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Radiotherapy has been optimized over the last decades not only through

technological advances, but also through the translation of biological

knowledge into clinical treatment schedules. Optimization of fractionation

schedules and/or the introduction of simultaneous combined systemic treat-

ment have significantly improved tumour cure rates in several cancer types.

With modern techniques, we are currently able to measure factors of radia-

tion resistance or radiation sensitivity in patient tumours; the definition of

new biomarkers is expected to further enable personalized treatments. In

this Review article, we overview important translation paths and summa-

rize the quality requirements for preclinical and translational studies that

will help to avoid bias in trial results.

1. Introduction

Radiotherapy is, together with surgery and systemic

treatments, one of the three main treatment options in

oncology. Together with surgery, radiotherapy is one

of the two treatment options that are able to cure solid

tumours. The curative effect of radiotherapy depends

on the inactivation of all cancer stem cells, that is, of

those tumour cells that have an unlimited potential of

cell division and thus can repopulate a tumour if sur-

viving treatment. The potential of this subgroup of

tumour cells has been described already many decades

ago (Hewitt and Wilson, 1959; Steel and Stephens,

1983) in radiobiological research, although at this time

no markers existed to identify stem-cell-rich subpopu-

lations in tumours. Parameters that impact sensitivity
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of tumour cells to fractionated radiotherapy1, includ-

ing overall treatment time, dose per treatment fraction,

and the interval between fractions, are considered in

the design of fractionation treatment schedules,. With

the advent of molecular techniques and methods to

identify molecular markers, molecular or cell-based

treatment options evolved, and radiobiological and

translational radiooncological research developed into

new areas allowing for better characterization of

tumours and the development of personalized treat-

ments, not only through the modification of radiation

parameters, but also through combined treatment

approaches.

2. Biological research with a potential
to improve clinical radiotherapy

The following parameters are examples of a currently

long list of putative biomarkers and potential targets

for combined radiotherapy treatment schedules. We

selected parameters that are relatively far developed.

2.1. Human papillomavirus

The infection with oncogenic viruses has been identi-

fied to be involved in the development of various can-

cers. For head and neck squamous cell carcinomas

(HNSCC), it has been shown that the infection with

the human papillomavirus (HPV) is another risk factor

for the development of the disease in addition to the

well-accepted risk factors smoking and alcohol con-

sumption. Moreover, it has been shown in a number

of preclinical and clinical studies that tumours that are

driven by HPV are more radiosensitive than HPV-neg-

ative tumours, which is associated with impaired DNA

repair (reviewed in Lassen (2010)). This suggests that

patients with HPV-positive HNSCC are being over-

treated with the standard therapy and reduction in

dose could lead to reduced toxicity. Therefore, a num-

ber of clinical trials are currently investigating if the

reduction of radiation dose leads to a similar high

local tumour control but less long-term side effects

due to dose de-escalation (www.clinicaltrials.gov; e.g.

NCT01088802, NCT01530997, NCT03396718).

2.2. Hypoxia

Numerous preclinical and clinical studies have confirmed

that hypoxic tumours are associated with reduced radia-

tion sensitivity and, consequently, poor response rates to

radiotherapy (e.g. Nordsmark et al., 2005; Yaromina

et al., 2010; Zips et al., 2011). Hypoxia also predicts for

distant spread of metastases and is therefore a negative

prognostic factor (Bristow and Hill, 2008). In vivo analy-

ses have shown that pretherapeutic tumour hypoxia sig-

nificantly impacts local tumour control after

radiotherapy (Yaromina et al., 2010), which underlines

its possible value as prognostic biomarker.

The strong progress in development of biological and

functional imaging enables investigation of tumour

hypoxia in a noninvasive way. For example, [18F]-fluo-

romisonidazole (FMISO) or [18F]-fluoroazomycin ara-

binoside (FAZA) as specific tracers for hypoxia imaging

in positron emission tomography (PET) can be used in

combination with computed tomography in patients

with head and neck cancer or other tumour entities. In a

prospective study on patients with locally advanced

squamous cell carcinoma of the head and neck, a strong

association of FMISO-measured hypoxia after the first

two weeks of treatment with local progression-free sur-

vival after radiochemotherapy was demonstrated (Lock

et al., 2017; Zips et al., 2012). Similar correlations

between hypoxia and outcome of radiotherapy were

obtained in further patient cohorts with FMISO-PET

(Wiedenmann et al., 2015) and FAZA-PET (Mortensen

et al., 2012). These clinical trials are the basis for first

attempts in personalized treatment prescription (e.g.

dose-escalation trials in high-risk patients), but also for

personalized combined drug treatment with hypoxic

modifiers (Overgaard, 2011).

In addition to the improvement of biological imag-

ing, molecular investigations of tumour specimens for

the assessment of hypoxia-associated or hypoxia-in-

duced gene expression changes are being extensively

carried out. Initial data suggest a predictive role of

such hypoxia-induced gene signatures for the outcome

of patients with HNSCC and other tumours (e.g. Eus-

tace et al., 2013; Toustrup et al., 2011). A prospective

trial is ongoing to validate these promising results (clin

icaltrials.gov NCT02661152).

2.3. Cancer stem cells

As mentioned above, the curative effect of radiother-

apy depends on the inactivation of all cancer stem

cells, that is those tumour cells that are able to re-

grow and cause a tumour recurrence (Baumann et al.,

2008; Clarke et al., 2006). Due to the relevance of this

subpopulation for local tumour control, it is aimed to

integrate putative cancer stem cell markers in prognos-

tic and predictive tests for detection and monitoring of

disease.

1Application of radiotherapy not at once, but in several sessions over usually several weeks.
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In a retrospective analysis of cluster of differentia-

tion 44 (cell surface molecule) (CD44) mRNA and

CD44 protein expression, as putative stem cell markers

on tumour material from patients with early laryngeal

carcinoma, the intertumoural heterogeneity of the stem

cell density as an important factor for local tumour

control after radiotherapy could be shown for the first

time in a clinical dataset (de Jong et al., 2010). In a

multicentre biomarker study of the German Cancer

Consortium Radiation Oncology Group (DKTK-

ROG), CD44 protein expression has been shown to be

a prognostic biomarker in patients with locally

advanced HNSCC after primary radiochemotherapy

(Linge et al., 2016b) as well as after oncological resec-

tion followed by postoperative radiochemotherapy

(Linge et al., 2016a), with CD44 high expressing

tumours being at high risk for tumour recurrence.

2.4. Growth factor receptors

The therapeutic outcome of irradiation can be nega-

tively influenced by the induction of proliferative sig-

nalling pathways that lead to an increased tumour

repopulation with cancer cells. The family of epidermal

growth factor receptors (EGFR) is crucially involved in

this process. Overexpression of the EGFR is frequently

identified in a variety of tumour entities, and several

strategies have been developed to target EGFR in vari-

ous tumours, including EGFR-specific monoclonal anti-

bodies (such as cetuximab) and tyrosine kinase

inhibitors (such as erlotinib, which block the intracellu-

lar component of the receptor). Some clinical data have

shown promising results for radiotherapy combined

with EGFR-targeting treatments: combined treatment

of patients with locally advanced HNSCC with cetux-

imab plus radiotherapy significantly improved overall

survival at 5 years, as compared to radiotherapy alone

(Bonner et al., 2006). However, the conferred advantage

of the combination of radiotherapy with cetuximab is

not superior to current standard treatment (ra-

diochemotherapy) and may even increase some toxicities

(Ang et al., 2014). This highlights the need for using

specific biomarkers to select patients that will mostly

benefit from such a combination therapy. Promising

preclinical data suggest specific gene expressions as

potential biomarkers for personalized combination of

cetuximab with radiotherapy (Koi et al., 2017).

2.5. Immune parameters

More recently, the impact of the immune system on

radiotherapy responses and possible combinations of

immunotherapy with radiotherapy has moved into the

focus of translational studies. For details, see Mondini

et al., 2020. Especially so-called immune-checkpoint

inhibitors showed first promising clinical results also in

patients with metastatic disease. In a curative setting

in patients with stage III non-small-cell lung carci-

noma, who did not have disease progression after two

or more cycles of platinum-based chemoradiotherapy,

durvalumab has been investigated as consolidation

therapy compared with placebo (Antonia et al., 2017).

Durvalumab is a selective, monoclonal antibody that

blocks programmed death-ligand 1 binding to pro-

grammed death 1 and cluster of differentiation 80 (cell

surface molecule), resulting in T cells recognizing and

killing tumour cells. In this randomized phase III

study, 713 patients have been included. Progression-

free survival was significantly longer with durvalumab

compared to placebo, and safety was similar between

the groups (Antonia et al., 2017). The evaluation of

long-term overall survival data within the same trial

confirmed the advantage of durvalumab (Antonia

et al., 2018). Further ongoing trials investigate also

simultaneous treatment approaches in radiotherapy

settings since there is currently a lack of evidence.

3. Putting biological research into
context: a translational example

An example of a population-based approach to

improve the outcomes of radiotherapy by integrating

radiobiological knowledge is the sequence of ran-

domized clinical trials over the past decades by the

Danish Head and Neck Cancer Group (DAHANCA;

Fig. 1; reviewed in (Baumann et al., 2016)). In the

1980s, tumour control was achieved in ~ 30% of a

specific group of HNSCC patients treated with

radiotherapy. The first step was to reduce the nega-

tive impact of hypoxia with the successful introduc-

tion of the hypoxic cell radiosensitizer nimorazole.

Next, the overall treatment time (time from first to

last fractionation) was reduced to overcome regrowth

of cancer stem cells during treatment. This was

achieved by accelerated fractionation, that is by giv-

ing more fractions per week and reducing total num-

ber of weeks. Finally, chemotherapy was added to

the hypoxic modification and the use of accelerated

fractionation, and tumour control is now more than

80% in this group of HNSCC patients (Fig. 1).

Other factors, like technological improvements in

identifying the tumour targets, have certainly con-

tributed (for details, see Fiorino et al., 2020), but

the counteraction of biological factors of radiother-

apy resistance has played a major role in the impres-

sive improvements over time.
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Setting up on the optimization of fractionation and

combined treatments, individualization of radiotherapy

is another important strategy to improve treatment

outcome. An example is the evaluation of biomarkers

for personalized radio(chemo)therapy in head and

neck cancer by the ROG of the DKTK. Within this

multi-institutional retrospective–prospective study, a

retrospective cohort of patients with primary or post-

operative radiochemotherapy was set up. The multi-in-

stitutional approach allowed very strong inclusion

criteria, leading to a very high homogeneity of the

patient parameters in the cohort. After centralized pro-

cessing of tumour material, hypothesis-based evalua-

tion of multiple candidate biomarkers was performed

by the participating centres. HPV positivity was con-

firmed as a strong biomarker for both primary and

postoperative radiochemotherapy (Linge et al., 2016b;

Lohaus et al., 2014). All biomarker data were fed into

a joint biostatistical analysis that supported a prognos-

tic value of a combination of tumour size, HPV status,

hypoxia-related gene expression and putative cancer

stem cell markers for treatment with primary

radiochemotherapy. In addition, genetic variants, that

is DNA-repair-related single nucleotide polymorphisms

and copy number variations, and specific tumour cell-

specific receptor expressions [C-X-C motif chemokine

receptor 4 (CXCR-4)] may increase the predictive

value of the mentioned biomarker set (in preparation).

These results will be validated in a prospective cohort

that has already finished recruitment and can be anal-

ysed for treatment results in 2020. In parallel, HPV

status as a marker for radiosensitivity of tumour cells

is currently evaluated in an interventional trial, apply-

ing reduced radiation doses in postoperative radio

(chemo)therapy schedules in HPV-positive oropharyn-

geal cancer patients (clinicaltrials.gov NCT03396718).

If successful, this approach can provide a basis for

reducing the currently high severe late toxicity rate in

this group of patients while keeping cure rates con-

stant.

4. Coupling biological research with
radiotherapy: how to avoid negative
clinical trials

The fact that currently most phase II clinical trials

have had negative results may rely on various reasons.

One major issue is the quality of data generated pre-

clinically before initiation of a clinical trial. To set up

a valid hypothesis for an early clinical trial, preclini-

cal-translational experiments need to be performed as

closely as possible to the clinical situation, concerning

endpoints, radiation treatment schedule, potential stan-

dard for combined treatments and physical quality

assurance for radiation dose and dose distribution

(Coleman et al., 2016). A frequently used preclinical

in vivo endpoint allowing relatively high throughput

for screening or mechanistic evaluations is tumour

growth delay, that is the time that tumours need after

treatment to reach a multiple of their starting volume,

compared to standard treatment. However, it is known

that especially in combined treatment schedules, this

endpoint does not necessarily predict the curative

potential of a treatment (Krause et al., 2006). Thus,

before start of a clinical trial aiming at an improved

curative effect of radiotherapy, a local tumour control

assay should be performed measuring the dose that is

needed to reach permanent local control in 50% of the

tumours (TCD50). This assay is time-, labour- and

cost-intensive, but excludes many combined treatments

by proving nonsuperiority over standard treatment

despite promising tumour growth delay data (Krause

et al., 2006). Beyond the experimental methods,

another issue is the quality assurance of preclinical tri-

als. To reduce the risk of bias, specific quality mea-

sures need to be considered, including sample size

calculations, inclusion and exclusion criteria, random-

ization, blinded assessment of outcome, and reporting

of negative results (Macleod et al., 2015). Homogene-

ity of preclinical treatments has to be assured by

documentation of all treatments and doses, by

exclusion rules in case of mistakes, and by physical

assurance of homogeneous irradiation doses by regu-

lar dosimetry measurements at the experimental
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Fig. 1. Integration of radiobiological knowledge to counteract

radiotherapy resistance, showing how chance of tumour control

5 years after treatment has improved through sequential

randomized clinical trials by the DAHANCA on patients with

HNSCC (stage 3–4 laryngeal and pharyngeal cancer) (Baumann

et al., 2016).
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irradiation machine. A stringent guideline for publica-

tion of in vivo results (ARRIVE) is available with rec-

ommendations for content that should be provided to

insure unbiased information of the reader (Kilkenny

et al., 2010).

Also, translational clinical trials on biomarkers have

to follow stringent quality criteria. In a first phase of a

translational study, biological factors related to treat-

ment outcome may be identified on retrospectively or

prospectively collected data. Here, false-positive results

have to be avoided, for example by estimating bias

due to patient selection, heterogeneous procedures in

collection, storage and analysis of biologic material,

differences in treatment and follow-up between the

participating centres. Also, multiple-testing corrections

and validation approaches should be applied on data-

sets with a larger number of analysed parameters. In

particular, complex modelling strategies for biomarker

identification and outcome prediction may lead to

overly optimistic results in model development, since

they adapt too strongly to the given data and are thus

not generalizable to new datasets. Hence, the general-

izability of the results has to be tested, for example

using cross validation or, even better, in validation on

external multicentre datasets (Collins et al., 2015;

Schulz et al., 2010). In addition, a second, prospective

validation may be helpful to further reduce the risk of

biased results. After successful validation, an interven-

tional clinical trial may be conducted to test the effi-

cacy of one or more defined treatment modifications

for patient groups that are selected based on the most

promising biomarker signatures defined in the previous

analyses. Stratified block randomization, taking the

most important confounders into account, should be

applied, and double blinding should be preferred in

case the effect of novel drugs is investigated. To avoid

negative trials, a suitable primary endpoint has to be

defined and the final statistical test has to be correctly

chosen, accounting for competing risks, censored data

and patient dropout. In addition, a realistic estimate

of the expected effect and variability in the primary

endpoint is decisive. Monitoring should be performed

in accordance with good clinical practice including site

initiation, interim monitoring and closeout. Standard

operating procedures have to be clearly defined, and

procedures for data acquisition and storage need to be

homogenized between participating centres in order to

avoid site-specific bias and missing data. Advanced

biomarker-specific trial designs are available that may

enhance the success probability of the trial and com-

bine the steps described above. This should provide

increased personalization and success when translated

into ‘real-world outcome’ studies in populations with

varying comorbidity (Antoniou et al., 2017, 2018; Lin

and He, 2015). Specifically for clinical trials on com-

bined radiotherapy and molecular targeted drugs, one

of the best-known examples for a lack of wide clinical

implementation (even despite a positive phase III trial)

was on combined radiotherapy and the anti-EGFR

antibody cetuximab (Bonner et al., 2006). In this speci-

fic case, there has been a preclinical in vivo study on

TCD50 for single dose irradiation before, showing a

major improvement of local tumour control after com-

bined treatment versus irradiation alone (Milas et al.,

2000). The clinical trial also showed superiority of the

combined treatment over radiotherapy alone; however,

superiority over standard combined radiochemother-

apy could not be shown in later analyses (Caudell

et al., 2008). The fact that standard treatment changed

from radiotherapy to radiochemotherapy between

preparation of the protocol and final data analysis was

likely not the only reason for this. More importantly,

Box 1 Preclinical and translational quality assurance

in radiooncological studies

Preclinical:

� Choose treatment schedule and endpoint close to clinical
situation.

� Perform sample size and power calculations.

� Define inclusion and exclusion criteria.

� Use randomized designs and blinded assessment of out-
come.

� Document all treatments, define exclusion criteria in case
of experimental mistakes, and assure homogeneous irradia-
tion dose (dosimetry).

� Publish negative data.

� Consider ARRIVE guidelines for publication (Kilkenny
et al., 2010).

Translational:

� Consider TRIPOD statement for biomarker data (Collins
et al., 2015).

� Consider CONSORT statement for randomized data
(Schulz et al., 2010).

� Assure homogeneous patient treatment and procedures for
biomaterial collection and processing.

� Conduct interventional clinical trial based on a hypothesis
defined in validated trials.

� Use stratified block randomization and double-blinded
designs, whenever possible.

� Define a meaningful primary endpoint and choose an ade-
quate statistical test.

� Use homogeneous procedures between centers for data
acquisition, biomaterial storage etc.

� Perform regular monitoring during the trial and before
data analysis
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there is a heterogeneity of efficacy of the treatment

between tumours of the same origin and histology.

Potential predictive biomarkers as a result of extensive

in vivo experiments with different tumour models have

been described later on (without validation so far) (Koi

et al., 2017). Biomarker stratification or biomarker-

based treatment decisions appear as an important part of

clinical trials on novel combined treatment concepts with

molecularly targeted agents. Ideally, such biomarkers

should be defined preclinically, using the combined treat-

ment that is to be tested in the clinical trial compared to

the standard clinical treatment, or, if available, within

early clinical studies or retrospective clinical data. If a

treatment decision bases on the biomarker, the marker

needs to be validated (see above).

For prediction model studies, the TRIPOD statement,

which gives a checklist of 22 items, deemed essential for

transparent reporting of such a study, can be seen as

state-of-the-art reporting guideline (Collins et al., 2015).

For randomized clinical trials, the CONSORT statement

gives similar guidance (Schulz et al., 2010). Box 1 gives

an overview on issues to be considered for quality assur-

ance in preclinical and clinical trials.

5. Future strategies and conclusion

Translation of preclinical radiobiological knowledge

into clinical radiotherapy treatment schedules has lar-

gely improved outcome of radiotherapy or combined

treatments over the last decades. This includes the

optimization of fractionation schedules based on the

results of current biological research, and, partly, also

of combined treatment schedules. Personalization of

treatments will lead to another major advantage. This

will at a first step involve the definition of patient

groups based on biological risk factors, for which a

very good or a very poor predicted outcome after stan-

dard treatment is expected, with the treatment being

adapted to identified and validated biomarkers. To

further develop such approaches into true individual

treatment decisions, learning data will help to support

treatment decisions in clinical trials. Such databases

use parameters of the individual patient and features

of the tumour to suggest an individual treatment.

Treatment outcome data are later re-fed into the data-

base to further optimize the prediction model. Along

with individualization of radiation doses or, poten-

tially, fractionation schedules, a major research field is

still the combination of radiotherapy with systemic

treatments, including molecular targeted drugs or

immunotherapy, for which in many cases resistance

mechanisms as well as biomarkers are currently not

well known.
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