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Objective: An approach for assessing the urinary microbiome is 16S rRNA gene
sequencing, where analysis methods are rapidly evolving. This re-analysis of an existing
dataset aimed to determine whether updated bioinformatic and statistical techniques
affect clinical inferences.

Methods: A prior study compared the urinary microbiome in 123 women with mixed
urinary incontinence (MUI) and 84 controls. We obtained unprocessed sequencing data
from multiple variable regions, processed operational taxonomic unit (OTU) tables from
the original analysis, and de-identified clinical data. We re-processed sequencing data
with DADA2 to generate amplicon sequence variant (ASV) tables. Taxa from ASV tables
were compared to the original OTU tables; taxa from different variable regions after
updated processing were also compared. Bayesian graphical compositional regression
(BGCR) was used to test for associations between microbial compositions and clinical
phenotypes (e.g., MUI versus control) while adjusting for clinical covariates. Several
techniques were used to cluster samples into microbial communities. Multivariable
regression was used to test for associations between microbial communities and MUI,
again while adjusting for potentially confounding variables.

Results: Of taxa identified through updated bioinformatic processing, only 40% were
identified originally, though taxa identified through both methods represented >99% of the
sequencing data in terms of relative abundance. Different 16S rRNA gene regions resulted
in different recovered taxa. With BGCR analysis, there was a low (33.7%) probability of an
association between overall microbial compositions and clinical phenotype. However,
when microbial data are clustered into bacterial communities, we confirmed that bacterial
communities are associated with MUI. Contrary to the originally published analysis, we did
not identify different associations by age group, which may be due to the incorporation of
different covariates in statistical models.
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Conclusions: Updated bioinformatic processing techniques recover different taxa
compared to earlier techniques, though most of these differences exist in low abundance
taxa that occupy a small proportion of the overall microbiome. While overall microbial
compositions are not associated with MUI, we confirmed associations between certain
communities of bacteria and MUI. Incorporation of several covariates that are associated
with the urinary microbiome improved inferences when assessing for associations between
bacterial communities and MUI in multivariable models.
Keywords: urinary microbiome, urobiome, bioinformatic analysis, mixed urinary incontinence, bladder dysfunction,
lactobacilli, microbiota
INTRODUCTION:

The urinary microbiome is being investigated in multiple bladder
conditions. There are now several reports demonstrating
differences in urinary microbiota in women with recurrent
urinary tract infection (UTI) (Burnett et al., 2021; Vaughan
et al., 2021), urgency urinary incontinence (Pearce et al., 2014;
Karstens et al., 2016), and mixed urinary incontinence (Komesu
et al., 2018) when compared to matched controls without these
symptoms. In most of these studies, 16S rRNA amplicon
sequencing has been employed as a culture-independent
method of detecting urinary bacteria. When using sequencing
to detect bacteria, DNA is extracted from a biological sample,
polymerase chain reaction (PCR) is used to amplify and
sequence portions of the 16S rRNA gene, and bioinformatic
tools are used to match the recovered sequences with those
existing in a reference database. Results are reported as
taxonomic groupings (i .e . , taxa). These steps allow
investigators to identify the bacteria contained in a sample.
Next, the recovered taxa can be compared between participant
cohorts using statistical analyses to discern if there are differences
between phenotypic groups.

The bioinformatic steps outlined above depend on multiple
computational components, which have been rapidly evolving.
Many prior analyses were performed with reference databases
that have not been recently updated, such as Greengenes1.
Furthermore, the Greengenes database does not have
substantial representation of urinary bacteria and thus may not
be the optimal reference database for identification of microbiota
within a urine sample (Hoffman et al., 2021). Regardless of the
reference database that is selected, bioinformatic workflows rely
on algorithms that group raw sequencing data based on
similarities (Knight et al., 2018). These algorithms are rapidly
evolving, and when updated or refined, could potentially alter
bacterial identification results (Kopylova et al., 2016; Callahan
et al., 2017; Edgar, 2017; Nearing et al., 2018; Caruso et al., 2019).
Previously, researchers would group raw sequences into
operational taxonomic units (OTUs) based on similarity, then
compared these OTUs against reference databases to identify the
bacterial taxa (Westcott and Schloss, 2015). Many now advocate
for grouping raw sequences using amplicon sequence variant
(ASV)-based methods, where sequences are grouped based on
logy | www.frontiersin.org 2
their error-corrected exact sequences (Callahan et al., 2017). In
ASV-based methods, the error score assessing the confidence of
sequencing results at each nucleotide is incorporated such that
algorithms can better detect true biologic sequences versus those
generated by sequencing error. Furthermore, ASV-based
methods have the ability to identify bacterial taxa at finer
resolution (e.g., genus and species levels where previously
identifications were at higher taxonomic levels such as the
family level). Studies that were performed prior to these
updates in bioinformatic workflows may benefit from
re-analysis.

Separate from bioinformatic components of analyses, the
statistical methods used to analyze microbial data are also
evolving. Prior studies have used methods such as Dirichlet
Multinomial Mixture (DMM) modeling (Holmes et al., 2012),
which adopt simplistic distributional assumptions on the
microbiome compositions, and linear discriminant analysis
effect size (LeFSE)2, which is a nonparametric cross-sample test
that utilizes linear discriminant analysis (LDA) to construct test
statistics assisted by classical univariate tests for feature (e.g.,
organism, clade, or OTU) selection. Neither approach adequately
accounts for all of the key characteristics of microbiome data
such as their compositional constraints, complex cross-sample
heterogeneity, and sparse counts of certain taxa. Thus, high
dimensional microbial datasets that are used in these types of
compositional or community-based analyses fail to meet the
underlying assumptions that are needed for the statistical
techniques. Rather, more recently developed tree-based models
(Wang and Zhao, 2017; Mao et al., 2020), community-based
analyses (Layeghifard et al., 2017), or other models that more
truthfully account for the distributional characteristics may be
needed, especially in view of the limited sample sizes in most
studies. These modeling techniques are currently under further
development and may be able to better detect the true signal
within a dataset.

For datasets with robust findings, updated analytic techniques
should not substantially alter major findings. However, urinary
microbiome results could be especially prone to bias or skew
from different analytic techniques, since small differences are
magnified in low biomass environments (Caruso et al., 2019).
We hypothesized that updated analyses would enhance precision
and allow for more clarity with biologic inferences and thus we
2https://twbattaglia.gitbooks.io/introduction-to-qiime/content/lefse.html
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used updated techniques to re-analyze raw sequencing data
generated in a prior study (Komesu et al., 2018). Our primary
objective was to determine whether taxonomic identifications
substantially differ with an updated bioinformatic pipeline.
Secondary objectives were to compare taxonomic identifications
based on the 16S rRNA gene variable region used, to assess
whether tree-based modeling strategies enhance our ability to
differentiate microbial community profiles between women with
mixed urinary incontinence and controls, and re-assess
relationships between bacterial communities and mixed urinary
incontinence with updated information.
METHODS

After Duke University Institutional Review Board approval
(Pro #00102155), we conducted a re-analysis of sequencing
data generated from the Human Microbiome Study in the
Effects of Surgical Treatment Enhanced with Exercise for
Mixed Urinary Incontinence HMS-ESTEEM Study (Komesu
et al., 2018). The HMS-ESTEEM study was a supplemental
translational study embedded within the ESTEEM randomized
trial (Sung et al., 2019) conducted by 8 clinical sites within the
Pelvic Floor Disorders Network (PFDN)3. Briefly, this was a
cross-sectional analysis of microbiome data obtained from
women with mixed urinary incontinence (MUI) and age-
matched controls. The strict inclusion and exclusion criteria
for participants (207 women, 123 with MUI and 84 age-matched
controls) are detailed in prior publications (Sung et al., 2016;
Komesu et al . , 2017). Women completed validated
questionnaires to assess urinary symptom burden and to
confirm appropriate categorization into MUI and control
groups. Additional questionnaires were administered to gather
3https://pfdnetwork.azurewebsites.net/
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data about hormonal therapies, sexual activity, recent infections,
and the presence of any vaginal medications. Urine samples were
obtained via transurethral catheterization and stored in a DNA
protectant (Assay Assure™, Sierra Molecular Corporation,
Incline Village, NV, USA). Samples were transferred with cold
packs via overnight shipping to a central laboratory where they
were immediately processed, and DNA was extracted. DNA was
stored at -80°C prior to sequencing until all samples were
collected. DNA was then thawed, subjected to polymerase
chain reaction (PCR) amplification and 16S rRNA gene
sequencing. For each sample, two separate 16S rRNA gene
regions (i.e., the V1-V3 and V4-V6 hypervariable regions)
were sequenced (Figure 1). Laboratory methods, primers, and
details regarding a multi-step PCR (total 38 cycles) are described
in detail in a methodology paper associated with the original
study (Komesu et al., 2017).

Bioinformatics
We obtained unprocessed sequencing files from the Sequence
Read Archive4 Bioproject #703967 previously generated OTU
tables, and associated clinical data from the PFDN data
coordinating center. First, we repeated sequence processing
using updated techniques. Differences between original and
updated processing are illustrated in Figure 2. In the original
analysis, sequencing data were processed using the Illumina
BaseSpace 16S Metagenomics App version 1.0.1. This software
classifies raw sequencing data using ClassifyReads, a high-
performance implementation of the Ribosomal Database
Project (RDP) classifier (Wang et al., 2007), and compares
classified sequence reads against the Greengenes reference
database to identify bacteria. The output is an OTU table,
which is a designation of relative proportions of different
taxonomic groups that each sample contains. In the updated
FIGURE 1 | Schematic depicting the 16S rRNA gene and approximate locations of variable regions (V1-V9) that can be selected for amplicon-based sequencing.
Samples assessed for this study underwent polymerase chain reaction (PCR) to amplify the V1-V3 region using PCR primers A17F and 515R. When forward and
reverse reads are merged, the entire V1-V3 region spans 513 ± 22 base pairs with approximately 87 base pairs of overlapping sequence. Samples also underwent
PCR to amplify the V4-V6 region using PCR primers 515F and 1114R. When forward and reverse reads are merged, the entire V4-V6 region spans 581 ± 2 base
pairs with approximately 19 base pairs of overlapping sequence. For this study, forward and reverse reads were generated on an Illumina MiSeq platform, which
creates sequencing reads of approximately 300 base pairs in length. The initial and final portions of each sequencing read tend to contain lower quality sequence
(i.e., lower confidence scores with nucleotide assignment) that could be adjusted or truncated in a DADA2 processing pipeline. As such, paired end reads without a
substantial amount of overlapping sequencing may not be able to be merged. Created with BioRender.com.
4https://www.ncbi.nlm.nih.gov/sra
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analysis, raw sequences files were processed using the learnErrors
and derepFastq functions in DADA2 (Callahan et al., 2016)(v
1.14.0) with default parameters, then mapped to the SILVA
reference database (Quast et al., 2013)(v 132) with the RDP
classifier implemented in the assignTaxonomy function in
DADA2. The end result is an ASV table, which is similar to an
OTU table but takes into account sequencing error rather than
sequence similarity when grouping sequences together. Data
were further processed and visualized in R using phyloseq
(McMurdie and Holmes, 2013) (v. 1.26.1) and microshades
(Dahl et al., 2021) (v. 0.0.0.9).

Comparisons of Recovered Taxa in
Original Versus Updated Analysis
Using phyloseq and microshades in R, plots were generated to
illustrate the recovered taxa identified in the original analysis (i.e.,
OTU table) and updated analysis (i.e., ASV table). Notably, these
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
comparisons were performed on unfiltered data. Relative
abundances of recovered taxa per sample were calculated for
original and updated analyses, and directly compared to assess for
differences in recovered taxa based on bioinformatic processing.

Comparisons of Recovered Taxa by
Sequencing Amplicons
When performing 16S rRNA gene sequencing, generally one or
more variable regions (commonly V1-3 or V4-6) of the 16S
rRNA gene are amplified and sequenced; the variable regions
chosen are referred to as amplicons. Different amplicons contain
distinct regions of DNA, vary in length, and may have different
representation in reference databases. As such, one amplicon
may identify a specific bacterium at higher resolutions or in a
more specific manner than another amplicon targeting a
different variable region. Each DNA sample in this study was
subjected to sequencing using two different amplicons, one
targeting the V1-V3 variable region and the other targeting the
V4-V6 variable region. We compared taxa identified from the
same DNA sample using both amplicons to understand which
taxa might be differentially identified in urine based on the
amplicon chosen for sequencing. Data were visualized in R
using phyloseq and microshades. Plots were generated to
illustrate the recovered taxa in samples with paired V1-V3 and
V4-V6 amplicon data. Relative abundances of recovered taxa per
sample were calculated for each amplicon and were compared
between amplicons.
Rare ASVs: Filtering Thresholds
ASV tables generated from the updated bioinformatic analysis
were incorporated into downstream statistical analyses,
including clustering to assess for latent community structure.
Notably, in the original study, DMM clustering was performed
on unfiltered data. However, given the low biomass sample type
and potential for contaminants to influence results, we chose to
filter data prior to clustering. Data were filtered in R based on the
relative abundance of read counts with taxa below a specified
threshold removed from the dataset. We used a hybrid of the
“Rule of Thumb” and “Statistical Threshold” methods that have
been previously reported (Cao et al., 2020). After initial review,
the microbial data contained within this dataset were mainly
dominated by a few ASVs with many other ASVs having low
relative abundances. Thus, we assessed a range of filtering
thresholds from 0.05 - 0.0001 and the subsequent effects on
downstream clustering for the entire dataset (i.e., prior to
assigning MUI versus control labels). Coarse filtering
thresholds of 0.05 – 0.001 resulted in removal of some low
abundance taxa (including Escherichia/Shigella) that have been
demonstrated in other urinary microbiome studies and are
inferred as being true representatives of the urinary
microbiome. Furthermore, when using coarse thresholds, we
observed non-informative clusters that did not appear
biologically distinct. We selected a more conservative filtering
threshold of 0.0005, though in several places we illustrate how a
less restrictive threshold of 0.0001, which more closely
FIGURE 2 | Comparison of original and updated methods. Unprocessed
sequencing data generated from an Illumina MiSeq platform were obtained.
The figure illustrates differences in the bioinformatic software, classifying
algorithm, and reference databases between original and updated
processing. The output from original processing was an OTU table. The
output from updated processing was an ASV table, which is similar to an
OTU table but also adjusts for sequencing errors. Both tabular outputs can
be incorporated into Phyloseq objects in R to visualize data as stacked bar
plots. Original and updated statistical analysis methods including filtering,
clustering, and methods used to test for associations are also listed.
Created with BioRender.com.
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approximates unfi ltered data, might have influenced
downstream results.

Testing for Associations Between
Individual Taxa and Clinical Phenotypes
In the original study by Komesu et al. (Komesu et al., 2018), the
primary aim focused on differences in Lactobacillus
predominance between clinical phenotypes (i.e., MUI and
control). However, there were no methods employed to
determine whether other specific taxa are associated with MUI
vs. control. Bayesian graphical compositional regression (BGCR)
is a technique that allows us to test for associations of individual
taxa (including rare taxa) with outcomes (Mao et al., 2020).
BGCR models the distribution of microbiome data while
incorporating phylogenetic relationships and adjusts for other
variables that could potentially confound associations with
outcomes. BGCR inherently controls for multiple testing and
returns a posterior joint alternative probability (PJAP) with a
larger PJAP (closer to 1) indicating evidence of differences in taxa
between groups. We tested for differences in taxa between MUI
and control participants using this technique. BGCR (Mao et al.,
2020) was performed in R using BGCR v0.1.0. For BGCR
analyses we included the same covariates that we later included
in models assessing community structure and phenotypes. These
were: age, smoking status, ethnicity, body mass index (BMI),
composite menopausal/hormonal status, vaginal pH, history of
recurrent UTI, and number days from the most recent
catheterization. The strategy behind variable selection is
further discussed below and in Supplemental Table 1.

Clustering Into Bacterial Communities
Typically, a microenvironment (e.g., urinary bladder) will
contain several taxa that are considered together as a bacterial
community. While some conditions might have unique bacterial
taxa associated a phenotype, in other conditions, there may be
overarching differences in bacterial community structure that are
associated with phenotypes. Thus, when trying to infer clinical
implications from microbial datasets, samples are often clustered
based on those that contain similar combinations of taxa,
resulting in a substructure of several bacterial communities.
Bacterial communities (rather than individual taxa) can then
be assessed for associations with clinical phenotypes. In the
original analysis, unfiltered taxa were clustered into bacterial
communities using Dirichlet Multinomial Mixture (DMM)
(Holmes et al. , 2012), and these communities were
subsequently tested for associations with MUI vs. control
phenotypes. In DMM methods, investigators assign the
number of clusters (corresponding to bacterial communities)
that are desired. This is achieved by reviewing results with
different numbers of clusters and selecting the final number of
clusters that qualitatively seems to make sense. We repeated
DMM clustering on ASV data from the updated bioinformatic
analysis in R using DirichletMultinomial v 1.36.0. We chose the
same number of clusters that were selected in the original
publication. However, since selecting the number of clusters
can introduce bias, we also evaluated another method of
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
clustering that automatically adapts the number of clusters
based on the complexity of the data. This is a nonparametric
mixture model that utilizes the phylogenetic tree to enrich the
modeling on cross-sample variability called Dirichlet tree
multinomial mixture (DTMM) (Mao and Ma). We performed
this clustering method in R using DTMM v0.1.05. While DMM
clustering is highly influenced by the “dominant”, or most
abundant taxa in a sample, DTMM more effectively
incorporates less abundant taxa. Whether obtained through
DMM or DTMM methods, final clusters are considered
bacterial communities that can be tested for associations
with phenotypes.

Testing for Associations Between
Bacterial Communities and MUI Versus
Control Phenotype
Similar to the original analysis, in this updated analysis we
assessed for associations between bacterial communities and
clinical phenotype (MUI vs. control) using multivariable
generalized linear models with a logit link. While our primary
analysis focused on bacterial communities generated from DMM
methods, we also assessed models that incorporated bacterial
communities generated through DTMM clustering methods to
assess how clustering methods might influence results. Both
original and updated analyses incorporated several covariates
though some of these were chosen differently, as detailed in
Supplemental Table 1. In both original and updated analyses,
bacterial community types were included in models with the
following covariates: age, ethnicity, BMI, and smoking status.
However, in the original analysis age was strongly associated
with bacterial communities. Thus, investigators performed post
hoc sub-analyses in participants < 51 years and those with ages 51
and older, with the age of 51 chosen since it is the median age of
menopause in the United States (Komesu et al., 2018). For the
updated analysis, we elected to include menopausal status into
our model, but also needed to appropriately manage hormone
therapy that occurs with menopause. To do this, we created a
composite variable that incorporated menopausal and hormonal
status as one of three categorical options: 1) pre-menopausal; 2)
post-menopausal with any estrogen hormone use (topical,
vaginal, transdermal, oral); and 3) post-menopausal without
hormone use. In addition, we included vaginal pH in updated
models. Finally, we added two covariates into updated models
because of their relevance to the microbiome - history of
recurrent UTI, and number of days from the most recent
catheterization (calculated based on last prior recorded
catheterized urine sample or urodynamic assessment). These
variables have been proposed as “desired” within recently
published standards for urinary microbiome research
(Brubaker et al., 2021). Both the original and updated analyses
considered clinical site where samples were acquired, though site
was managed differently in original versus updated models (see
Supplemental Table 1 & Supplemental Figure 1). Multivariable
modeling was performed in R using stats v4.0.5.
July 2022 | Volume 12 | Article 789439
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RESULTS

Unprocessed sequencing data from 207 samples (123 MUI and
84 controls) that were sequenced using 300bp paired-end reads
from V1-V3 and V4-V6 variable regions were reprocessed for
this analysis. This resulted in taxonomic data in 173 samples for
the V1-V3 region and 194 samples for the V4-V6 region. When
attempting to merge forward and reverse reads from the V1-V3
region, there was substantial data loss such that reads from
approximately 25% of the samples would have been removed
from the dataset. Similarly, sequencing reads from the V4-V6
region, which provides a longer amplicon, were unable to be
merged because of lack of enough overlapping sequence (see
Figure 1). Given these constraints in data from both amplicons,
we used forward reads only for subsequent analyses. It is unclear
if the reads were merged or unmerged in the original analysis
which used the Illumina BaseSpace 16S Metagenomics App for
sequence processing. Median classified reads (i.e. recovered taxa)
from the ASV table are summarized in Table 1 and compared to
those from the original analysis. For both amplicons in this
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
dataset, we observed a median of 301 base pairs (bp) in
sequencing read length. Given that we used forward reads
only, we assessed the variable regions that would have been
spanned with the stated primers and ~301 bp of sequencing (see
Figure 1). As such, the V1-V3 forward read covers all of V1 and
most of the V2 region. The V4-V6 forward read mainly
comprises the V4 region, as it is not long enough to span V5
and V6 regions. For improved transparency and accuracy, in the
remainder of this manuscript we will refer to the data as those
arising from the V1-V2 regions and V4 regions, respectively.

Comparisons of Recovered Taxa in
Original Versus Updated Analysis
When comparing the originally processed OTU table and
updated ASV table from data generated by the V4 amplicon,
329 genera were only identified with original processing, 426
were only identified with updated processing, and 289 were
overlapping and identified with both (Figure 3A). Though
there were many non-overlapping genera, these were
represented in the small proportion of the low abundance
TABLE 1 | Sequencing data & Recovered taxa.

Median (range) classified reads # Phyla # Classes # Orders # Families # Genera

V1-V2* 24,862
(1,021 – 670,442)

29 63 143 220 545

V4* 29,105
(5,029 – 187,593)

27 73 182 256 721

Original analysis V4-V6 (5)^ 55,163
(2,835 – 205,548)

28 60 82 191 581
July 2022
 | Volume 12 | Artic
*Due to technical issues when merging forward and reverse reads while using a pipeline that generates amplicon sequence variants (ASVs), only forward reads were used in updated
bioinformatic processing.
^The original publication describes the sequencing read depth prior to bioinformatic processing. The number of classified reads are not listed, but were extracted from OTU tables
provided from the PFDN for this updated analysis.
A B

FIGURE 3 | Comparison of taxa recovered through original and updated processing. OTU tables from the original study were obtained and compared to data
generated from ASV tables after repeat processing. (A) depicts the number of individual genera that were identified after the original and updated processing
pipelines. There were 329 and 432 unique genera identified with the original and updated pipelines, respectively. A total of 289 genera were identified with both
processing pipelines. (B) shows the relative sequence abundances of those identified with only original or updated processing, as well as those identified with both
pipelines. As depicted, the unique genera that are only identified in the original or updated pipelines tend to be low abundance sequences, while the large majority of
the highly abundant sequences were identified through both processing pipelines.
le 789439
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sequences from all samples (Figure 3B). The 329 genera that
were uniquely identified with original processing are included in
Supplemental Table 2 and had counts ranging from 2-211. The
426 genera that were uniquely identified with updated processing
are included in Supplemental Table 3 and had counts ranging
from 1-178. Of these, a total of 179 genera had a mean relative
abundance <0.0005 and 66 genera had a mean relative
abundance <0.0001, which were the filtering thresholds used in
this analysis. Non-overlapping genera from original and updated
processing with mean relative abundances >0.2 are displayed
in Table 2.
Comparisons of Recovered Taxa by
Sequencing Amplicons
In the updated analysis, a total of 164/207 (79%) of samples had
paired classified taxa from V1-V2 and V4 regions (generated
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
after sequencing V1-V3 and V4-V6 amplicons, respectively). Of
these, 113 genera were only represented in the V1-V2 dataset,
279 were only represented in the V4 dataset, and 420 were
overlapping and represented in both the V1-V2 and V4 datasets
(Figure 4A). Like patterns detected when comparing OTU and
ASV tables, the most abundant genera were overlapping and
identified in both amplicons, while non-overlapping genera were
identified in low abundance sequences (Figure 4B). Of the taxa
that were represented in both V1-V2 and V4 regions, the median
abundance was 99.3%. Of the taxa that were only represented in
V1-V2, the median abundance was 0.35%; of the taxa that were
only represented in V4, the median abundance was 0.88%. Taxa
recovered per sample from V1-V2 and V4 regions are shown in
Figure 5. Paired abundances from V1-V2 and V4 regions from
the most highly abundant genera are summarized in Figure 6,
with the remaining genera summarized in Supplemental
Figure 2. A higher relative abundance of Lactobacillus was
A B

FIGURE 4 | Comparison of taxa recovered from different sequencing amplicons. For samples with classified taxa from both V1-V2 and V4 regions (n=164), paired
ASV tables were compared. (A) shows that 113 unique genera were identified with the V1-V2 region, 279 unique genera were identified with the V4 region, while
420 genera were shared and identified with both regions. (B) shows the relative sequence abundances of those identified with each region, as well as those that
were identified with both regions. The unique genera that are only identified with one region are extremely low abundance sequences with an occasional outlier,
while the large majority of the highly abundant sequences were identified in both regions (i.e., V1-V2 and V4 regions).
TABLE 2 | Unique taxa with highest mean abundances from original and updated processing.

Genus Count Maximum Relative Abundance Minimum Relative Abundance Mean Relative Abundance

Original Processing Serratia 200 95.8583359 0.00107388 2.67694661
Escherichia 120 77.6694728 0.00072271 2.13110697
Clostridium 210 82.1156486 0.00230984 0.6235074
Enterobacter 108 43.4458227 0.00072271 0.23072134

Updated Processing Escherichia/Shigella* 85 99.8775177 0.01175254 4.91545093
Cutibacterium 178 58.8692498 0.01118443 3.94134097
Actinotignum 53 64.7708383 0.00987882 0.62764323
Clostridium_sensu_stricto^ 44 88.5600496 0.00498915 0.52225445
Proteus 9 71.5686275 0.0122444 0.37338724
Ezakiella 72 13.1103903 0.003139 0.22165684
Methylophilus 67 4.84244259 0.00356837 0.21395235
July 2022
Only taxa with mean relative abundances >0.2 listed here. For full lists of unique taxa from original and updated analyses, refer to Supplemental Tables 2, 3, respectively.
*The SILVA database classifies as Escherichia/Shigella while other databases (e.g., Greengenes in the original analysis) classify as Escherichia. Thus, this classification appears unique
within original and updated datasets but could refer to similar genera.
^Classified as Clostridium_sensu_stricto in updated analysis using the SILVA database. It is unclear if this is a subset of Clostridium, or if this name in SILVA refers to the genus Clostridium
from the Greengenes database.
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identified with the V1-V2 region, while slightly higher relative
abundances of Gardnerella, Tepidomonas, Escherichia/Shigella,
and Acidovorax were identified with the V4 region, with subtle
differences in other genera. Without further testing and
validation, it is unknown which of these two regions more
accurately reflect true bacterial presence in the urinary bladder.
However, multiple factors led us to infer that the V4 data might
be more reliable in this dataset. First, in earlier stages of
processing, it was noted that the V1-V2 region contained
many sequences mapping to non-bacterial taxa (e.g., archaea,
eukaryote, or not assigned) when compared to the SILVA
reference database while the V4 region mapped mainly to
bacterial taxa, as expected. Secondly, the V1-V2 region
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
recovered Gardnerella in a sparser manner than the V4 region
did. Gardnerella are biologically expected when reviewing prior
urinary and vaginal microbiome data. Based on these
considerations, we considered the V4 region data to be more
reliable, and these data were selected for statistical analyses. This
mirrors the original analysis, in which the authors elected to
focus only on V4-V6 region sequencing results in their
publication (Komesu et al., 2018).

Testing for Associations Between
Individual Taxa and Clinical Phenotypes
In BGCR analysis, we did not identify differences in microbial
composition between MUI and control participants after
A

B

FIGURE 5 | Stacked bar plots illustrating relative abundances of taxa in 167 samples with paired V1-V2 and V4 data. (A) depicts the taxa recovered with the V4
region while (B) depicts the taxa recovered with the V1-V2 region. Each vertical bar depicts an individual sample with plots aligned to compare recovery of data from
the same sample in each amplicon. Phyla are assigned distinct colors (e.g., Firmicutes = purple, Bacteroidetes = blue, Actinobacteria = orange, Proteobacteria =
green) with individual genera shaded differently. The most intense color shade within each phylum refers to the most abundant genus identified. Though many genera
are recovered in similar abundances between both amplicons, Gardnerella is one that is noticeably different, with substantially more identified in sequencing data
generated from the V4 region.
FIGURE 6 | Highest abundance genera among paired samples. Each panel depicts the relative abundance of one genus. On the left is the relative abundance from the
V1-V2 amplicon, connected by a line to the right, which shows the relative abundance in the same sample when identified from the V4 amplicon. In each panel the black
line summarizes the median abundances across all paired samples. When comparing results from the same sample sequenced with two different amplicons, Lactobacillus
was identified in slightly higher abundance with the V1-V2 amplicon, while other genera including Gardnerella, Tepidomonas, Escherichia/Shigella, and Acidovorax were
identified in slightly higher abundance with the V4 amplicon.
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adjusting for clinical covariates (PJAP = 0.337, indicating only a
33.7% probability of differences in the individual taxa).

Clustering Into Bacterial Communities
As was done in the original analysis, we created a sub-structure
within the microbial data by clustering samples into bacterial
communities. We first repeated the original strategy using DMM
modeling with the reprocessed data. In DMM modeling, the
number of final clusters are pre-specified. Since the original
analysis selected 6 clusters, we chose the same number for the
updated analyses. Figure 7 shows the 6 DMM clusters (i.e.,
bacterial communities) that we identified with filtered
reprocessed data grouped by MUI and control phenotypes. We
also clustered filtered reprocessed data using DTMM modeling
where the number of clusters are mathematically chosen based
on the data. Using the DTMM approach, there were only 3
clusters when filtering at 0.0005, though a 4th cluster appeared
when using a less stringent filtering threshold of 0.0001
(Supplemental Figure 3). This illustrates how multiple
analysis steps, including the filtering strategy and clustering
method could influence overall results, and thus should be
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 9
carefully selected to best illustrate data without over-
emphasizing “noise” within the dataset.

Testing for Associations Between
Bacterial Communities and MUI Versus
Control Phenotype
Multivariable models were used to determine whether bacterial
communities were associated with MUI versus control status,
while controlling for other relevant covariates. We first created
models that incorporated the clinical site. While some of the sites
were significantly associated with outcomes, associations with
clinical site were not stable among different models (see
Supplemental Information). To avoid overfitting models,
clinical site was removed in final models, which incorporated
bacterial communities and the following covariates: age, smoking
status, ethnicity, BMI, composite menopausal/hormonal status,
vaginal pH, history of recurrent UTI, and number days from the
most recent catheterization.

In our updated analysis using re-processed and filtered data as
well as bacterial communities generated from DMM clustering,
Cluster 5 was associated with MUI (p=0.03) with a trend towards
A

B

FIGURE 7 | Stacked bar plots illustrating results from updated analysis when combining filtered ASVs from individual samples into bacterial communities using DMM
clustering. For DMM clustering a total of 6 clusters were chosen a priori. Clusters are numbered with each cluster further organized by those samples originating
from women with MUI versus control. (A) shows DMM clustering results with cluster membership that is significantly different between MUI and controls identified
with an asterisk(*). (B) shows more detail about the relative abundances of various genera that contribute to each cluster.
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cluster 3 being associated with controls (p=0.08). Cluster 5 refers
to one with moderate Lactobacilli (mean relative abundance of
~50%), followed by almost equal Gardernella and Prevotella
(mean relative abundances of 8.5-9%) with several other low
abundance genera (see Figure 7B). Cluster 3 has much higher
abundance of Lactobacilli (mean relative abundance almost 90%)
with very small components of others (see Figure 7B). The
covariates BMI and Latina ethnicity remained significantly
associated with MUI, even when controlling for other
variables, including bacterial community types.

The updated analyses that best approximates what was
performed in the original analyses using unfiltered data is one
where the least restrictive filtering threshold of 0.0001 is applied.
Using this filtering threshold, DMMclustering was repeated giving
6 new bacterial communities, as depicted in Supplemental
Figure 4. Table 3 summarizes the results when the same model
and clustering technique is used on data that are filtered
differently. With a less restrictive threshold, Cluster 2 (p < 0.05)
and Cluster 6 (p = 0.01), the latter with a composition similar to
Cluster 5 above, were significantly associated with MUI while
controlling for other covariates, including those that were also
significantly associated with the MUI outcome, such as BMI (p <
0.01) and Latina ethnicity (p=0.02). In review of the actual taxa
within clusters, it appears that the reference group in this model
(Cluster 1) was characterized by very high abundances of
Lactobacilli (see Supplemental Figure 5) and was the only
group with a higher number of controls compared to MUI,
despite the fact that control samples were under-represented in
the overall dataset (~40% of overall samples).

A general inference from models incorporating bacterial
communities is that communities with high proportions of
Lactobacilli are associated with control status and communities
with lower Lactobacilli and higher relative proportions of a
combination of Gardnerella and Prevotella are associated with
MUI status. Contrary to the original analysis, we did not perform
subanalyses of participants age < 51 years and those 51 or older,
but rather included the composite menopausal/hormonal status
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 10
variable when modeling data. Our model also included history of
recurrent UTIs, vaginal pH, and number of days since prior
catheterization, since these are covariates that could contribute to
further variability in urinary microbiome datasets.

We also performed multiple sensitivity analyses where we
used the same modeling approach but with filtered data clustered
with DTMM methods. DTMM generated fewer clusters (3 total)
and we did not find signification associations between bacterial
clusters generated with DTMM and the clinical phenotypes of
MUI and control status. In these models, BMI and Latina
ethnicity still remained significantly associated with MUI
(p=0.007, p=0.004, respectively). Results are displayed in
Supplemental Figure 3.
DISCUSSION

We re-analyzed previously generated sequencing data using
updated bioinformatic techniques and refined the statistical
analyses. This updated analysis offered several interesting
nuances that enhance clinical inferences regarding the
relationship between the urinary microbiome and MUI. In the
original publication, researchers did not find differences in
bacterial community types among women with MUI and
controls, though a post hoc analysis found some associations
between bacterial communities and MUI exclusively in women <
51 years of age. With our updated approach to the data, we first
examined whether individual taxa might be drivers of differences
between MUI and control phenotypes. Using BGCR analysis, we
did not find this to be the case, as there was a low probability of
differences in microbial composition between MUI and controls.
However, similar to the original analysis, we assessed for how
substructures within the microbial data (e.g., bacterial
communities) might be associated with MUI versus control
phenotypes. We were indeed able to confirm that associations
between bacterial communities and MUI exist. However, after
incorporating a variable that accounts for menopausal/hormone
TABLE 3 | Updated analysis multivariable model testing for associations between MUI versus control.

Variable Less restrictive filtering threshold (0.0001)p value Conservative filtering threshold (0.0005)p value

Microbial community by DMM clustering
Cluster 1 (reference)
Cluster 2 0.045* 0.605
Cluster 3 0.674 0.079
Cluster 4 0.091 0.415
Cluster 5 0.400 0.030*
Cluster 6 0.010* 0.883
Age (years) 0.107 0.177
Latina Ethnicity 0.017* 0.023*
Body Mass Index (kg/m2) 0.002* 0.015*
Smoking Status 0.272 0.169
Vaginal pH 0.304 0.278
Menopause/Hormone Status^ 0.403 0.626
Recurrent UTI 0.995 0.996
# days since prior catheterization 0.992 0.992
DMM (Dirichlet multinomial mixture); UTI (urinary tract infection)
*Significant association with MUI (mixed urinary incontinence)
^Composite variable of menopausal status and presence of hormone
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status in our model, we no longer found that associations differ
by age. Even when sequencing data were filtered differently,
associations between bacterial communities and MUI status
remained robust with slightly different actual clusters (i.e.,
community members). This leads us to conclude that there is
not likely to be one bacterial genus alone, but rather a difference
in communities of bacteria, and perhaps how they interact, that
is associated with mixed urinary incontinence phenotypes.

With this updated analysis we found that an updated
bioinformatic processing pipeline recovers many different taxa
compared to prior bioinformatic techniques. However, most of
these differences exist in low abundance taxa that occupy a small
proportion of the overall microbiome. We also confirmed that in
urine, similar to other sample types, the region of the 16S rRNA
gene that is chosen for sequencing can impact downstream
results. For the most common (highest abundance) taxa,
information will be recovered regardless of the bioinformatic
strategy. However, less abundant taxa may have different biases
based on the bioinformatics and sequencing amplicon chosen.
For less abundant taxa, results may require additional validation
and should be considered carefully when attempting to
make inferences.

Strengths of our approach include the application of
techniques that improve precision when analyzing low biomass
samples. The bioinformatic processing pipeline applied in this
study (i.e., DADA2) corrects for sequencing errors and chimeric
sequences to improve accuracy. For updated processing we also
used a different reference database (i.e., SILVA), since
Greengenes, a database used in many prior urinary
microbiome studies, has since been shown to have poor
representation of bladder bacteria (Hoffman et al., 2021) and
has not been updated since 2013. However, our bioinformatic
approach is limited as specific expertise (e.g., knowledge of how
to use R and other microbiome processing software like
QIIME26) may be required compared to prior “plug and play”
approaches like the Illumina BaseSpace software. With
enhancements in precision, we also encountered more data
loss, as some samples did not have high enough quality
sequencing information to provide taxonomic data. While we
acknowledge that this may decrease the sample size, it may
inherently be more scientifically rigorous to remove lower quality
sequencing information. Despite technical differences in how
sequencing data are handled, our updated processing identified a
similar number of phyla and classes compared to the originally
processed data (Table 1), with significantly more orders,
families, and genera compared what was originally reported.

Another strength to our approach is that we tested multiple
aspects of statistical analyses, including various filtering and
clustering approaches, prior to arriving at our conclusions.
Results from these sensitivity analyses offer insights to the
urobiome community, as the filtering thresholds and clustering
methodology chosen for a study may affect interpretation of
overall results. Generally, researchers need to decide if they want
to filter at a lower threshold, thereby keeping more sequencing
data. With this approach, there is a risk of over-interpreting data
6https://qiime2.org/
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in low biomass samples based on possible contaminants or low
abundance sequence information. The other alternative is to
filter at a higher threshold, which removes more data, but could
result in missing an important association because clusters are
less refined. This concept is illustrated in our study when
evaluating multivariable models using DMM clustering to
create microbial communities. In models with a less restrictive
filtering threshold, there were associations that appeared
statistically meaningful. When using the same clustering
methodology with a more conservative filtering threshold,
there are still statistically significant associations, but the
clusters and downstream inferences are slightly different.
Ultimately, it is only with repeated experiments and ongoing
validation that we will expect to understand which approach best
approximates the truth. However, it is important for
investigators to understand how these choices that are made
during statistical analyses may affect downstream results.

Existing groups are applying published techniques
extrapolated from linear mathematical modeling to analyze
microbial datasets. However, many of these techniques contain
underlying assumptions of normally distributed data. High
dimensional microbial datasets that are used in community-
based analyses fail to meet these underlying assumptions, and
thus additional techniques are being evaluated and developed.
We had hypothesized that tree-based clustering approaches (e.g.,
DTMM) may be able to better resolve true signal from noise
within a dataset. Compared to DMM clustering, DTMM puts
more emphasis on lower abundance taxa when clustering.
Incorporating a nonparametric mixture as in the available
implementation of DTMM also avoids the often-difficult task
of pre-specifying the number of clusters. While it was not the
case that DTMM clustering was able to better resolve signal from
noise in this analysis, it is still possible that other models more
akin to machine learning may be useful in the future. For urinary
microbiome data it is also not clear if the ratio of high to low
abundance taxa (e.g., ratio of Lactobacilli compared to other
Gram negative & anaerobic bacteria) is more biologically
important or if individual low abundance taxa may be
important. If the ratio of high abundance bacteria compared to
all other bacteria is actually the most biologically important
factor, then a clustering method such as DMM that emphasize
the highest abundance taxa may actually be preferred.

Compared with the original analysis, we came to slightly
different conclusions when evaluating results from our final
multivariable models. While we agreed that there were
associations between microbial communities and MUI, the
context of these associations was different in our updated
analysis. Specifically, in the original analysis, 17% of women
reported their menopausal status as unknown prompting
investigators to dichotomize age based on the approximate age
of menopause (51 years) and analyze data in those less than 51
and those older than 51 years. With this approach there were
different findings in the two sub-populations (Komesu et al.,
2018), which is somewhat difficult to interpret. Furthermore,
hormone status (e.g., whether oral or topical/vaginal hormones
were used) was not incorporated into multivariable analyses
despite differences noted in MUI and control populations.
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Multiple investigators have demonstrated that menopause and
hormonal status affect microbial compositions in the vagina
(Brotman et al., 2014; Gliniewicz et al., 2019), and we are now
learning that these variables are associated with differences in
microbial compositions of the bladder as well (Thomas-White
et al., 2020). As such, the original clinical data were reviewed to
assess how these data were obtained. In this process, we
discovered that menopausal information was obtained twice,
with one group of questions having more reliable response
options. Furthermore, two clinicians (NYS and LB) reviewed
all age, menopause, and hormone usage information. Using a
combination of these responses, we were able to reliably create a
composite variable that incorporated menopausal & hormonal
information in an accurate manner. In addition to this composite
variable, additional variables that could also confound microbial
information such as vaginal pH, history of recurrent UTI, and
number of days from prior catheterization were also
incorporated into multivariable models, while they were not
previously. With this modeling strategy, we no longer see age as a
separate independent factor affecting microbial community
types. Regardless of the modeling strategy used, multiple
covariates remained associated with the bladder outcome of
MUI, highlighting the importance of incorporating covariates
into analyses of microbial data.

A limitation in our updated analysis is that we had to rely on
previously generated sequencing information and were not able
to influence laboratory aspects of the study. For example, the
choice of using the V4-V6 amplicon with very short overlapping
sequences resulted in the inability to merge forward and reverse
sequencing reads during bioinformatic processing to create final
reads with longer length. While the V1-V3 region had more
overlapping sequence between forward and reverse reads, there
were still similar issues in attempting to merge reads that would
have resulted in substantial data loss. It is not clear how these
issues were managed in the original analysis when using the
Illumina BaseSpace Metagenomics App, which is a “black box”
bioinformatics approach. Ultimately, for the updated analysis we
chose to use forward reads only. When comparing the taxa
recovered, both based on numbers of taxa classified (Table 1), as
well as comparisons of the classifications between original and
updated analyses (Figure 3), we have inferred that our analysis of
forward read only data very closely approximates the
information provided in the original analysis, which was stated
to use merged reads.

Another limitation is that any sequencing method that uses
shorter lengths of DNA (e.g., what occurs with one or two
variable regions of the 16S rRNA gene) could result in some
difficulty classifying sequences at higher resolutions such as
genus or species. Thus, newer techniques that incorporate
highly accurate long-read sequencing methods (Callahan et al.,
2019; Callahan et al., 2021) may be helpful to characterize the
microbiome in a new niche. We were limited to using previously
generated sequencing data and thus could not take such steps to
enhance accuracy and resolution of the dataset, which might
prove to be useful. Also related to the goal of enhancing accuracy,
many studies will now incorporate a mock microbial community
with serial dilutions to allow for the application of additional
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 12
methods of removing contaminant ASVs during bioinformatic
processing (Davis et al., 2018; Karstens et al., 2019). Since the
sequencing data used in this study were developed prior to large
scale incorporation of this approach, a mock microbial
community was not used. Given that urine is a low biomass
sample type that may be influenced by contaminants, future
studies would likely benefit from the incorporation of current
methods to remove contaminant ASVs during bioinformatic
processing. This strategy may also facilitate the ability to use
less stringent filtering thresholds since many contaminants will
have already been removed. However, Cao et al. recently
provided data that bioinformatic contaminant removal and
filtering are complementary methods and should be employed
together in highly rigorous studies (Cao et al., 2020).

With the continued evolution of computational techniques,
we expect further improvements and guidelines for analyzing
microbial datasets. With this updated analysis, we offer
additional insights for investigators embarking on urinary
microbiome analyses, and also enhanced clinical inferences
regarding the relationship between the urinary microbiome
and MUI. Specific considerations should be given to the
amplicon (i.e., region of 16S rRNA gene) chosen, the
bioinformatic processing pipeline, and the reference database
that is used to ensure that updated resources containing adequate
representation of urinary microbiota are used. Though default
filtering thresholds and clustering methodologies exist, these
parameters may need to be optimized based on the questions
that are being posed in a microbial dataset. Finally, regardless of
how analyses are conducted, multivariable analyses that
incorporate potentially confounding clinical variables remain
extremely important in analyses of microbial datasets.
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