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Myocardial ischemic injury is among the top 10 leading causes of death from

cardiovascular diseases worldwide. Myocardial ischemia is caused mainly by coronary

artery occlusion or obstruction. It usually occurs when the heart is insufficiently perfused,

oxygen supply to the myocardium is reduced, and energy metabolism in the myocardium

is abnormal. Pathologically, myocardial ischemic injury generates a large number of

inflammatory cells, thus inducing a state of oxidative stress. This sharp reduction

in the number of normal cells as a result of apoptosis leads to organ and tissue

damage, which can be life-threatening. Therefore, effective methods for the treatment

of myocardial ischemic injury and clarification of the underlying mechanisms are urgently

required. Gaseous signaling molecules, such as NO, H2S, H2, and combined gas

donors, have gradually become a focus of research. Gaseous signaling molecules

have shown anti-apoptotic, anti-oxidative and anti-inflammatory effects as potential

therapeutic agents for myocardial ischemic injury in a large number of studies. In this

review, we summarize and discuss the mechanism underlying the protective effect of

gaseous signaling molecules on myocardial ischemic injury.

Keywords: myocardial ischemia, NO, H2S, H2, gas co-dornor, protecting mechanisms

INTRODUCTION

Ischemic injury is caused mainly by anerobic cell death and reperfusion (1). Endothelial
dysfunction, microvascular collapse, and blood flow defects are preconditions for phenotypic
expression of ischemic injury (2), which is mediated by a variety of cytokines, chemokines, and
adhesion molecules, as well as extracellular matrix compounds (3). Ischemic injury causes damage
to a variety of organs and tissues, such as the brain (4, 5), liver (6), intestines (7), limbs (8), and heart
(9). Myocardial ischemic injury is one of the most common and serious diseases that endangers
human health. It is usually caused by coronary artery stenosis or occlusion caused by coronary
atherosclerosis. Acute and temporary myocardial ischemia and hypoxia can cause angina pectoris.
Persistent and severe myocardial ischemic injury can cause myocardial necrosis or myocardial
infarction (MI) and even heart failure (HF).

In this review, we introduce gaseous signaling molecules and summarize the mechanism of their
protective effects against myocardial ischemic injury. The gaseous signaling molecules include NO,
H2S, H2, the gas joint donor, such as ZYZ-803, and other gas donor molecules. The aim of this
review is to provide a more comprehensive understanding of gaseous signaling molecules and
to promote further research to clarify their potential clinical application for the prevention and
treatment of myocardial ischemic injury.
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TREATMENT OF MYOCARDIAL ISCHEMIC
INJURY

The current, treatments for myocardial ischemic injury mainly
include surgical, and drug approaches. Surgical treatments
include percutaneous coronary intervention (PCI) (10) and
coronary artery bypass graft (CABG) (11). PCI is a procedure
used to improve myocardial perfusion by cardiac catheterization
to open a narrow or even occluded coronary artery lumen
(12). CABG refers to the establishment of a vascular pathway
between the root of the ascending aorta and the distal
obstruction of the diseased coronary artery using transplanted
blood vessels, to achieve blood flow recanalization by bypassing
the lesion site in the coronary artery (13). Drug therapies
include conventional Western drugs and conventional Chinese
medicines. The main Western drugs such as the anti-platelet
drug aspirin, and nitroglycerin, used to treat myocardial ischemic
injury are listed in Table 1. Traditional Chinese medicines,
include heart-protectingmusk pill, which has a role in preventing
ventricular remodeling in patients with acute MI (22) and
in protecting against arteries atherosclerosis (23), and qishen
yiqi drop pill (QSDP), which has a role in improving cardiac
function after myocardial ischemic (24). At present, however,
traditional Chinese drugs are generally not recommended as
the main treatment for myocardial ischemic, although they can
be used as an adjunct to Western medicine therapy. Although
conventional drugs have been used, the plethora of side effects
and contraindications, as well as the limited availability of raw
materials, have led researchers to focus on new drug candidates.

SOURCE OF GASEOUS SIGNALING
MOLECULES

Current studies have shown that gas signaling molecules mediate
certain inhibitory effects on oxidative stress (25), apoptosis (26),
inflammation (27), and autophagy (28), and have protective

Abbreviations: AMI, Acute myocardial ischemia; ANG II, Angiotensin II;

BH4, tetrahydrobiopterin; CABG, Coronary artery bypass graft; CAPE-

oNO2, o-nitrophenyl ethyl caffeate; CBS, Cystathionine β-synthase; COX1,

Cyclooxygenase-1; CSE, Cystathionine γ-lyase; e-NOS, Endothelial NO

synthase; ER, Endoplasmic reticulum; FAD, Flavin adenine dinucleotide;

FMN, Flavin mononucleotide; FoxO, Forkhead box protein O; GSH, Glutathione;

GSRg3, Ginsenoside Rg3; GYY4137, morpholine-4-methoxyphenylmorpholine-

morpholine-phosphodisulfate; HF, Heart failure; H2, Hydrogen; H2S, Hydrogen

sulfide; HSP90, Heat shock protein 90; IL-1, Interleukin 1; IL-6, Interleukin 6;

Keap1, Kelch-like ECH-associated protein 1; KMUP-1, 7-[2-[4-(2-chlorophenyl)

piperazinyl] ethyl]−1; L-NAME, N(G)-nitro-L-arginine methyl ester; i-

NOS, Inducible NO synthase; I/R, Ischemia-reperfusion; MI, Myocardial

infarction; mPGEs1, Microsomal PGE synthase-1; 3-MST, 3-mercaptopyruvate

sulfurtransferase; NF-κB, Nuclear transcription factor-kappa B; n-NOS, Neuronal

NO synthase; NO, Nitric Oxide; Nrf2, Nuclear factor erythroid 2 p45-related factor

2; OS, Oxidative stress; PAG, DL-propargylglycine; PCI, Percutaneous coronary

intervention; PG, Prostaglandin; PI3K, Phosphoinositide 3-kinase; QSQP, Qishen

yiqi drop pill; RNS, Reactive nitrogen species; ROS, Reactive oxygen species; SAC,

S-ally-l-cysteine; SGD, Serum and glucose; SOD, Superoxide dismutase; SPRC,

S-propargyl-cystine; SR, Sarcoplasmic reticulum; TNF-α, Tumor necrosis factor-α;

Trx, Thioredoxin; TUNEL, Terminal deoxynucleotidyl transferase (TdT) dUTP

nick-end labeling; TXNIP, Trx interaction protein; XD, Xanthine dehydrogenase;

XO, Xanthine oxidase.

effects on many organs, including the heart (29). Compared
with conventional drugs, gas signaling molecules have smaller
molecular weights that facilitate entry of the biofilm. Their effects
are independent of the corresponding membrane receptors and
cytological effects, and may or may not depend on mediation
by a second messenger. Gas signaling molecules are also derived
from a wide variety of sources in nature, such as garlic and
onion, and they play an important role in humans. Pan et al.
(30) reported that the sulfide S-ally-L-cysteine (SAC) contained
in garlic can be used as an H2S donor drug for cardiac
protection. Specifically, garlic has been shown to mediate cardiac
protective effects such as reduction of the blood lipids and blood
pressure, and is a source of antioxidants (which scavenge free
radicals and inhibit lipid peroxidation) (31). Furthermore, it
has been reported that the antioxidant effect of garlic may be
associated with “nucleophilic tone,” which is defined as “the
capacity to remove electrophiles through enzyme catalyzed, the
dynamic flow of reducing equivalents from NADPH, glutathione
(GSH) and reduced thioredoxin (32).” Zhao et al. (33) showed
that allicin in garlic alleviated myocardial ischemic injury by
promoting autophagy. In 1990, Makheja et al. (34) identified
adenosine, allicin and paraffin-based polysulfide as three main
anti-platelet components of onion. Among them, adenosine acts
as a trigger and regulator of cardioprotection (35). Moreover,
Park et al. (36) found that a methanol extract of onion alleviated
myocardial ischemic injury by reducing the ROS content of
hypoxic cardiomyocytes. Thus, gaseous signaling molecules like
NO, H2S, and H2 have strong potential in the protection of the
heart against myocardial ischemic injury. NO, H2S, and H2 are
gases at room temperature and exhibit unique properties and
functions in nature and living organisms including organs such
as the heart.

MECHANISM OF MYOCARDIAL ISCHEMIC
INJURY

Free-Radical Action
The Mechanism Underlying the Increase in Oxygen

Free-Radicals in Myocardial Ischemia
Xanthine oxidase (XO) and xanthine dehydrogenase (XD) are
present in cardiomyocytes. XO is present in only 10% of normal
cardiomyocytes, while XD is present in 90%. During coronary
atherosclerosis or coronary artery embolization, mitochondrial
permeability changes in the human cells lead to matrix swelling,
rupture of the outer membrane, release of apoptotic signaling
molecules, and irreversible damage to mitochondria (37). Under
conditions of myocardial ischemia, on the one hand, dysfunction
of the Ca2+ pump and changes in the oxidation state of thiols due
to the decrease in ATP, XD is transformed into large amounts
of XO in a reaction catalyzed by a Ca2+-dependent proteolytic
enzyme. On the other hand, due to the decrease in oxygen partial
pressure, ATP is degraded to ADP, AMP, and hypoxanthine,
which accumulates in ischemic tissues. During treatment of
myocardial ischemia, the process is often accompanied by
reperfusion. During reperfusion, a large amount of molecular
oxygen enters into the ischemic tissues along with the blood.
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TABLE 1 | The main traditional Western medicine used for myocardial ischemic injury.

Compound Mechanisms Advantages Disadvantages References

Aspirin Inhibition of platelet function Extensive use: treatment of fever, pain

and rheumatoid arthritis and etc.

More adverse reactions (14)

Clopidogrelg Inhibition of platelet function Extensive use: treatment of fever, pain

and rheumatoid arthritis and etc.

Causes neutropenia or

thrombocytopenia

(15)

Heparin Anticoagulation Broad indications The anticoagulant effect varies greatly

among individuals; Prone to causing

embolism re-occlusion, osteoporosis

and thrombocytopenia

(16)

Nitroglycerin Reduction of cardiac load Treatment or prevention of angina

pectoris; Used as a asodilator for the

treatment of congestive heart failure

Many contraindications (17)

Metoprolo Reduction in myocardial

oxygen consumption,

reduce cardiac load

Broad indications Many contraindications (18)

Captopril Prevention of myocardial

remodeling

Anti-hypertension Partially blocks the generation of

angiotensin II; A dry cough

(19)

Losartan Prevention of myocardial

remodeling

Antihypertensive; Well-tolerated Many contraindications (20)

Simvastatin Increased lipoprotein lipase;

Reduced cholesterol

synthesis

Lower cholesterol, low density

lipoprotein cholesterol, and very low

density lipoprotein cholesterol

Muscle toxicity; Elevated liver

enzymes; Causes adverse, the

symptoms in the nervous and

gastrointestinal systems

(21)

XO once again catalyzes the conversion of hypoxanthine to
xanthine and further catalyzes the conversion of xanthine to
uric acid, thus producing large amounts of O.−

2 and H2O
.
2

Furthermore, the reaction of .OH formed with the participation
of metal ions is more intense with the diffusion control of most
molecules (38) (Figure 1). In addition, hypoxia leads to decreased
oxygen partial pressure and ATP production in cells, increased
entry of calcium ions into the mitochondria, dysfunction of
mitochondrial oxidative phosphorylation, electron transport
chain damage, increased entry of oxygen free-radicals into cells,
and reducedMn-SOD, leading to reduced free-radical scavenging
capacity, and therefore, increasing the local level of free-radicals.
In addition, free radicals are produced by increased NADPH
oxidase and peroxidase activity and catechol-amine autoxidation.

The Mechanism by Which Free-Radicals Cause

Myocardial Ischemic Injury
Dysfunction in free-radical removal systems, such as SOD
enzymes, catalase, and ascorbic acid, results in excessive
free-radical production that causes damage to biological
macromolecules, such as nucleic acids, proteins and lipids,
affecting their normal physiological functions. Cellular lipids,
proteins and DNA also react directly with free-radicals, causing
damage to the cell structure and dysfunction, accompanied by
activation of the NF-κB signaling pathway (39).

Intracellular Calcium Ion Overload
Under normal conditions, the extracellular calcium ion
concentration is 10,000 times higher than that inside the
cell; a schematic diagram of the process of the transport of
calcium ion transport is shown in Figure 2. Under conditions of
myocardial ischemia, changes in intracellular and extracellular

Ca2+ regulation lead to Ca2+ overload in the cytoplasm and
mitochondrial matrix. The myocardial structure is damaged,
function is reduced or electrophysiological disorders are caused
by excessive contraction of energy-dependent muscle fibers. In
addition, cell proteolysis is mediated by calpain, mitochondrial
permeability transition pores are opened, inducing cell apoptosis
and closure of gap junction channels, rendering cell activity
out of synchronization with other pathways. Abnormal Na+-
Ca2+ exchange (40), protein kinase C activation (41), and
increased intracellular calcium ion levels during biofilm
injury can lead to calcium ion overload in cardiac myocytes.
Furthermore, the aggregation of intracellular calcium ions
results in phospholipase activation and degradation, further
increasing the permeability of cell membrane to calcium
ions, and promoting membrane damage. In addition, during
myocardial ischemia-reperfusion, intracellular calcium ion
overload may cause excessive contraction of myocardial fibers,
leading to arrhythmias and exacerbating the symptoms of
myocardial injury.

Endothelial Cells Appear to Have
Intercellular Gaps Through Which White
Blood Cells Migrate
Inflammation, which is the response of the body to pathogenic
factors, comprises injury and anti-injury processes. Inflammatory
mediators, such as histamine and bradykinin, adhesion
of leukocytes, release of proteolytic enzymes and active
oxygen metabolites, can cause endothelial cell mediating
contraction/dilation of underlying smooth muscle cells, and
movement between cells, resulting in increased osmotic
pressures of cell crystals and colloids. At this point, the

Frontiers in Cardiovascular Medicine | www.frontiersin.org 3 October 2020 | Volume 7 | Article 588206

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Wang et al. Gas Molecules and Myocardial Ischemia

FIGURE 1 | The role of xanthine oxidase in the presence of increased free-radicals. ATP, Adenosine triphosphate; AMP, Adenosine monophosphate; XO, Xanthine

oxidase; XD, xanthine dehydrogenase; O2, oxygen; O
.−
2 , Superoxide Anion.

FIGURE 2 | Diagram of cell calcium transport pattern 1. Voltage dependent calcium channel; 2. Cell membrane binding calcium; 3. Na+/ Ca2+ exchange; 4. Calcium

channel of cell membrane 5. Sarcoplasmic reticulum; 6. Mitochondria; 7. Cytoplasmic binding calcium; A TP, Adenosine triphosphate; ADP, Adenosine diphosphate.
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white blood cells migrate through the intercellular gaps. In
experimental myocardial ischemic injury, pro-inflammatory
cytokines, including TNF-α, IL-6, IL-1, participate in post-
ischemic responses (42), although some inflammatory cytokines,
such as COX1, mPGEs1, also protect against post-ischemic
response (43).

MECHANISM UNDERLYING THE ROLE OF
NO IN MYOCARDIAL ISCHEMIC INJURY

NO and the Myocardium
NO is a gas at room temperature, although it acts as a
first messenger due to its fat-solubility. NO is also known as
endothelium-derived vasodilator factor (EDRF). As a gaseous
signaling molecule that is known for its vasodilatation effects
(44). NO is a free-radical, which is relatively stable compared
to most species, and exhibits a select spectrum of rapid
and life-limiting reactions in biological systems. In vivo, NO
synthesis requires L-arginine, oxygen, and NOS, in addition to
the cofactors tetrahydrofolate (BH4), NADPH, flavin adenine
dinucleotide (FAD), flavin mononucleotide (FMN), heme and
calmodulin (45). Thus, NO synthesis from L-arginine and
dioxygen is a multistep process catalyzed by the mammalian
NOS isoenzymes in a unique active site constructed around
heme and BH4 cofactors. NO is otherwise unable to dissociate
from ferrous heme. The shift in the potential of the heme
on NO binding from −300 to 0mV in the presence of
substrate indicates that the dissociation constant for NO
binding to ferrous nNOSoxy is 0.17 nM. A similar interaction
between substrate and heme-bound dioxygen increases the
kinetic stability of the oxyferrous complex, slowing the rate
of decay via electron transfer from BH4 or via superoxide
release (46). There are three subtypes of NOS: endothelial
(e-NOS), neuronal (n-NOS), and inducible NOS (i-NOS)
(47). e-NOS is highly expressed in coronary vessels and
endocardial endothelial cells (48). e-NOS/NO signaling can
reduce the area of myocardial ischemia to alleviate adverse
cardiac remodeling (49) and inhibit ROS and angiotensin II
(ANG II)-induced endothelial cell apoptosis (50). NO also
serves as an effective regulator of blood pressure and blood
flow (51). The protective effect of NO on endothelial cells
has also been confirmed in mice with e-NOS damage. The
changes of NO are closely related to hypertension (52) and
coronary heart disease (53). However, in the presence of e-
NOS/NO, DNA synthesis in smooth muscle cells is inhibited
(54, 55).Similar to e-NOS, n-NOS is also expressed in the
cardiovascular system, primarily in the sarcoplasmic reticulum
(56), although a small fraction is expressed in the mitochondria
(57), Golgi bodies (58), and myofilms (57). n-NOS plays a
key role in protecting the myocardium from oxidative stress,
systolic/diastolic dysfunction, poor structural remodeling, and
arrhythmias in failing hearts (59, 60). Furthermore, n-NOS/NO
regulates cardiac electrophysiology and intracellular Ca2+

protein homeostasis, targeting myosin through S-nitrosylation
and phosphorylation, dynamic regulation of mitochondrial
activity and biological activity (61). i-NOS is expressed in
cardiomyocytes in response to specific cytokines. The i-NOS/NO

signaling pathway can reduce the occurrence of obvious HF, but
excessive expression often causes cardiomyopathy, arrhythmias
and even sudden cardiac death (62). In addition, NO metabolites
include nitrite, which is an important repository of NO in
blood and tissue, and nitroso mercaptan (63, 64). NO and
nitroso mercaptan levels are reduced in ischemia or hypoxia
(65). Circulating levels of these metabolites directly regulate
their tissue storage (66), and increasing levels of nitrite and
nitrosothiol in the heart is an effective cardiac protection
strategy (67, 68). Currently, common exogenous NO donors
include NaNO2 and furoxan, which releases NO in the presence
of mercaptan.

Oxidative Stress and NO
The updated definition of “oxidative stress” is “an imbalance
between oxidants and antioxidants in favor of the oxidants,
leading to a disruption of redox signaling and control and/or
molecular damage (69).” In general, NO has a protective
effect on the damage caused by myocardial ischemia when
appropriate amounts of are in equilibrium with antioxidants
and oxygen free radicals (70). Tan et al. (71) demonstrated
that NO is an effective antioxidant experimentally by evaluating
the cardiac protective function of baicalein in rats with
acute myocardial infarction (AMI). Furthermore, the possible
molecular mechanism was explored by administration of
baicalein and/or e-NOS inhibitor L-NAME before inducing AMI.
Analysis of the corresponding indicators, such as creatine kinase,
creatine kinaseMB isoenzyme, lactate dehydrogenase and cardiac
troponin T revealed that baicalin activated the e-NOS signaling
pathway and inhibited oxidative stress in rats with AMI through
e-NOS signal transduction. Xiao et al. (72) reported the same
protective effect of NO in another study using luteolin as the
experimental drug, in an experimental model of myocardial
ischemic injury induced by diabetes. It was found that after
activation by luteolin, e-NOS inhibited the binding of Nrf2
to Keap1, Nrf2 was then transferred to the nucleus, where it
combined with antioxidant genes, such as ARE, to produce an
antioxidant effect (72).

However, excessive NO can have harmful effects on
the heart muscle. For example, Tao et al. (73) simulated
myocardial ischemia-reperfusion in vivo by ligating the coronary
arteries of mice for 30min followed by reperfusion for
3 or 24 h. Comparison of the myocardial infarct size in
mice, production of peroxynitrite, NO and superoxide as
well as i-NOS and gp91phox protein expression, it was
found that the adiponectin globular domain structure reduced
the myocardial ischemia/reperfusion induced i-NOS/gp91phox

protein expression, reduced the generation of NO/peroxide,
blocked oxygen nitrite formation, and reversed adiponectin−/−

mice to expand the infarction effect. Thus, it is clear that the
balance of NO content is a very important factor for regulating
ischemic injury.

Anti-apoptotic Effects and NO
Accumulating evidence shows that the NO system plays a
key role in the regulation of myocardial cell apoptosis (74,
75). For example, Wang et al. (76) found that ginsenoside
Rg3 (GSRg3) mediated myocardial protection and inhibited

Frontiers in Cardiovascular Medicine | www.frontiersin.org 5 October 2020 | Volume 7 | Article 588206

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Wang et al. Gas Molecules and Myocardial Ischemia

MI/R-induced apoptosis by up-regulating the Akt/e-NOS/NO
signaling pathway. Liu et al. (77) found that hydromorphine
administered post-treatment protected the isolated rat heart
from reperfusion injury by activating P13K/Akt/e-NOS signal
transduction. Moreover, downregulation of MIR-134 was also
shown to activate the P13K/Akt/e-NOS signaling pathway
to protect muscle I/R injury (78). Increased intracellular
calcium production is the main mediator of myocardial
cell apoptosis induced by ischemia (79). Therefore, the
restoration of intracellular calcium inflow can effectively prevent
ischemic myocardial cell apoptosis. Li et al. (79) showed
that KMUP-1 [7-[2-[4-(2-chlorophenyl) piperazinyl] ethyl]−1]
activated e-NOS expression and restored the intracellular
calcium flow by upregulating the NO/cGMP/MAPK signaling
pathway, which inhibited the apoptosis induced by myocardial
ischemia. Similarly, phosphorylation and expression of e-NOS
were increased.

The Anti-inflammatory Effects of NO
Inhibition of myocardial inflammation and pathological
remodeling after MI injury is very important for the treatment
of ischemic cardiomyopathy. The inflammatory factor COX,
which is a rate-limiting enzyme of prostaglandin (PG), catalyzes
the conversion of arachidonic acid to PGH2 (80). COX exists
as COX1 in large amounts of normal cells and COX2, which
is closely related to NO associated signaling pathways, is
induced by stress (80). Shinmura et al. (81) showed that NO
protects the ischemic myocardium by stimulating COX2 to
produce cell-protective prostaglandins, such as PGE2 and
PGI. In the later pretreatment, it was found that inhibition
of i-NOS eliminated prostaglandin synthesis, while inhibition
of COX2 had no effect on i-NOS activity (81), but resulted
in loss of the protective effect, indicating that the activity of
COX2 activity was driven by i-NOS. Pang et al. (82) found that
COX2 inhibited AKT formation and promoted the production
of NO in i-NOS, thereby preventing H9C2 cells harm due
to hypoxia/reoxygenation. In addition to i-NOS, e-NOS also
plays an important role in the anti-inflammatory pathway. For
example, O-nitrophenyl ethyl caffeate (CAPE-oNO2) inhibits
inflammation following myocardial ischemia-reperfusion injury
via the e-NOS/NF-kB pathway (83).

In summary, a large amount of evidence (82–85) indicates
that NO exerts an anti-inflammatory effect on MI by regulating
the activity of inflammatory cytokines or being regulated by
inflammatory cytokines.

MECHANISM OF H2S PROTECTION
AGAINST MYOCARDIAL ISCHEMIC
INJURY

Induction of H2S
Hydrogen sulfide (H2S) was the second gaseous signaling
molecule discovered after NO. As with NO, the role of H2S in
organs or tissues such as the kidney (86, 87), brain (88, 89),
and heart (90, 91) has been documented and has been shown
to play an important role in the regulation of cardiovascular

activities. H2S is a colorless gas with the odor of rotten eggs
(92). In vivo, the main enzymes responsible for H2S synthesis are
cystathionine γ-lyase (CSE), cystathionine β-synthase (CBS) and
3-mercaptopyruvate sulfurtransferase (3-MST) (93). Yang et al.
(62) confirmed that CSE ismainly expressed in the cardiovascular
system by preparing CSE gene-deficient mice and measuring
the H2S content. H2S levels in the aorta and arterioles were
decreased by ∼50 and 80%, respectively, in CSE-deficient mice
compared with those in the wild-type mice and the serum H2S
levels were also decreased by 50%, indicating that CSE is themain
source of H2S in the cardiovascular system. Numerous studies
(94–99) have shown that H2S preconditioning can significantly
antagonizeMI injury, reduce theMI area, reduce troponin I levels
and the lever of oxidative stress, apoptosis and inflammation.
Calvert et al. (99) showed that H2S increased the nuclear
translocation of Nrf2 and upregulated the phosphorylation of
PKCε and STAT3 in the early stage of pre-treatment. In the
later stage of H2S pre-treatment stage, the expression of HO-
1, thioredoxin 1 and heat shock protein 90 (HSP90) increased,
and the activity of pro-apoptotic factors decreased (99). However,
H2S does not usually play a direct antioxidant role. H2S is
first dissociated as HS−, then HS− and then S2− in solution.
The percentages of HS− and H2S in solution are 81 and 19%,
respectively, while the concentration of S2− is almost negligible,
indicating that most of the influence of H2S is mediated by
thiols (100).

In vitro, commonly used H2S donors include
NaHS, morpholine-4-methoxyphenylmorpholine-morpholine-
phosphodisulfate (GYY4137), DATS-MSN and s-propargyl-
cystine (SPRC), all of which have protective effects against
MI. NaHS is the most commonly used H2S donor in vitro.
For example, Li et al. (94) used NaHS as the H2S donor to
demonstrate that H2S pre-treatment reduced ER/SR stress in the
hypoxia/reoxygenation model in H9C2 rat cardiomyocytes and
inhibited cardiomyocyte apoptosis. Similarly, Wang et al. (101)
used NaHS as a donor to study the protective effect of H2S in rats
with heart failure (HF). GYY4137 is a water-soluble H2S donor
(102), which at physiological pH and temperature, releases low
concentrations of H2S into in aqueous solution for several hours,
conditions which simulate the time course of H2S release in
vivo (103). In this way, GYY4137 protected the myocardium
from I/R injury by reducing oxidative stress and apoptosis (104).
DATS-MSN is a long-term sustained release H2S donor, which
can prevent myocardial I/R injury (105). Compared with NaHS
and GYY4137, Sun et al. (105) demonstrated that DATS-MSN
provides superior cardiovascular protection, which may be
related to the its capacity for long-term slow release of H2S.
SPRC, which is a novel endogenous H2S water-soluble regulator
synthesized by Zhu et al., promotes angiogenesis by activating
signal transduction factors and transcriptional activators (106)
(Figure 3).

Antioxidant Effect of H2S
Studies have shown that ROS and Reactive nitrogen species
(RNS), such as peroxides (·O2), can be eliminated by H2S at
any time, and that the antioxidant activity of H2S is higher than
that of cysteine, GSH and other antioxidants (107). However,

Frontiers in Cardiovascular Medicine | www.frontiersin.org 6 October 2020 | Volume 7 | Article 588206

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Wang et al. Gas Molecules and Myocardial Ischemia

FIGURE 3 | The main H2S donors NaHS, sodium hydrosulfide; GYY4137, morpholine-4-methoxyphenylmorpholine-morpholine-phosphodisulfate; SPRC,

s-propargyl-cystine.

the physiological concentration of H2S is much lower than that
of other typical antioxidants (108). Nevertheless, exogenous H2S
has been shown to have a strong antioxidant capacity and protect
cells from damage in physiological systems exposed to ROS
and RNS. In addition, despite the differences in concentration
of gaseous signaling molecules, H2S is a small molecule
with properties that allow it to pass freely through the cell
membrane, thus enhancing its antioxidant activities compared
with macromolecule antioxidants in the microenvironment
(109). H2S exerts its antioxidant effects through extensive
indirect signal conduction rather than direct effects on ROS/RNS.
Thus, H2S treatment can provide far-reaching and long-lasting
antioxidant protection in cells.

H2S exerts its antioxidant effects by regulating the expression
and activity of classic antioxidants such as GSH and Thioredoxin
(Trx). GSH, a tripeptide composed of glycine, glutamate, and
cysteine, is one of the major antioxidants in cells. Furthermore,
cysteine is synthesized from methionine via a thiogenic pathway
to produce the key enzymes required for H2S synthesis (CSE
and CBS) in each step of the catalytic reaction. Studies have
shown that H2S promotes GSH production, thereby protecting
the heart from oxidative stress (110). Trx is a small molecule
(∼12 kDa) containing a cysteine-glycine-proline-cysteine motif
at its catalytic site. The two cysteine residues are the main
sites for Trx oxidation and promote ROS reduction through
thiol-disulfide exchange. Oxidized Trx is reduced by the Trx
reductase and then reduced by NADPH. Trx activity has been
shown to perform intracellular and extracellular functions in
ROS elimination to protect against oxidative stress (111). A
recent study showed that H2S treatment not only increased Trx
expression in ischemic HF models, but also attenuated high-
fat-induced left ventricular remodeling (112). Mice expressing
dominant Trx-negative mutations did not respond to H2S
treatment, indicating that the cardioprotective effect of H2S in
this HF model is Trx-dependent. Finally, H2S has also been
shown to regulate the expression of Trx interaction protein
(TXNIP), which binds to and inhibits Trx activity, in endothelial
cells (113).

As an important antioxidant stress transcription factor,
Nrf2 regulates the expression of many antioxidant genes
and cell protective genes. In a mouse model of myocardial
ischemia, H2S preconditioning activated Nrf2 signaling, up-
regulated the expression of antioxidant proteins HO-1 and
thioredoxin 1, and reduced myocardial ischemic injury (99).
It has been reported that myocardial mitochondria are the
main sites of oxidative stress induction during myocardial
ischemia-reperfusion (MI/R), with different responses to H2S
regulation in suborganelles. Furthermore, MI/R damage to the
submusculoskeletal mitochondria in rat heart plays an important
role in reducing H2S mediated oxidative stress (114). The
antioxidant function of H2S is due, in part, to the direct
removal of ROS and/or inhibition of ROS production. Geng
et al. (115) showed that H2S reduces lipid peroxidation by
removing O2

.− and H2O2 in isoproterenol-induced damaged
myocardium. In hypoxic/reoxygenation rat cardiomyocytes, H2S
reduces ROS levels and protects the myocardium by inhibiting
the activity of mitochondrial complex IV, enhancing the activity
of superoxide dismutase (SOD) enzymes, such as Mn-SOD and
CuZnSOD (116).

OS plays an important role in the pathogenesis of HF.
Oxidative stress leads to apoptosis, which may cause damage to
cardiomyocytes. H2S is an effective ROS scavenger and has a
protective effect on HF. Sirtuin-1 (SIRT1) is a highly conservative
nicotinamide adenine dinucleotide (NAD)-dependent histone
acetyl enzyme that plays a key role in promoting cell survival
under conditions of oxidative stress. Using NaHS as the H2S
donor, Wu et al. (117), showed that NaHS increased SIRT1
expression under conditions of oxidative stress, and reduced
H9C2 cardiomyocyte apoptosis via the SIRT1 pathway.

Anti-apoptotic Effect and H2S
H2S has anti-apoptotic properties. In vivo studies have
demonstrated that H2S activates pro-growth kinases, such
as PKC/ERK1/2 and PI3K/Akt, and activation of PKC/STAT3
signals, leading to increased expression of anti-apoptotic
molecules, such as Hsp90, Hsp70, and Bcl-2 (118, 119).
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Numerous studies (106, 120–125) have shown that H2S plays
a protective role in ischemic myocardium through apoptosis-
related signaling pathways. For example, Ning et al. (126)
demonstrated that the H2S donor NaHS resisted AMI-induced
apoptosis by upregulating the GSK-3β/β-catenin signaling
pathway. NaHS reduced the apoptosis of myocardial cells
after myocardial ischemia-reperfusion injury in rats by down-
regulating the JNK signaling pathway (127). The CSE/H2S
pathway mediates the protective effect of trimetazidine against
hypoxia/reoxygenation induced apoptosis in H9C2 cells (128).
Meng et al. found that pre-administration of GYY4137 as a
H2S donor increased Bcl-2 expression in ischemic myocardium,
while decreasing the expression of Bax, expression and caspase-3
activity, indicating that GYY4137 prevents myocardial ischemic
injury (104) TUNEL assays showed that SPRC treatment for
30min before hypoxia significantly reduced the apoptosis of
isolated papillary muscle cells caused by hypoxia/reoxygenation
injury and protected muscle morphology (129). Subsequent
studies in HF rats showed that the expression of Bax induced by
ischemia caused by ligation of the left coronary artery decreased
the expression of Bcl-2, thereby triggering the activities of
caspase 9 and caspase 3. The sustained release preparation of
SPRC (CR-SPRC) increased Bcl-2 levels and reduced the levels
of Bax, caspase 3 and caspase 9, thereby protecting myocardial
cells (130). SPRC, which is also used as a H2S donor, enhanced
cell activity, restored downstream gene expression regulated
by GP130/STAT3, inhibited cell apoptosis, and antagonized
mitochondrial dysfunction and intracellular Ca2+ overload in
adriamycin-induced cardiac toxicity (130).

Moreover, genes involved in apoptosis regulation, such as
microRNAs (miRNAs), can also act as important mediators that
protect the ischemic myocardium. It was found that myocardial
cell hypoxia/reoxygenation (HR) injury increased apoptosis,
upregulated the expression of miRNA-1, and down-regulated the
expression of Bcl-2 (131). However, H2S pretreatment reduced
myocardial cells apoptosis after HR injury. Furthermore, this
approach also down-regulated miRNA-1 expression and up-
regulate Bcl-2 expression (131). MiRNA-133a is involved in
the protective effect of H2S against myocardial cell apoptosis
induced by ischemia/reperfusion (132). In addition, miRNA-
208B-3P, miRNA-128-3P, and miRNA-320 are all related to
myocardial ischemia and apoptosis, with down-regulation of
miRNA-208B-3P inhibiting of myocardial injury caused by
ischemia/reperfusion in rats (133), while inhibition of miRNA-
128-3P protects myocardial cells from ischemia/reperfusion
injury by upregulation of P70S6k1/P-P70S6k1 (134), and down-
regulation of miRNA-320 inhibits apoptosis of myocardial
cells and provides protection against myocardial ischemia and
reperfusion injury by targeting IGF-1 (135). However, it is not
known whether these miRNAs are related to H2S, and further
research is needed to clarify this point.

Anti-inflammatory Effects and H2S
The anti-inflammatory action of H2S results from the inhibition
of leukocyte rolling, adhesion and flipping. In addition, it inhibits
NF-κB and reduces the production of the inflammatory cytokines
IL-1 and TNF-α (136). The levels of TNF-α, IL-1, and IL-6

in the serum of rats were shown to be increased after AMI,
and the levels of ICAM-1 mRNA and NF-κB in the myocardial
tissues were significantly increased. However, the levels of these
factors decreased after NaHS, which inhibited the synthesis of
inflammatory factors, such as IL-6 and nuclear transcription
factors after MI in rats, thereby reducing myocardial injury and
protecting myocardial tissue (137).

MECHANISM OF H2 PROTECTION
AGAINST MYOCARDIAL ISCHEMIC
INJURY

Induction of H2
H2 is widely distributed in nature. As a colorless and odorless
reducing gas, it is not only small in size, but also freely crosses
the blood-brain barrier, with no residue as a result of metabolism
(138). Compared with NO and H2S, H2 has a smaller molecular
weight and is more likely to enter the biofilm. H2 is less cytotoxic
than other medical gases, and its low reactivity with other gases
allows it to be mixed with other therapeutic gases, including
inhaled anesthetics (139). Therefore, H2 is expected to become
the fourth most important gaseous signaling molecule after NO
and H2S (140). The synthetic sources of H2 are endogenous
and exogenous. H2 is not normally produced in human cells
due to the absence of enzymes with hydrogenase activity.
However, under normal human physiological conditions, more
than 12 L of H2 is produced daily, mainly by the fermentation
of undigested carbohydrates produced by the microbiome (141).
Studies have shown that, to play an antioxidant role, the content
of endogenous hydrogen must be significantly higher than the
minimum concentration of exogenous hydrogen (142). H2 is
excreted in three main ways: through breathing, flatulence and
metabolization by microorganisms in the colon (143). The
human body can obtain exogenous H2 through inhalation and
drinking or injection of hydrogen-rich water (144). Studies have
shown that drinking hydrogen-rich water in daily life is beneficial
for some chronic diseases (145). Nagatani et al. (146) found that
intravenous hydrogen salt was safe and effective in 38 patients
with acute ischemic stroke. In addition, eye drops or external
products that produce H2 can be absorbed into the blood through
the skin, thus representing a potential strategy for the use H2

to treat diseases (147). Intake of exogenous H2 has been shown
to have a great effect on the body (1) in the studies of multiple
organs or systems including the central nervous system (145,
148, 149), cardiovascular system (122, 150), lung (151, 152),
renal system (145), liver (153), pancreas (154, 155), intestinal
(156, 157). In the study of the cardiovascular system, H2 has
been shown to H2 play an important role in myocardial ischemic
injury (158).

Antioxidant Effect of H2
Oxidative stress is the main cause of myocardial ischemic
injury (159). Ohsawa et al. (158) found that H2 selectively
reduced the levels of hydroxyl radicals and cytotoxic ROS to
effectively protect cells, although H2 cannot reduce free-radicals
by interacting with excessive ROS. This discovery provides a
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new strategy for the treatment of myocardial ischemic injury. In
recent years, Nrf2 has been identified as a transcription factor
closely related to the oxidative stress caused by H2. Xie et al.
(160) evaluated the role of the Nrf2/HO-1 signaling pathway
in ischemia induced in H9C2 myocardial cells in vitro through
serum and glucose (SGD) deprivation. The results showed
that SGD caused myocardial cell damage and down-regulated
the Nrf2/HO-1 signaling pathway. In contrast, a H2-rich gas
alleviated the cell damage caused by cell exposure to SGD and up-
regulated Nrf2/HO-1. In addition, RNA interference mediated
silencing of the Nrf2 gene, the influence of H2 onHO-1 induction
and cardiac protection was significantly reduced.

In summary, H2 gas protects myocardial cells from
myocardial damage caused by ischemia by eliminating ·OH
free-radicals and activating the Nrf2/HO-1 signaling pathway.
In addition, the Nrf2/ARE pathway also plays an important role
in selective oxidation. Studies have shown that H2 can protect
the myocardium by activating Nrf2-ARE signaling pathway
(161, 162).

Anti-apoptotic Effects of H2
During MI/R, oxygen free-radicals, calcium overload and MPTP
opening lead to mitochondrial swelling and rupture, releasing
apoptosis-inducing factors and apoptosis-related proteins, and
further initiating the caspase cascade to induce programmed
apoptosis (163). Recent studies have shown that the PI3K/AKT
pathway is crucial for cardiomyocyte apoptosis (164). Chen
et al. (165) found that high concentrations of H2 protected
mouse hearts from ischemia-reperfusion injury by activating
the PI3K/AKT1 pathway. Forkhead box protein O (FoxO)
is downstream of PI3K/AKT and is inhibited by PI3K/AKT.
Generally speaking, after FoxO is activated, the cells cycle is
blocked in the G1/S phase and apoptosis is promoted. Therefore,
hydrogen may regulate FoxO expression via the PI3K/AKT
signaling pathway, thus playing an anti-apoptotic role (1).
In addition, hydrogen-enriched saline also showed protective
and antiapoptotic effects on MI/R injury by down-regulating
the AKT/GSK3 signaling pathway (166) and upregulating the
JAK/STAT signaling pathway (167).

Anti-inflammatory Effects of H2
Zhang et al. (168) demonstrated that ischemia/reperfusion
(I/R) induced elevated levels of the pro-inflammatory cytokines
TNF-α and IL-1β in myocardial cells, which were attenuated
by hydrogen-rich saline. Hydrogen-rich saline has an anti-
inflammatory effect on the local MI/R injury in the heart.
There are few reports on the protective effects of H2 against
myocardial ischemia injury and inflammation, which requires
further investigation.

STUDY ON THE MECHANISM OF
MYOCARDIAL ISCHEMIC INJURY BY
COMBINING NO AND H2S

Accumulating evidence indicates the potential coupling of NO
and H2S at different levels. ZYZ-803, which is a novel synthetic

H2S and NO co-donor, was developed by combining SPRC with
furoxan. However, ZYZ-803 releases H2S and NO more slowly
and in a more prolonged manner than SPRC and/or furoxan
(169). ZYZ-803 has fewer side-effects and lower concentrations
than SPRC and furoxan alone. The cardioprotective effect of
ZYZ-803 was significantly stronger than that of the H2S and/or
NO donors alone. Furthermore, ZYZ-803 releases H2S and
NO by stimulating CSE and endothelial NO synthase (e-NOS),
respectively, to produce physiological activity. Currently, there
are few reports on ZYZ-803, most of which focus on the
mechanism of angiogenesis (170) and vasodilation (171) and the
protective effects against HF (172).

Chang et al. (120) used ZYZ-803 as the combined gas donor
to study its anti-apoptotic effects on MI injury. By releasing H2S
and NO, ZYZ-803 down-regulated the RIP3-CaMKII signaling
pathway and alleviated ERS-related necrotic apoptosis after AMI.
DL-propargylglycine (PAG) and e-NOS inhibitors of N(G)-nitro-
L-arginine methyl ester (L-NAME), which inhibit of CSE and L-
NAME, respectively, significantly inhibited the cardioprotective
effect of ZYZ-803, while the inhibitory effect of PAG+L-NAME
was more obvious. In addition, Wu et al. (171) found that
blocking CSE and/or e-NOS inhibited the generation of H2S
and NO produced by ZYZ-803 and reversed its cardiovascular
protective effects. It has been reported that NO promotes CSE
expression in vascular tissues and increases H2S levels, while
L-NAME inhibits the vasodilatory effect of H2S (171, 173).
Furthermore, H2S enhances the production of NO through
calcium-dependent activation of e-NOS in endothelial cells (174).
The generation of NO is obviously inhibited by CSE knockout,
while CSE overexpression promotes the generation of NO (175).
These data suggest that PAG not only inhibits CSE and reduces
H2S, but also inhibits e-NOS activity and NO concentrations in
HF. L-NAME not only inhibits e-NOS and reduces NO, but also
reduces CSE expression and H2S levels. Thus, H2S and NO have
synergistic effects, while H2S regulates the biological function of
NO, and vice versa.

DISCUSSION

In the past few years, substantial progress has been made
in the field of gaseous signaling molecule donors. In this
review, we have summarized the mechanisms by which gaseous
signaling molecules (NO, H2S, H2) protect myocardial ischemia
(Figure 4), including the gas co-donors that regulate gas
molecules that protect against myocardial ischemic injury. Since
most of the experimental articles listed in the review included
normal and model groups, and the gaseous signaling molecule
donor did almost no damage to normal cardiomyocytes, the off-
target effect was rarely seen. However, when the concentration of
gaseous signaling molecules such as H2S is too high, poisoning
and other phenomena will occur. Therefore, targeting and other
approaches can be adopted to increase the concentration of
gas signaling molecules locally within the lesion to achieve the
therapeutic effect of gaseous signaling molecules.

As a ubiquitous gas, NO also mediates and hemostasis and
homeostasis, which enhances the protective effect on the heart.
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FIGURE 4 | The mechanism of gaseous signaling molecules (NO, H2, H2S) against myocardial ischemic injury H2S, hydrogen sulfide; GSK3β, Glycogen synthase

kinase-3β; GP130, Glycoprotein 130;STAT3, Signal transducers and activators of transcription 3; PI3K, class I phosphatidylinositol 3-kinase; COX2, Cyclooxygenase

2; AKT, Serine/threonine protein kinase; MAPK, mitogen-activated protein kinase; cGMP, cyclic guanosinc monophosphate; NO, nitric oxide; i-NOS, Inducible nitric

oxide synthase; e-NOS, endothelial nitric oxide synthase; Keap1, Kelch Like ECH Associated Protein 1; Nrf2, Nuclear factor erythroid 2 p45-related factor 2; NF-kB,

Nuclear factor-kappa B; HO-1, Hemeoxygenase-1; SIRT1, Sirtuin1; ROS, Reactive oxygen species.

Studies have shown that vascular endothelial cells are the main
cellular source of synthesized NO in vivo, and the synergistic
effect of endothelial cells and platelet NOS is conducive to
regulating platelet activation and inhibiting platelet adhesion
and aggregation (176). NO also plays an important role in
maintaining vascular tone and blood pressure homeostasis.

H2S inhibition of oxidative stress to protect cardiomyocytes
is dependent on Nrf2-mediated induction of cellular protection
genes. John et al. found that H2S induced upregulation of Nrf2
inactivates Keap1 through modification of C226 and C613 while
Nrf2 controls CBS, CSE, and Sqrdl (sulfide: quinone reductase-
like), which suggests the existence of a feedback loop between
Nrf2 and H2S. H2S also protects the heart from oxidative stress
through S-acidification.

Anti-inflammatory strategies are an important aspect of
drug therapy for myocardial ischemic injury. On the one

hand, inflammatory responses fundamentally affect the long-
term and short-term performance of solid organ allografts;
on the other hand, the transplantation process including
the surgical trauma itself, in addition to the associated
ischemia-reperfusion injury may lead to acute and chronic
inflammatory responses that affect allograft function in the
long-term (177). If the inflammation is resolved, the tissue
can heal without sequelae. Otherwise, acute inflammation may
become chronic, stimulating tissue remodeling and ultimately
leading to fibrosis and loss of organ or tissue function (177).
Therefore, drugs that effectively control inflammation and
acomprehensive understanding of the mechanism of its action
are urgently required. However, the pathways by which the
gaseous signaling molecules (NO, H2S and H2) exert their anti-
inflammatory effects in myocardial ischemic injury remain to
be elucidated.
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NO has long been recognized as a gaseous signaling molecule
that acts independently; however, recent studies have shown that
H2S is an important enhancer of NO in blood vessels. Specifically,
H2S may act as a system enhancer for e-NOS/sGC/cGMP/PKG,
mainly by stimulating NO release in stable and semi-stable
pools, and by stimulating calcium mobilization to stimulate e-
NOS activity. Similarly, when the biological effect of vascular
NO system is weakened, the stimulatory effect of H2S on
the e-NOS/sGC/cGMP/PKG system is weakened (178). These
findings indicate that there is crosstalk between the gaseous
signalingmolecules, and that they do not function independently.
Although there are few studies on the interaction between
NO/H2 and H2S/H2 at present, advances in science and
technology will facilitate relevant studies on these aspects.

To data, many donors of gaseous signaling molecules
have been identified, although the exact concentration of
gaseous signaling molecules in various samples is unknown,
which hinders progress in this field of research. Therefore,
an appropriate and accurate method is urgently required. In
addition, gaseous signaling molecules such as H2S, specific
inhibitors and stable donors are lacking. Due to the wide range
of current inhibitor molecules and the instability of donor
molecules, the actual changes in H2S concentrations conflict with
the expected results.

Experimental studies have shown that gaseous signaling
molecules with co-donor drugs, such as ZYZ-803, have a much
better effect on the treatment of diseases than in individual drugs
administered with gas signaling molecules. Therefore, gaseous
co-donor drugs and their targets will be an important focus
of research. Moreover, gaseous signaling molecules have shown
certain therapeutic effects in many animal experiments related to
myocardial ischemic injury. Clarification of the specific targets of
gaseous signaling molecules in myocardial ischemic injury and
evaluation in clinical applications is of great significance. It is

believed that with advanced in scientific research technology and
the continuous efforts of researchers, gaseous signaling drugs will
soon enter clinical research.

SUMMARY

The aim of myocardial ischemic treatment is to relieve
symptoms, reduce the incidence of angina pectoris and MI,
and delay the development of coronary atherosclerosis. In
recent years, myocardial ischemic injury has attracted increasing
attention due to its high risk of death. The protective effect of
gaseous signaling molecules on myocardial ischemic injury is
self-evident, and clarification of the specific targets of gaseous
signaling molecules in myocardial ischemia is of great and
urgent significance for their clinical application. Hopefully, this
review will serve as a reference for guidance of future research
into the effects of gaseous signaling molecules on myocardial
ischemic injury.
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