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Autism Spectrum Disorder (ASD) is one common developmental disorder with great

variations in symptoms and severity, making the diagnosis of ASD a challenging task.

Existing deep learning models using brain connectivity features to classify ASD still suffer

from degraded performance for multi-center data due to limited feature representation

ability and insufficient interpretability. Given that Graph Convolutional Network (GCN) has

demonstrated superiority in learning discriminative representations of brain connectivity

networks, in this paper, we propose an invertible dynamic GCNmodel to identify ASD and

investigate the alterations of connectivity patterns associated with the disease. In order to

select explainable features from the model, invertible blocks are introduced in the whole

network, and we are able to reconstruct the input dynamic features from the network’s

output. A pre-screening of connectivity features is adopted to reduce the redundancy of

the input information, and a fully-connected layer is added to perform classification. The

experimental results on 867 subjects show that our proposed method achieves superior

disease classification performance. It provides an interpretable deep learning model for

brain connectivity analysis and is of great potential in studying brain-related disorders.

Keywords: fMRI, graph convolutional networks, invertible networks, brain connectivity networks, autism spectrum

disorder, disease classification

1. INTRODUCTION

As one of the most common neurodevelopmental disorders, the exact etiology of Autism Spectrum
Disorder (ASD) remains unknown. In the past 50 years, ASD has gone from a narrowly defined,
rare disorder of childhood to a well-publicized disease, and recognized as a very common and
heritable brain disorder. The major characteristic of ASD is being deficit in social interaction and
social communication with repetitive and unusual behaviors and activities (Lord et al., 2018).
Despite medical progress, the diagnosis of ASD still depends on the symptom-based clinical
criteria with complex diagnostic steps. However, with increasing recognition of the importance
of early diagnosis for effective intervention, more effort has been made on exploring other possible
modalities and biomarkers for ASD identification.

With the development of neuroimaging technologies, resting-state functional Magnetic
Resonance Imaging (rs-fMRI) has attracted increasing interest in ASD studies, which enjoys
advantages of superior spatial resolution to accurately locate the active areas in the whole
brain, overcoming the limitations of earlier tools such as positron emission tomography (PET),
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electroencephalography (EEG), and magnetoencephalography
(MEG). By computing the correlation between fMRI time series
of different regions of interests (ROIs), we can construct a
functional connectivity network and many disorders may lead to
the alterations in it (Li et al., 2016; Miller et al., 2016; Bachmann
et al., 2018; Chandra et al., 2019; Zhang et al., 2020). For example,
a widespread decrease of functional connectivity strengths was
reported in patients with Alzheimer’s Disease (AD) (Demirtaş
et al., 2017). Studies showed that regional connectivity changes
(both increase and decrease) of dopaminergic cortico-striatal
and mesolimbic-striatal loops have been found in PD subjects
(Filippi et al., 2018). ASD has also been suggested to be related
to altered brain connectivity in the development of disease and
has been extensively investigated (Kleinhans et al., 2008; Monk
et al., 2009; Yerys et al., 2015; Dajani and Uddin, 2016; Xu
et al., 2020). While a wide range of connectivity changes are
reported, inconsistent conclusions have been observed in studies
of functional connectivity in ASD, indicating the importance
to thoroughly investigate the connectivity patterns with a large
population of ASD.

Based on brain connectivity networks, machine learning,
especially deep learning methods have further provided powerful
tools to extract representative features associated with ASD and
have greatly deepened our understanding of the disease (Chan
et al., 2020). The classical machine learning techniques such as
Support VectorMachines (SVM) are most widely used to identify
patients from healthy controls in various studies (Subbaraju
et al., 2017). For instance, Abraham et al. (2017) achieved 66.8%
classification accuracy on 871 subjects obtained from ABIDE
dataset.

Neural networks and deep learning methods such as
autoencoder, Deep Neural Network (DNN) (Guo et al., 2017),
Long Short Term Memory (LSTM) (Dvornek et al., 2018), and
Convolutional Neural Network (CNN) (Haweel et al., 2021)
have generated better performance in ASD classification. For
instance, Yin et al. (2021) applied a DNNmodel and achieved the
classification accuracy of 76.2% on 871 subjects of ABIDE dataset,
and further improved the performance to an accuracy of 79.2%
by combining DNN with an autoencoder.

Compared with traditional deep learning models, Graph
Convolutional Network (GCN) can deal with data of non-
Euclidean structure, which may be more suitable, and more
interpretable for brain connectivity graph generated by fMRI.
GCN has been used to classify ASD and select biomarkers
from typical developing subjects (Ktena et al., 2018; Parisot
et al., 2018). Recently, with a connectivity-based GCN model,
70.7% accuracy for classifying 1057 subjects (525 ASD and 532
healthy controls) has been reported (Wang et al., 2021). It’s
worth noting that when integrating information from more
modalities, we may obtain higher classification accuracy. For
instance, 85.06% of accuracy in ASD classification has been
reported in Rakić et al. (2020) based on both structural MRI
(sMRI) and fMRI features of 368 ASD and 449 healthy control
subjects using an autoencoder model. While more modalities
are beneficial to disease identification, it requires extra resources
on data collection. In this paper, we are more interested in

resting-state fMRI and focus on the ASD classification using
brain connectivity features based on fMRI signals.

However, most deep learning models are limited in
interpretation because of their black box representation.
Although the classification performances of most deep learning
networks are superior to those of traditional or interpretable
methods, the features they finally generate can hardly be
corresponded to the inputs, challenging the selection of helpful
biomarkers. To overcome this shortcoming, Jacobsen et al. (2018)
proposed an invertible network using a fully-connected layer
as an inner trainable network, which can accurately reconstruct
the inputs to a layer from its outputs without any degradation
of classification accuracy. Given its superiority, Zhuang et al.
(2019) proposed an invertible network for ASD classification,
and gained 71% accuracy on the whole ABIDE dataset.

To improve the model interpretability and to better
utilize structural, spatial, and temporal characteristics of brain
connectivity networks, in this paper, we propose an invertible
dynamic GCN (ID-GCN) model for ASD classification. More
specifically, invertible blocks are utilized in the whole network,
capable of reconstructing the input features from the output
of the network, followed by a fully-connected layer to perform
classification. Additionally, we select the connectivity features
with a pre-screening operation to reduce the redundancy of
the input information. The proposed method is verified on
multi-center ABIDE datasets and the results demonstrate its
effectiveness for disease classification and potential for studying
the disease-related connectivity features. The contributions of
this paper are summarized as:

• An invertible graph convolutional network is designed for
disease classification based on brain connectivity networks.
It is capable of generating disease-related interpretable
connectivity features and improving classification accuracy.

• The proposed model integrates the structural, spatial, and
dynamic information of the brain connectivity networks, and
a prior selection of the features is adopted to reduce the
redundancy of the input features.

• The proposed method has been validated on ABIDE dataset
with superior performance.

2. METHODS

In this section, we first provide the notations and their definitions
used in this paper, then we introduce our proposed invertible
dynamic GCN model in detail.

2.1. Notations and Definitions
In this paper, we use G(V ,E) to represent a graph, where V =

{v1, v2, ..., vn} is the set of nodes, and E = {eij} is the set
of edges. In the spatial connectivity graph, eij represents the
Euclidean distance of two connected nodes, and in the functional
connectivity graph, eij represents their connectivity strength.
Additionally, let A denote the adjacency matrix of the graph and
X denote the correlation matrix, in which every row represents a
node’s features.
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2.2. Graph Convolutional Network
Graph Convolutional Network is a deep learning architecture,
which can not only use the data itself but also the relationship
between data represented as a graph. Through the adjacency
matrix A of the graph, we can first calculate the normalized
Laplacian matrix of X, which calculation formula is:

L = I − D− 1
2AD− 1

2 (1)

Where I is an identity matrix and D is the diagonal degree
matrix ofX. Then, we get an eigendecomposition of the Laplacian
matrix, L = U3UT , where U is a set of orthonormal
eigenvectors, and 3 = diag(λ0, ..., λn−1) is the matrix’s non-
negative eigenvalues. Based on these formulas, we get the
propagation rule of graph convolution layers is:

Xl = σ (U2(3)UTXl−1) (2)

Where σ is the activation function of the layer, and 2(·) is the
GCN convolution kernel. To simplify the calculation, we then
fit the kernel by Chebyshev polynomials of order k (Hammond
et al., 2011), which can be derived from:

Tk(c) = 2cTk−1(c)− Tk−2(c) (3)

T0(c) = I,T1(c) = c (4)

And the fitting formula is:

2(3) =

K−1
∑

k=0

βkTk(3̃) (5)

3̃ =
2

λmax
3 − I (6)

Where βk is the weight coefficient of the kth Chebyshev
polynomial, and λmax is the max eigenvalue of the Laplacian
matrix. Since the calculation of Chebyshev polynomials is
performed only on eigenvectors3, it does not affect other matrix
operations like doing eigendecomposition. So the Equation (2)
can be expressed as:

Xl = σ ((

K−1
∑

k=0

βkTk(L̃))X
l−1) (7)

Where L̃ is defined as L̃ = 2
λmax

L − I. Then we substitute the
trainable weight matrix W for βk, and get the final propagation
rule of graph convolution layers as:

Xl = σ (

K−1
∑

k=0

Tk(L̃)(X
l−1)W) (8)

2.3. Invertible Block
The architecture of the invertible block is shown in Figure 1,
where the inputs are x1 and x2, and the outputs are denoted as z1
and z2. Those feature maps have the same shape, and ϕ andω can
be defined as any functions. In this model, we define ϕ and ω as
independent GCNmodules using different graphs as their inputs,
which will be introduced in detail in the next section. In order to
fully blend the advantages of the two GCN modules, the outputs
of the first block y1 and y2, are then calculated to their average
and half of their difference as z1 and z2. This invertible block can
reconstruct the input from its output, where the forward pass and
inverse are:

{

y1 = x1 + ϕ(x2)

y2 = x2 + ω(y1)

{

z1 = 0.5(y1 + y2)

z2 = 0.5(y2 − y1)
(9)

{

x2 = y2 − ω(y1)

x1 = y1 − ϕ(x2)

{

y1 = z1 − z2

y2 = z1 + z2
(10)

2.4. Invertible Dynamic GCN
In order to incorporate additional spatial and temporal
characteristics of the brain functional connectivity network
constructed by rs-fMRI data with better interpretability, we
propose an invertible dynamic GCN (ID-GCN) model, which
uses two different GCN as the function ϕ and ω in the invertible
blocks to encode the functional connectivity graph and spatial
connectivity graph of samples, respectively. The functional GCN,
i.e., ω in the invertible block, uses the functional graph of
each subject obtained by the correlation matrix. Meanwhile, the
skeleton of the spatial graph is calculated directly according to
the spatial distance between ROIs, and the connection weights
are their correlation values. It is represented as ϕ for spatial
GCN. The whole model includes three invertible blocks to extract
explainable high dimensional features, and the inputs x1 and x2 of

FIGURE 1 | Structure of the invertible block.
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the first block are the same features that we send into the model.
The proposed ID-GCN architecture for disease classification in
this work is demonstrated in Figure 2.

To improve the computational efficiency and simplify the
training process, for each node, the k connected nodes with the
largest Pearson correlation coefficients in the functional graph or
the smallest distance in the spatial graph are retained to construct
a k-nearest graph. The correlation coefficients between each node
and all other nodes are used as the sample’s features which serve
as input into the ID-GCN model. A fully connected layer with
softmax is applied to perform the classification and the source
of the collection site is included as an additional covariate. The
cross-entropy is adopted in this model as loss function as:

L =
1

N

∑

i

−yi ∗ log(ŷi)− (1− yi) ∗ log(1− ŷi) (11)

where yi is the label of the ith subject, ŷi is the output of the
network, and N is the number of subjects we use.

While there are usually hundreds of ROIs defined from the
atlas, for a certain disease, it usually involves the changes of a
portion of brain regions. Additionally, with a great individual
variance of connectivity patterns, a large number of connectivity
features may be easily disturbed by noise, affecting subsequent
analysis and interpretation. However, reducing the number of
ROIs in the input model may inevitably cause the loss of
information. Therefore, rather than reducing the entire number
of ROIs, we reduce the dimension of the input features of each
ROI individually by selecting the M most important features for
disease classification using random forest.

As our brains are a dynamic system, time-varying connectivity
features have been suggested to be related to the functioning of
our brain. Thus, in this model, we further utilize the dynamics
of connectivity as additional features for ASD classification. The
time sliding window is applied to sample the time-dependent
signals and get the correlation matrix Xt of each time window.
The temporal variations of dynamic connectivity are then

calculated as the auxiliary feature represented as Ft, which is
concatenated with other connectivity features. After the pre-
selection of random forest, the reserved feature matrix {Ft} is
combined with the selected feature F of the original correlation
matrixX as the final input features. The overview of the proposed
model is shown in Figure 3.

3. EXPERIMENTS AND RESULTS

3.1. Real Dataset and Experimental Setting
We validated the proposed method on the publicly available
ABIDE dataset (Martino et al., 2014), and chose 416 ASD
subjects and 451 healthy controls (HC) from 13 acquisition sites.
The phenotypical information of each acquisition site can refer
to Table 1. The dataset was preprocessed with the Configurable
Pipeline for the Analysis of Connectomes (C-PAC) (Sikka et al.,
2013), which includes skull striping, slice timing correction,
motion correction, global mean intensity normalization,
nuisance signal regression, and band-pass filtering (0.01–0.1 Hz).
The fMRI images were registered to the standard anatomical
space (MNI152). To define brain areas, the Harvard Oxford
(HO) atlas was chosen, consisting of 110 ROIs. More details of
the dataset may refer to ABIDE Preprocessed.

We implemented the proposed model in a 5-fold cross-
validation setting, using 80% of the data for training and
20% for testing. We set the pre-selected feature number M
as 48, combined with J = 10 auxiliary dynamic features.
Additionally, the Chebyshev polynomial order was chosen
as 3, and k = 3 nearest nodes were selected to generate
our graphs.

To test the proposed method, we compared it with other
methods including siamese GCN (Ktena et al., 2018), Random
Forest, SVM, and GCN, evaluating its performance improvement
induced by the combination of spatial and dynamic connectivity
features, and testing the effectiveness of pre-screening on the
features. In these models for comparison, features input in
siamese GCN is the paired subject features as implemented

FIGURE 2 | The proposed ID-GCN architecture. The selected features are trained in three invertible blocks. A fully connected (FC) layer is finally used to obtain the

output scores for ASD classification. The whole network is reversible before the FC layer, meaning that we can reconstruct the informative disease-related brain

connectivity patterns by selecting important output features of the network.
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FIGURE 3 | Overview of the proposed framework. The brain connectivity features inferred from the fMRI time series and brain parcellation are fed to the model. After

training using the ID-GCN model, we obtain the predictions for ASD classification, and important brain connectivity features are selected accordingly.

TABLE 1 | Phenotypical information summary of ABIDE data.

Site ASD HC Gender Total Age

(M/F) (mean±std)

PITT 30 27 49/8 57 18.9±6.8

TRINITY 24 25 49/0 49 17.2±3.6

UM_1 55 55 84/26 110 13.4±2.9

UM_2 13 22 33/2 35 16±3.3

USM 58 43 101/0 101 22.1±7.6

YALE 28 28 40/16 56 12.7±2.9

LEUVEN_1 14 15 29/0 29 22.6±3.5

LEUVEN_2 15 20 27/8 35 14.2±1.4

KKI 22 33 42/13 55 10.1±1.3

NYU 79 105 147/37 184 15.3±6.6

UCLA_1 41 32 63/10 73 13.2±2.4

UCLA_2 13 13 24/2 26 12.5±1.5

MAX_MUN 24 33 50/7 57 26.2±11.9

TOTAL 416 451 738/129 867 16.4±7.1

in the study (Ktena et al., 2018), while the other models use
the whole connectivity matrix of a single subject as inputs. All
the methods were evaluated in terms of accuracy, AUC value,
precision, recall, and F1-score. The definitions of them are
as follows:

Accuracy = (TP + TN)/n (12)

Precision = TP/(TP + FP) (13)

Recall = TP/(TP + FN) (14)

F1− score = 2 ∗ Precision ∗ Recall/(Precision+ Recall) (15)

where n is the total number of our subject, TP is true positive
subject’s number, TN is true negative, FP is false positive, FN
denotes false negative, and AUC means the area under the
ROC curve. We additionally performed ablation experiments to
demonstrate the effects of each step of our method, including (1)
GCN using the functional graph as input (GCN); (2) GCN using
the spatial and functional graph in different layers (GCN adding
spatial information); (3) ID-GCN with principal component
analysis (PCA) for feature selection (ID-GCNwith PCA); and (4)
ID-GCN without dynamic features.

4. RESULTS

The classification results are shown in Figure 4 and Table 2.
It’s noted that our proposed model, ID-GCN achieves the
highest classification accuracy as 76.3%. Specifically, our model
demonstrates great improvement in all the evaluation metrics
compared with traditional SVM and Random Forest models
and obtains 3.1% gains in accuracy compared with GCN
using the same hyperparameters. Siamese GCN used paired
subject features as input and generated classification results
by multiplying two feature matrices from shared weight GCN.
However, it’s noticed that siamese GCN demonstrated worse
performance on the given dataset where the paired features didn’t
successfully distinguish the subjects in this case.

Considering that the classification performance depends on
the number of subjects, in order to have a fair comparison, we
have tested our algorithm on the different number of subjects
and show comparison with other state-of-the-art methods in
Table 3. More specifically, we chose the number of subjects as
95, 459, 867, and 1,066, respectively. As they were examined on a
different number of subjects, we didn’t repeat their experiments
but reported their datasets and results, only using same order of
magnitude of subjects to run our model for better comparison.
It can be seen that our results outperform other methods on the
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FIGURE 4 | Comparison with traditional and GCN models including siamese GCN (Ktena et al., 2018), Random Forest, SVM, and GCN.

TABLE 2 | Comparisons of different methods.

Model Accuracy AUC Precision Recall F1-score

SVM 66.0±3.7% 65.9±3.7% 65.9±3.9% 65.9±3.7% 65.9±3.9%

Random forest 65.3±2.4% 65.1±2.4% 65.7±2.4% 65.1±2.4% 65.0±2.5%

GCN 73.2±2.7% 78.7±3.0% 75.8±4.0% 71.7±6.5% 73.4±3.2%

Siamises GCN 59.4±1.7% 58.6±1.9% 60.7±1.2% 62.3±12.0% 61.3±6.9%

ID-GCN(our model) 76.3±3.7% 77.5±4.9% 75±5.9% 81.0±5.5% 77.6±2.8%

TABLE 3 | Comparison with other SOTA methods.

Model Number of subjects Accuracy

DNN (Li et al., 2018) 95 85.3%

Combined MCNNEs (Aghdam et al., 2019) 459 70.45%

CNN-EW (Xing et al., 2018) 1096 66.88%

ASD-DiagNet (Eslami et al., 2019) 1035 70.1%

cGCN (Wang et al., 2021) 1057 70.7%

3D CNN (Thomas et al., 2020) 1162 64%

ID-GCN(our model)

95 87.38%

459 77.42%

867 76.3%

1066 71.44%

same order of magnitude of data. It’s worth noting that with data
from different centers, the accuracy may vary. As demonstrated
in Table 3, we can notice that more subjects do not guarantee
better performance which is partially due to the great inter-center
and inter-subject variability. When using 95 subjects from the
same acquisition center, both (Li et al., 2018) and our method
achieve high classification accuracy, and our proposed method

obtains better classification performance compared with that of
Li et al. (2018). Furthermore, the model performance of every
single center is provided in Table 4 that we train all the subjects
and test the proposed method for each center separately. It
shows that the classification accuracy varies across the centers,
indicating great inter-center variability.

Additionally, the studies with multimodality data often
demonstrate better performances using the same method. For
example, Rakić et al. (2020) gained 85.06% of accuracy using
both sMRI and fMRI features in the classification of 817
subjects. However, in this paper, we focus on the functional
connectivity features. Although the proposed method has
improved the classification accuracy compared with other GCN
models and has interpretability, it still has several limitations.
The temporal variations of brain connectivity have been utilized
to represent the dynamics of brain connectivity. However, it’s
unable to fully delineate the time-varying connectivity. The
classification accuracy of our interpretable model is limited
compared with some networks without interpretability. For
better performance, RNN model with temporal connectivity
networks will be explored in our future work. Additionally, the
biological interpretation of the biomarkers selected from our
invertible network has been limited investigated. The effective
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center-invariant biomarkers with sufficient biological meanings
are warranted in future studies.

The results of ablation experiments are demonstrated in
Table 5. It can be seen from the table that after adding
spatial information as graph input, the accuracy of the model
increased by over 1%, indicating the importance of the spatial
information. As the number of connectivity features is large,
great individual variation and noise may disturb the robust
feature learning and degrade the classification performance.
The feature selection, therefore, contributed to a significant
improvement in the classification accuracy. We also evaluated
other dimension reduction approach, i.e., Principal Component
Analysis, for feature selection. As shown in Table 5, PCA led to
less improvement in the classification accuracy. It may be due to
the difficulty in the alignment of principal components across the

TABLE 4 | Model performance in each single center.

Site Number of subjects Accuracy

PITT 57 71.7±6.7%

TRINITY 49 72.0±11.7%

UM_1 110 75.5±3.6%

UM_2 35 82.9±10.7%

USM 101 84.8±7.0%

YALE 56 80.0±6.7%

LEUVEN_1 29 73.3±8.3%

LEUVEN_2 35 74.3±10.7%

KKI 55 74.5±8.9%

NYU 184 76.2±5.2%

UCLA_1 73 74.7±8.8%

UCLA_2 26 83.3±18.2%

MAX_MUN 57 66.6±11.9%

TOTAL 867 76.3±3.7%

TABLE 5 | Ablation study on the effects of different components.

Model Accuracy

GCN 73.2%

GCN adding spatial information 74.5%

ID-GCN with PCA 74.2%

ID-GCN without dynamic features 76.1%

ID-GCN(our model) 76.3%

subjects. Moreover, the temporal dynamics benefited the GCN
model with a small accuracy gain.

In order to better understand ASD, we further identified
the disease-related features by sorting the importance of each
node’s features extracted under the 5-fold cross-validation. The
top 10% important connectivity edges were reconstructed as
demonstrated in Figure 5 and Table 6. It’s noted that the
connections between Right Pallidum and Right Inferior Frontal
Gyrus, Left Frontal Orbital Cortex and Left Central Opercular
Cortex, and connections involving Left Supramarginal Gyrus
and Right Inferior Temporal Gyrus greatly contributed to the
classification accuracy. Additionally, we evaluated the impacts
of nodes by excluding each node and examining its influence
on classification performance. With such lesion operation, we
were able to assess the importance of each node. As shown
in Figure 6, the highly-rated ROIs include Right Pallidum,
Right Inferior Frontal Gyrus (triangle part), Right Inferior
Temporal Gyrus (anterior division), Left Frontal Orbital Cortex,
Left Temporal Fusiform Cortex (posterior division), and Right
Temporal Occipital Fusiform Cortex, indicating their potential
ROIs for ASD.

5. DISCUSSION AND CONCLUSION

The early diagnosis of ASD is a challenging task as great
variations exist in the symptoms. In addition to the clinical
criterion, researchers have tried to identify the effective
neuroimaging biomarkers for the better diagnosis of ASD.
Brain connectivity features are promising for studying ASD as

TABLE 6 | Important connectivity edges selected by feature reconstruction.

ROI1 ROI2

Right Pallidum Right Inferior Frontal Gyrus

Left Frontal Orbital Cortex Left Central Opercular Cortex

Left Temporal Fusiform Cortex

(posterior division)

Left Heschl’s Gyrus (includes H1

and H2)

Left Supramarginal Gyrus

(anterior division)

Right Temporal Occipital

Fusiform Cortex

Left Supramarginal Gyrus

(posterior division)

Left Frontal Orbital Cortex

Right Inferior Temporal Gyrus

(anterior division)

Left Supramarginal Gyrus

(anterior division)

Right Inferior Temporal Gyrus

(anterior division)

Left Lateral Occipital Cortex

(inferior division)

FIGURE 5 | Selected key connectivity features for ASD classification.
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FIGURE 6 | Selected key ROIs for ASD classification, including Right Pallidum (red), Right Inferior Frontal Gyrus (triangle part) (orange), Right Inferior Temporal Gyrus

(anterior division) (yellow), Left Frontal Orbital Cortex (green), Left Temporal Fusiform Cortex (posterior division) (cyan), and Right Temporal Occipital Fusiform Cortex

(blue).

TABLE 7 | The classification accuracy with different k.

The value of k 2 3 4 5 6 8 10 15 20

Accuracy 73.7% 76.3% 75.1% 76.0% 75.0% 75.0% 75.8% 74.7% 75.3%

TABLE 8 | The classification accuracy with different M.

The value of M 10 30 48 50 70 90 110

Accuracy 72.1% 73.6% 76.3% 76.0% 75.7% 74.6% 73.9%

widespread connectivity changes have been observed in ASD.
With various statistical and machine learning methods, we have
largely expanded our understanding of the disease. However, the
classification performance based on brain connectivity features
is still limited, partially due to the insufficient representation
ability for multi-center ASD data. It’s, therefore, critical to
learn the robust connectivity features for better representing the
disease population. While the deep learning-based methods are
promising, mos of them are designed in a black-box principle,
challenging their biological interpretability.

In this study, we propose an explainable graph convolutional
network, namely ID-GCN for multi-center ASD data
classification and investigation by incorporating the functional,
spatial and temporal information of the connectivity networks
and using the invertible network to select interpretable
biomarkers. The use of GCN aims to integrate the high-
dimensional features of each node, and the invertible network is
capable of reconstructing the extracted disease-related features
back to the original connectivity graph. The proposed model
contains two different GCN for brain functional connectivity
and spatial connectivity, respectively. A random forest is adopted
to narrow the feature space and reduce the redundancy of the
data. We further integrate the dynamics of brain connectivity
as important features for ASD classification. The experimental
results on ABIDE dataset suggest the efficacy of our model. It
is a potential classifier for large multi-center datasets despite
their variations.

When classifying the ASD subjects, several connectivity
features reconstructed by the model are assigned with higher
importance. Those connections involve Right Pallidum, Right
Inferior Frontal Gyrus, Left Frontal Orbital Cortex, Left

Central Opercular Cortex, Left Temporal Fusiform Cortex,
Right Temporal Occipital Fusiform Cortex, Left Supramarginal
Gyrus and Right Inferior Temporal Gyrus, which are mostly
consistent with the prior studies. For instance, the altered
connectivity of Temporal Pole, Pallidum, and Frontal Orbital
Cortex in ASD has been reported in Yerys et al. (2015);
Dajani and Uddin (2016); Monk et al. (2009). In another line
of studies, the changes of connectivity patterns in Fusiform
Gyrus and Inferior Frontal Gyrus have been investigated
for ASD subjects (Kleinhans et al., 2008; Xu et al., 2020).
We additionally performed lesion analysis that sequentially
removed each ROI and examined its impact on the classification
accuracy. According to their contributions to the classification
performance, eight ROIs including Right Superior Temporal
Gyrus, Right Superior Frontal Gyrus, Right Pallidum, Right
Inferior Frontal Gyrus (triangle part), Right Inferior Temporal
Gyrus (anterior division), Left Frontal Orbital Cortex, Left
Temporal Fusiform Cortex (posterior division), and Right
Temporal Occipital Fusiform Cortex were chosen which are
mostly involved in the connectivity features reconstructed by ID-
GCN. It further substantiates the explainable features learned by
the proposed method.

There are several parameters that need to be determined
in the proposed model, and we have evaluated the impacts
of different parameters on classification performance. Table 7
demonstrates the classification accuracy as a function of
the numbers of neighbors. It’s observed that classification
performance depends on the values of k, and when k=3,
we obtained the highest classification accuracy. It indicates
that there may be only a few connected areas that are most
robust across the subjects. We have also chosen the number of
features M using the grid search in Table 8, and when M=48,
it achieved the best performance. If the number of M is too
small or too large, the performance of the model will decline
greatly.

While the proposed method is capable to identify the
disease-related features and achieves a competitive classification
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performance, it still has several limitations. The temporal
variations of brain connectivity have been utilized to represent
the dynamics of brain connectivity. However, it’s unable to
fully delineate the time-varying connectivity patterns, which
can be further extended in our future work. The classification
accuracy of our interpretable model is limited compared
with some recent networks without interpretable modules.
To further improve the performance, RNN models with
temporal connectivity networks can be potential. Additionally,
the biological interpretation of the biomarkers selected from our
invertible network has been limited investigated. The effective
center-invariant biomarkers with sufficient biological meanings
are warranted in future studies.
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