indicates that the cranial bones tend to

compensate for deviant shapes of the adjacent bones in order to guar-

antee a “normal” shape of larger, functional cranial units. Only the

nasal bones clearly deviated from this pattern.

The separation into small-scale and large-scale shape variance can

also be useful for evolutionary and phylogenetic studies. Small-scale

features, such as the shape of separate bones, often are of less func-

tional importance than large-scale features. For instance, the overall

dimensions of the jaws are clearly functionally relevant and thus

under natural selection, but the relative size and shape of the premax-

illa, maxilla, and palatine are of little functional importance as long as
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the overall jaw dimensions are functional. These small-scale features

may thus be more strongly subject to evolutionary drift across species

and reduced stabilizing selection within species as compared with

large-scale features. Accordingly, Grunstra et al. (2021) found that

small-scale cranial shape features better reflect papionin phylogenetic

history than large-scale features, whereas individuals better clustered

into species for the large-scale shape features.

In another application, Windhager et al. (2017) studied the spatial

scale of human facial shape features associated with specific body

characteristics and trait attributions during social perception. They

found that physiological characteristics were represented at larger

scale, whereas cues in perception were mainly driven by small-scale

shape features: raters relied on small-scale features in the face when

judging health status, as opposed to the large-scale shape patterns that

relate to hormone levels and body mass index. These insights facilitate

studies on an additional range of traits, such as facial ratings of emo-

tions, which may correspond to facial features at even smaller scales.

In contrast to studies that aim to identify modules, purely explor-

atory studies of morphological integration, typically performed by par-

tial least squares analysis (Adams & Felice, 2014; Baab, 2013;

Bookstein et al., 2003; Klingenberg & Zaklan, 2000; Mitteroecker &

Bookstein, 2007; Rohlf & Corti, 2000), are unaffected by the geomet-

ric and biological caveats mentioned above; geometric dependences

and spatial autocorrelations are simply part of the assessed associa-

tions. This way, numerous studies have reported patterns of integra-

tion in human and primate anatomy and inferred evolutionary

constraints or drives from these patterns (e.g., Bastir et al., 2006,

2010; Mitteroecker & Bookstein, 2008; Neaux et al., 2019; Singh

et al., 2012).

10 | STUDYING ASSOCIATIONS BETWEEN
ORGANISMAL FORM AND OTHER
VARIABLES

Many morphometric studies are concerned with relating organismal

form to other variables, such as environmental, functional, behavioral,

or genetic data. Because of the inherently multivariate nature of geo-

metric morphometrics, such associations cannot be studied variable

by variable. One standard approach is to regress all shape or form

(a) (d) (g)

(b)

(c)

(e)

(f) (i)

(h)

F IGURE 10 Examples of configurations of 25 landmarks each, arranged as the vertices of 5 � 5 grids. In (a) the landmarks follow a Mardia-
Dryden distribution, that is, all coordinates vary independently and with the same variance. (b) For 100 configurations drawn from this
distribution, the landmark variation is shown for the vertices of a small (1 � 1) and a larger (2 � 2) grid element (red and blue points, respectively).
The coordinates of both configurations show the same variance, but when scaled to the same size (c), the non-affine shape variance is lower for
the large configuration: Shape variance decreases with spatial scale. The spaces in-between the landmarks (the 1 � 1 grid cells) thus show a

tendency to “compensate” adjacent shape variation. (d) Here, the landmarks follow a self-similar shape distribution (see main text). Every grid cell,
regardless of its size, has the same non-affine shape variation (e, f), which implies that the landmark coordinates show a pattern of spatial
autocorrelation. (g) The grid cells show coordinated variation, that is, a positive correlation among adjacent cells, which is the opposite scenario as
in panel a. Here, shape variance increases with spatial scale (h, i). Source: modified from Mitteroecker et al., 2020
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coordinates onto one external variable and to visualize the resulting

vector of regression coefficients as a shape or form deformation

(“shape or form regression”). For example, when regressing the shape

coordinates on body mass index as in Figure 7, the regression slopes

represent the average shape change that is linearly associated with

one unit change in BMI. For the sake of effective visualization, a mul-

tiple of these coefficients are added to the mean shape to achieve an

interpretable deformation. When regressing shape on the genotype

score of an allele at one genetic locus (i.e., the count of this allele at this

locus: 0, 1, or 2), the slopes represent the average genetic effect

resulting from one allele substitution (Mitteroecker et al., 2016).

When the external variables are also numerous and may better be

interpreted in terms of linear combinations of the original measure-

ments, we need methods that treat both blocks of variables in a multi-

variate way. Partial least squares analysis has mostly been used for

this purpose in geometric morphometrics (e.g., Baab, 2013; Bookstein,

1991; Bookstein et al., 2003; Mitteroecker & Bookstein, 2007;

Rohlf & Corti, 2000; Windhager et al., 2011). However, at least three

different principal approaches are possible within the classic multivari-

ate linear framework. These methods generalize the three bivariate

statistics, covariance, regression, and correlation, to “latent variables”
that are estimated from the multivariate measurements. The underly-

ing rationale is that we have measured many variables but assume

that variation in these many variables is driven by only a few

unmeasured factors, the latent variables. For instance, we have mea-

sured many climate variables, but we assume that only one or a few

climate properties affect organismal form across populations. As we

do not know these properties, we do not know which of our mea-

sures, or combination of measures, best describe these properties.

Thus, we try to estimate these properties—the latent variables—as lin-

ear combinations of the measured variables. The same holds for the

morphometric side. We do not assume that climate affects all aspects

of organismal form; only a few specific features (the latent form vari-

ables) are responsive to these environmental factors. As we aim for a

comprehensive representation of the association between form and

climate, we estimate the latent variables as linear combinations that

maximize the association between the latent variables of form and cli-

mate. Here one can choose among the three standard measures of lin-

ear association to be maximized.

The covariance measures the joint variance of two variables,

whereas the squared correlation is the fraction of variance in one

variable that is explained by the linear association with the other vari-

able. The correlation is equivalent to the covariance of the two

z-transformed variables (i.e., scaled to unit variance); the correlation

coefficient thus is scale invariant. Both statistics are symmetric. The

regression slope, by contrast, measures the average change of the

dependent variable associated with one unit change of the independent

variable. Seeking a pair of latent variables, one for each block of vari-

ables, that maximizes the covariance between these latent variables is

equivalent to two-block partial least squares analysis (PLS). Maximizing

the regression slope of the dependent latent variable on the independent

latent variable is equivalent to reduced rank regression (RRR; Aldrin

2000; Izenman 1975), whereas maximizing the correlation between

the latent variables is achieved by canonical correlation analysis

(CCA). Computationally, all three methods are based on a singular value

decomposition, but of different matrices (see, e.g., Mitteroecker et al.,

2016, and Stansfield et al., 2021, for computational details). Therefore,

all three methods yield multiple pairs of latent variables with succes-

sively lower covariance, regression slope, or correlation, respectively.

When should we choose which method? PLS is computationally

most stable as it does not require an inversion of a covariance matrix.

RRR involves an inversion of the covariance matrix of the indepen-

dent variables and thus requires manifold more cases than indepen-

dent variables (Section 5). CCA has the same requirement even for

both blocks of variables. In practice, CCA thus requires dimension

reduction or a regularization of the covariance matrices prior to the

actual analysis. In contrast to RRR, the results of PLS are strongly

influenced by the variance of the variables. Consider, for instance,

measures of minimum and maximum temperature as well as some

shape variables. Let us assume that both temperature variables are

highly variable and correlated; the difference between maximum and

minimum temperature thus varies little. Assume further that some

aspects of shape are weakly affected by maximum and minimum tem-

perature, whereas other shape features are highly responsive to the

difference between maximum and minimum temperature. In other

words, the average temperature would have a high covariance with

shape, but the regression slope would be small (one unit temp. has a

small average effect on shape). By contrast, the temperature differ-

ence would show less covariance with shape because it varies just lit-

tle in the sample, but the regression slope would be high, reflecting

the strong average impact of one unit temperature difference on

shape. Accordingly, the first dimension of PLS, which maximizes the

covariance, would represent the average temperature (similar loadings

for both measures), but RRR would find the temperature difference

(positive loading for max. temp. and negative loading for min. temp.,

or vice versa) as first latent variable because it maximizes the regres-

sion slope. For CCA another criterion matters, namely additional fac-

tors of variation that are not accounted for by the measured variables

(the unexplained variance). As CCA maximizes the explained variance,

it will find latent variables for which this unexplained variance is a

minimum, for example, shape features that are mostly determined by

temperature, even if weakly, but not by any other environmental or

genetic factors. Clearly, it depends on the research question if one

wants to identify shape features that covary most with temperature

in the sample, that are most responsive to temperature regardless of

the actual (co)variance, or that are most predictable by temperature.

Published applications of PLS and RRR include the search for geo-

graphic clines in shape. For example, Frost et al. (2003) used a PLS

between cranial shape variables and geographic coordinates (latitude

and longitude) for different papionins, while Grunstra et al. (2018)

used a RRR for similar data. The loadings for the geographic coordi-

nates could directly be interpreted as a geographic direction along

which the shape features depicted by the corresponding loadings are

changing in the sample. Here, PLS yields the geographic direction with

the strongest covariance with shape, but RRR gives a direction along

which one unit change (e.g., 1 km) has the strongest average impact
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on shape. The results would differ among the two methods if along one

geographic direction the sample has its largest geographic extension and

thus most variance in the coordinates, but another direction shows the

strongest cline, that is, the strongest effect on shape per km. CCA, by

contrast, yields the direction for which some shape features are most

predictable by geographic location (least unexplained variance).

If one block of variables consists of genotype scores for different

loci, as in genetic association studies, RRR yields genetic latent vari-

ables with the strongest average genetic effect on the phenotypic

latent variable, whereas CCA leads to latent variables with the highest

heritability (Mitteroecker et al., 2016). PLS leads to latent variables

that covary most in the sample, regardless of the average effect and

heritability. For instance, an allelic pattern that varies strongly in the

sample might be revealed by PLS even if the average genetic effect

on the phenotype is limited. RRR, by contrast, yields an allelic pattern

with strong effects on the phenotypic latent variable per allele substi-

tution, even if they vary little in the sample.

Moreover, the interpretation of the loadings for the two blocks of

variables differs somewhat among the three methods. In PLS, the

coefficients for the measured variables are proportional to the regres-

sion coefficients of the variables on the corresponding latent variable

(Figure 11a). In RRR, by contrast, the coefficients for the independent

variables are proportional to the partial regression coefficients of the

latent variable on the measurements (Figure 11b). The coefficients of

the dependent variables are multivariate regression coefficients, just

as in PLS. CCA yields partial regression coefficients for both blocks of

variables (Figure 11c). These differences can be relevant if the vari-

ables are highly correlated. For instance, let us again assume we mea-

sured minimum and maximum temperature along with some shape

variables. But now assume that minimum temperature alone is driving

the association with shape, while maximum temperature has no

effect. In our sample, however, the two temperature measures are

highly correlated, that is, individuals experiencing high minimum tem-

perature also tend to experience high maximum temperature, and vice

versa. As a result, both variables show some covariance with shape,

even though maximum temperature has no causal effect on shape.

However, in a multiple regression of the shape feature (latent variable)

on both temperature measures, only the partial regression coefficient

for minimum temperature would reflect an effect while that for maxi-

mum temperature would be close to zero (conditioned on min. tem-

perature, max. temperature has no association with shape any more).

In PLS, therefore, both temperature variables would have high coeffi-

cients, whereas in RRR and CCA maximum temperature would have a

coefficient close to zero.

In summary, the properties and interpretations of RRR most

closely resemble the typical scientific questions in anthropology and

biology, but PLS is computationally more convenient as it does not

necessarily require prior variable reduction. PLS is also computation-

ally less demanding than the other methods, which can matter in

genetics and other fields, where the number of independent variables

is often huge. CCA may find applications in forensics and image recog-

nition, where prediction and classification are the main tasks, but

computationally it is the least stable approach.

11 | OUTLOOK: AUTOMATED LANDMARKING AND

LANDMARK-FREE APPROACHES

The manual setting of landmarks is a time-consuming process that

requires anatomical background knowledge. It is also prone to error

(a)

(b)

(c)

F IGURE 11 Path models illustrating two-block partial least
squares analysis (PLS), reduced rank regression (RRR), and canonical
correlation analysis (CCA). In all three methods, the multivariate
association between two blocks of measured variables (e.g., one block
of shape variables and one block of environmental variables) is
decomposed into multiple pairs of latent variables. (a) In PLS, both
blocks of variables are treated symmetrically, and the latent variables
are estimated as linear combinations of the variables with maximal
covariance. The loadings or coefficients are proportional to
covariances or multivariate regression coefficients between the
measured variables and the latent variables. (b) RRR maximizes the
regression slope of the dependent latent variable on the independent
latent variable. The coefficients of the independent variables are

proportional to multiple regression coefficients on the corresponding
latent variables, whereas the coefficients of the dependent variables
are proportional to covariances. (c) CCA maximizes the correlation
between the latent variables, and the coefficients are proportional to
multiple regression coefficients for both blocks
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(e.g., Fruciano, 2016; Menéndez, 2017; Waltenberger et al., 2021). In

the last few years, numerous algorithms and software implementations

for automated landmarking have been published (Aneja et al., 2015;

Bannister et al., 2020; Bromiley et al., 2014; Devine et al., 2020;

Galvánek et al., 2015; Le et al., 2020; Li et al., 2017; Percival et al.,

2019; Porto et al., 2021; Porto & Voje, 2020; Vandaele et al., 2018).

Personally, we have no experience with these approaches, but the pub-

lications and what we have heard from colleagues appear promising.

However, these methods do not seem to work for all anatomical struc-

tures equally well, and occasional misplacements of landmarks do

occur. Testing these algorithms on small samples prior to actual data

collection as well as careful control of automatically placed landmarks

seems advisable.

Also, a large number of different “landmark-free” or “homology-

free” morphometric approaches have been suggested, all of which

have in common the notion that no identification of homologous land-

marks is required. The simplest class of these methods is based on

some automated placement of points on curves or surfaces, such as

the iterative closest point algorithm, followed by multivariate analysis

of the registered point coordinates as in geometric morphometrics

(e.g., Gonzalez et al., 2016; Polly, 2008; Pomidor et al., 2016) or in

terms of radii or angular changes along outlines or surfaces

(e.g., eigenshape analysis; MacLeod, 1999; Polly & McLeod, 2008). In

another class of methods, curves or surfaces are represented by some

continuous functions, such as sine and cosine functions (elliptical Fou-

rier analysis and spherical harmonics; e.g., Shen et al., 2009; Caple

et al., 2017), but also other approaches have been suggested

(e.g., Joshi et al., 2010). In recent years, deformation-based methods

and diffeomorphometry have become more common in anthropology

and evolutionary biology (e.g., Bône et al., 2018; Boyer et al., 2011;

Durrleman et al., 2012, 2014; Koehl & Hass, 2015; Rolfe et al., 2011;

Specht et al., 2007; Toussaint et al., 2021; Urciuoli et al., 2020). These

methods originate in medical image analysis, especially brain imaging

(Ashburner et al., 1998). Most of these methods make use of regis-

tered surface points (“control points”) and an estimate of the sample

mean shape or some other reference shape (“atlas”). The core idea is

that the shape differences between each object and the reference

shape are represented as deformations (diffeomorphic or conformal

maps, i.e., invertible “smooth” maps from one smooth surface to

another). Via a kernel function, one can determine the spatial resolu-

tion of these deformations. The parameters of the deformations are

then used for multivariate statistical analysis. Unlike in geometric mor-

phometrics, however, the ensuing shape space is a highly nonlinear

manifold that requires nonlinear statistics, such as geodesic distances,

Fréchet means, geodesic regressions, and nonlinear dimension

reduction.

The proponents of these methods are (naturally) optimistic

about their performance, and the published studies indeed appear

promising. However, the complete loss of point homology

(e.g., landmarks on sutures that represent the contribution of differ-

ent bones) and the non-Euclidean nature of shape space can chal-

lenge some of the typical inferences in morphometrics way beyond

the extent described in the previous sections. Consider, for instance,

two faces that differ in the position of the nose. If the tip of the nose

is represented by the same homologous landmark in both faces, the

average face has a nose with an average position. But if the tip of

the nose is captured by different points in the two faces (as in

landmark-free morphometrics), the analysis will correctly identify dif-

ferences in face shape, but the mean of those shapes is not a proper

face anymore because the computed average nose is a composite of

the two noses in different positions (see also Klingenberg, 2008).

Likewise, if we study the variance in face shape without point

homology, we would not find the maximum variance to be located in

the position of the nose but in the areas at the edge of the average

nose, which in some individuals belongs to the nose and in some

individuals not. Despite this problem, cluster analysis and statistical

classification (the typical tasks in medical imaging) can still be suc-

cessful, but other biometric analyses are difficult. This situation can

also be considered as a non-Euclidean shape space: not all possible

point configurations or deformations yield realistic face shapes. The

space of actual face shapes is a non-Euclidean subspace (a manifold)

embedded within the space of all shapes. In order to transform a

face into another, one needs to find the shortest path along this

curved manifold of face shapes (the geodesic or Riemannian dis-

tance), but depending on the actual parametrization of face shape

and facial deformations, there can be many such possible paths and

many possible intermediate shapes. Similarly, applying a shape defor-

mation (e.g., a smile) from one face to another face requires one of

multiple possible “transport” operations (e.g., Piras et al., 2021),

whereas in geometric morphometrics a vector of shape change can

simply be applied to another shape (e.g., in “developmental simula-

tions”; McNulty et al., 2006; Neubauer & Gunz, 2018). This chal-

lenges the interpretation of linear shape trajectories and the notion

of “morphological intermediacy,” that is, all the affine invariant

geometries described in Section 5. For instance, if phenotypes that

are heterozygous for a given genotype are located in shape space at

the midpoint of the homozygous phenotypes, this is interpreted as

the result of purely additive allele effects (codominance), whereas

deviations from the midpoint indicate non-additive allele effects

(Klingenberg et al., 2001; Pavličev et al., 2016). Similarly, two parallel

linear trajectories in shape space reflect two identical and continual

shape transformations applied to different starting shapes

(e.g., Mitteroecker et al., 2005). It still remains to be shown if similar

interpretations are warranted for landmark-free morphometric

approaches.

In summary, the utility of landmark-free morphometric methods

for biometric analyses beyond mere discrimination and classification

has still to be explored. The combination of homologous point loca-

tions with semilandmarks on curves and surfaces in geometric mor-

phometrics enables a wide range of analyses and biological

interpretations. Perhaps, the costs (in terms of biometric interpretabil-

ity) of discarding point homology are too high, and, thus, the geomet-

ric morphometric framework combined with automated landmarking

is a safer way into the next decades of morphometrics.
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12 | CONCLUSIONS

Much has been achieved since the “revolution” in morphometrics. An

ever-growing community has been advancing and applying geometric

morphometrics within biology, anthropology, archaeology, and numer-

ous related fields. Improved imaging technologies have extended geo-

metric morphometric analyses to complex 3D structures, to

microscopic and embryonic scales, to precious fossil and archeological

specimens, and also to 3D surface scans and medical images of living

people. Yet, the large number of landmarks and semilandmarks that

came along with these developments can challenge some statistical

analyses and—much more so—some of the biological interpretations.

Classic biometrics and quantitative genetics are based on measured

“traits,” that is, discernable and homologous biological characteristics

that can be separately represented by a single variable each. All the

classic concepts of morphological integration rest on such measured

traits. But the data generated in geometric morphometrics are funda-

mentally different. None of the landmark coordinates can be inter-

preted separately; all analyses are multivariate and generate shape or

form features that combine many, if not all of the measured landmark

coordinates. Insights on “biological homology” can emerge in the

course of the analysis and are not necessarily a simple a priori of the

measured landmarks. Single scalar summary statistics and p-values thus

are generally less insightful than the exploration or “calibration” of

shape features that align with hypothesized or measured biological fac-

tors. Modern multivariate statistics and machine learning will certainly

resolve most of the technical difficulties currently encountered in geo-

metric morphometrics, but the conceptual and biometric challenge to

profoundly connect geometric morphometrics to developmental, evo-

lutionary, and behavioral biology cannot be solved by computational

scientists. It will require the continuing efforts of the morphometricians

amidst all these disciplines, as well as another generation of well-

prepared students, to tackle these fascinating problems.
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ENDNOTES
1 An affine transformation is a geometric transformation that preserves

lines and parallelism. In other words, affine shape transformations con-

sist only of translation (moving the object) and linear scaling along one

or more axes (stretching, shearing). A deformation grid that captures

such an affine shape difference would only consist of straight and paral-

lel lines (hence zero bending energy), and the grid cells would all have the

same form. The shape difference thus is not localized; it is the same

everywhere. For non-affine shape differences, by contrast, the grid cells

differ in form; the shape difference has a location and a certain spatial

scale, which is inversely related to bending energy (the smaller the defor-

mation, the more are the grid lines bent).
2 More specifically, Procrustes or Kendall shape space is not a Euclidean

(i.e., “linear”) space but a Riemannian manifold (a “smoothly curved” space)
of dimension 2k-4 or 3k-7 for two- or three-dimensional landmarks, respec-

tively (Bookstein, 1996; Dryden & Mardia, 1998; Kendall, 1984). For

instance, k 2D landmarks have 2k coordinates with only 2k-4 degrees of

freedom due to the standardization of variance in overall location, scale,

and orientation of the configurations. In other words, within the

2k-dimensional Euclidean space of the variables, the shapes are points

located within a curved subspace of dimension 2k-4. But in almost all geo-

metric morphometric applications, the shape variance is small enough to

ignore or remove (through tangent space project) this curvature and to treat

it as linear (Marcus et al., 2000; Rohlf, 1999). For our face data, the curva-

ture of shape space accounted for only 0.02% of total variance, which was

in the order of the variance of PC 75. In most geometric morphometric

applications, the curvature of shape space thus is irrelevant, and we will not

treat it further here. However, in other branches of shape analysis, for exam-

ple, deformation-based morphometry, the curvature of shape space can be

massive and linear statistics cannot by applied (see Section 11).
3 If, in the simplest case, a 2D data space had two non-orthogonal axes,

moving a data point along one axis automatically alters the other coordi-

nate, too. Only for orthogonal axes, one coordinate can be changed

without changing the other coordinate: This implies that the two vari-

ables are geometrically independent, that is, they can vary indepen-

dently. Note that geometric independence does not imply statistical

independence. But only if the variables are geometrically independent,

can a correlation of zero be interpreted as statistical independence.
4 Note that here the term “affine transformation” (i.e., linear scaling and

translation) refers to a transformation of the 2k or 3k-dimensional data

space, or a low-dimensional ordination of it, not the 2D or 3D ambient

space (as in note 1).
5 This is reflected, for instance, by the well-known chi-squared distribu-

tion, the distribution of the squared distance from the mean in a one- or

higher-dimensional normal distribution. For a single normal variable,

most of the cases are close to the mean, and the average squared dis-

tance from the mean is small. For two variables, the average multivariate

distance from the mean is larger because we need to add the squared

distance from the mean along both variables, and so on. In fact, the

expected value of a chi-squared distribution, that is, the average squared

distance from the mean, is equal to the number of variables. In other

words, in high-dimensional space, all points are far apart from the mean.

6 These are well-known problems in statistics and machine learning, for

which multiple methods have been suggested, such as ridge regression,

LASSO, or latent-variable models (see, e.g., Johnstone & Titterington,

2009, for an overview). These methods, however, do not overcome the

problems of interpreting distances and angles in high-dimensional spaces.

7 A data matrix has full rank if all its columns are linearly independent, that

is, if none of the variables can be exactly predicted by the other
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variables. This implies that all the principal components have nonzero

variance; only then can a covariance matrix be inverted. In practice, rank

deficiency arises if p≥n and from variable standardization. Due to the

standardization for position, size, and orientation, Procrustes shape

coordinates are not of full rank.

8 To wrap up the somewhat challenging terminology: “Relative warps” are
principal components of shape or form coordinates, that is, shape fea-

tures of successively smaller variance (eigenvectors of the corresponding

covariance matrix). Relative warps can be weighted by bending energy

to up- or down-weight components of large or small scale (the parame-

ter α in Bookstein, 1991 and Rohlf, 1993). “Principal warps” are non-

affine shape features of successively larger spatial scale (the eigenvec-

tors of the bending energy matrix; Bookstein, 1991, 2018; Rohlf et al.,

1996). “Partial warps” are the individual scores of the shapes along the

principal warps. Relative intrinsic warps, a newer concept, are shape fea-

tures with successively smaller variance relative to the corresponding bend-

ing energy as a measure of spatial scale (the eigenvectors of the covariance

matrix relative to the bending energy matrix; Bookstein, 2018).
9 This is because we increase the scale of the small configurations and/or

decrease the scale of the large configurations to bring them all to the

same size. Hence, if they had the same variance before scaling, the small

configurations have increased variance and/or the large configurations

decreased variance after scaling (see Figure 10).
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