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Heterostructures formed through abraded
van der Waals materials
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To fully exploit van der Waals materials and their vertically stacked heterostructures, new
mass-scalable production routes which are low cost but preserve the high electronic and
optical quality of the single crystals are required. Here, we demonstrate an approach to
realise a variety of functional heterostructures based on van der Waals nanocrystal films
produced through the mechanical abrasion of bulk powders. We find significant performance
enhancements in abraded heterostructures compared to those fabricated through inkjet
printing of nanocrystal dispersions. To highlight the simplicity, applicability and scalability of
the device fabrication, we demonstrate a multitude of different functional heterostructures
such as resistors, capacitors and photovoltaics. We also demonstrate the creation of energy
harvesting devices, such as large area catalytically active coatings for the hydrogen evolution
reaction and enhanced triboelectric nanogenerator performance in multilayer films. The ease
of device production makes this a promising technological route for up-scalable films and
heterostructures.
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igh-quality van der Waals (vdW) heterostructures are

produced by stacking together different two-dimensional

(2D) materials!:2. The properties are highly customisable
depending on the component materials and the layer sequence,
providing use in a wide variety of applications. Compared with
conventional compound semiconductor heterostructure devices,
they have the potential to offer many advantages. For instance, they
are lightweight, semi-transparent and are compatible with flexible
substrates, whilst displaying competitive performance. The highest
quality vdW heterostructures out-perform conventional materials,
but they are still mainly constructed by mechanical exfoliation of
bulk single crystals and built up layer-by-layer by standard
mechanical transfer procedures!—3. However, this precise yet
enormously time-consuming method is not scalable and alternative
device manufacturing routes are urgently required to achieve
widespread uptake of these materials.

Chemical vapour deposition (CVD)* is a promising synthesis
approach for vdW heterostructures, where monolayer films are
sequentially grown layer-by-layer at high temperatures, with
some of the resulting material heterostructures beginning to
approach the performance levels of exfoliated crystals. However,
the initial investment required and energy cost of CVD growth is
high for a given quantity of monolayer material produced. Fur-
thermore, the growth of multilayer systems becomes increasingly
complex with the approach confined to a small number of 2D
material combinations. Finally, CVD growth requires the use of
catalyst substrates and subsequent transfer of the heterostructure
films; this often introduces undesirable contamination, tears and
cracks which prevent the formation of high-quality vertical het-
erostructure devices*.

An alternative low-cost route for mass-scalable production of
nanocrystal heterostructures is through printing of liquid phase
exfoliated (LPE) dispersions®~’. In this scheme, the vdW material
dispersions are produced through either ultra-sonication or shear
force exfoliation of bulk vdW microcrystals in suitable solventsS.
This leads to stable dispersions which can then be subsequently
printed on a variety of substrates. By mixing the dispersions with
specialist binders heterostructures can also be built up layer-by-
layer>. However, strong disorder in the crystals caused by oxi-
dation, small crystallite size and poor interface quality leads to
severe performance degradation compared with devices based on
mechanically exfoliated or CVD grown 2D films. In addition,
this production method is unlikely to be compatible with the
many highly air sensitive vdW materials that are attracting con-
siderable interest recently due to their exotic properties®!?, lim-
iting the scope of this technology. Moreover, residual solvent in
the printed films has been shown to degrade the electrical
properties of the devices by further reducing the quality of the
interface between neighbouring nanocrystals!!.

This work sets out a route to build up semi-transparent and
flexible vdW nanocrystal heterostructures through the simplest
possible technique that is through a mechanical abrasion process.
Here, we show that high-quality electronic and optoelectronic
heterostructures can be readily fabricated within a matter of
minutes on the scale of 10s of cm and could easily be scaled up
further. The production of rubbed/abraded films have yielded
flexible conductive graphite coatings and triboelectric properties
in abraded intercalated graphite on steel!>13, However, to date,
no demonstration of multilayer electronic/optoelectronic devices
have been shown. Most surprisingly, using high-resolution
scanning transmission electron microscopy (STEM), we observe
sharp heterointerfaces formed as a result of the direct abrasion
process, which has the potential to facilitate a wide variety of
different devices through this approach.

Specifically, in this work we focus on combining several vdW
materials including graphite, MoS,, WS,, MoSe, and hexagonal

boron nitride (hBN). In order to highlight the applicability of the
abrasive method we show several examples of electronic and
optoelectronic heterostructures including thin graphite field effect
transistors, vertical transition metal dichalcogenide (TMDC)
photodetectors, photovoltaics, hBN capacitors, hydrogen evolu-
tion reaction (HER) catalysts and multilayer films for triboelectric
nanogenerator (TENG), many of which show significant
improvements in device performance compared with those pro-
duced by inkjet printing of LPE materials.

Results

Device characterisation and fabrication. The general approach
used to produce thin films and devices on SiO, as well as polymer
substrates is shown in Fig. la. Essentially, we make use of a
viscoelastic polymer, namely polydimethylsiloxane (PDMS),
which is cut into 1 cm X 1 cm sections and then pressed into a
bulk vdW material powder (graphite, TMDCs, etc). This ensures
full adhesion of the micron-sized powder particles to the PDMS
surface and allows it to be used as a writing pad. All of the
powders investigated adhere equally well to the surface of the
PDMS. The PDMS pad is then oscillated back and forth against
the substrate with vdW materials embedded between it. We
expect that the key parameters which govern the abrasion process
on different substrates include the substrate roughness, vdW
material hardness!4 and the relative position on the triboelectric
series!® between the vdW material and the substrate (electrostatic
charging). Subsequent deposition of material is then due to a
friction-facilitated basal cleavage of micro-crystallites within the
bulk material powder as it is rubbed against the layers already
adhered to the substrate, overall resulting in the deposition of a
thin abraded nanocrystalline film. The thickness of the deposited
material is controlled by the rubbing time and the force applied to
the writing pad. To better quantify the abrasion process we also
modified a computer numerical control (CNC) micro engraver
system to study the effect of force, feed rate and the sheet resis-
tance vs number of write passes as discussed in “Device fabrica-
tion” under “Methods” section and in Supplementary Note 12,
Figs. 22 and 23.

To ensure that the vdW material is only written at selective
locations, a tape mask can be applied to the substrate before
writing (note this is not necessary with the CNC system, unless
<5 mm pattern resolution is required). After the design has been
written, the tape mask is removed leaving only the unmasked
region coated in the vdW material, Fig. 1a (Steps 1-3). This
process can then be repeated to build up bespoke hetero-
structures, Fig. la (Step 4). To confirm the structure of our
multilayer films we perform STEM energy dispersive X-ray
spectroscopy (EDS) elemental mapping of a cross-sectional
lamellar, Fig. 1b; ref. 1. This shows a magnified region of a
hBN-Graphite-WS, heterostructure. The elemental maps reveal
the absence of material intermixing, allowing for the formation
of heterointerfaces (further STEM images and characterisation
can be found in Supplementary Note 1, Figs. 1 and 2). The entire
fabrication process was always performed under ambient
conditions, although it could easily also be reproduced in a
controlled inert gas or high vacuum environment, widening the
scope of compatible vdW materials.

An example of a set of connected vertical heterostructures
produced through fabrication route 1 is shown in the left of
Fig. 1c, with further details of the fabrication steps found in,
Supplementary Note 3. A limiting factor on device yield when
directly applying a top graphitic electrode was short circuiting,
caused by deposition of the top graphitic electrode breaking the
barrier material layer underneath. Moreover, we find direct
abrasion of graphite onto TMDC’s and hBN frequently
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Fig. 1 Thin films produced through powder abrasion. a Fabrication routes used to produce heterostructures through mechanical abrasion of vdW
powders via a direct write method. b STEM-EDS elemental mapping of an abraded vertical heterostructure (scale bar = 400 nm). ¢ Left: An example of
multilayered vertical junction photodetectors based on a graphite-WS,-graphite architecture produced via fabrication route 1. Right: The same
architecture as the left micrograph but this time following fabrication route two, with the top graphitic electrode transferred from PMGI, which leads to
a higher device yield. d Gate dependence of the channel sheet resistance for a tape thinned graphitic channel using a LiClOs electrolyte (scale bar =
2.5cm). Top left inset: Contour map of the I4-Vsq for different applied gate voltages. Bottom right inset: Optical image of the device. e Typical -V}, for
a 5mm x 0.025 mm two terminal planar device based on WS, films with a mean film thickness of 1um for different levels of applied uniaxial tensile
strain. Inset: V,, is held at 0.5 V and the device is subjected to reversible uniaxial tensile strain. f Impedance spectroscopy for a hBN dielectric capacitor

produced using a 5pum thick hBN film.

damages the barrier material, likely due to the different
materials mechanical properties. While the reverse combina-
tion, e.g. TMDCs on graphite are non-damaging. Recent
calculations!4 predict that graphite is significantly harder than
MoS,, WS, and hBN, which may explain why the former so
easily penetrates barrier layers made out of the latter. In order
to overcome this, we have also developed a separate fabrication
route allowing the successful transfer of the final abraded
graphitic top electrode. This is achieved by first abrading the
graphite onto a polydimethylglutarimide (PMGI) polymer layer
(Fig. 1la, fabrication route 2), before spin coating with
polymethyl methacrylate (PMMA). The sacrificial PMGI layer
is then subsequently dissolved in a bath of MF319 developer
leaving the graphitic film attached to the underside of the
PMMA layer, which can then be transferred directly onto the
target heterostructure.

After device fabrication we characterised our films through a
combination of optical and Raman spectroscopy!’-20, electron
transport, atomic force microscopy (AFM) and scanning electron
microscopy (SEM) to identify the surface roughness and film

thicknesses (See Supplementary Notes 4, 6 and 7). We find the
film roughness, thickness and the Raman spectra to be similar to
that seen in liquid phase graphitic films>2!. We also provide a
study of graphitic film resistance vs transparency which we find to
be comparable with sheer force exfoliated films?2; we expect that
the sheet resistance could be further reduced through intercala-
tion methods which enhance the charge carrier density and
therefore the conductivity?3. Our TMDC films on the other hand
display similar Raman and optical spectra to bulk or exfoliated
crystals?42>,

Important for use in potential applications are the electronic
performance of the films. Interestingly, it is found that the
resistance of thin abraded graphitic channels can be controlled by
application of a gate voltage. In this case we employ an electrolyte
gate, lithium perchlorate (Li*T:ClO57)2%, which is drop-cast over
the channel region and contacted using a thick abraded graphitic
gate electrode, Fig. 1d (inset). The graphite sheet resistance vs
gate voltage is presented, with the inset showing a contour map of
the current vs source drain bias (Iq—V,q) for different applied
gate voltages. We find the electro-neutrality region to be at large
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positive gate voltages indicating strong p-type doping, likely due
to ambient water or oxygen doping?”.

It should be noted that not all substrates are compatible with
direct abrasion of graphite, we found success with a wide
variety of substrates including polyethylene terephthalate
(PET), polytetrafluoroethylene (PTFE), PMGI, PDMS, poly-
ethylene napthalate, polyurethane, aluminium (Al), steel and
paper but not with SiO,. However, all other vdW materials
explored in this work are fully compatible with SiO, substrates
as well. This is likely due to the surface chemistry and
roughness of the different substrates, and particularly in how
these parameters interact with the hardness of the material
being deposited. Unlike previous inkjet printing techniques, no
prior treatment of the substrate is required for strong adhesion
of the vdW material.

Important for any integrated electronic application is the
development of dielectric barriers. Here, we make use of hBN
dielectrics produced through mechanical abrasion over evapo-
rated gold electrodes, resulting in film thicknesses of 5+ 2 um
(estimated from surface profile measurements, Supplementary
Fig. 21). Following the deposition of the hBN dielectric, a strip of
CVD graphene is transferred onto the hBN film (see “Methods”)
with two Au electrodes which act as the source and drain contacts
for the graphene channel (the schematic of the device is shown in
the inset of Fig. 1f). CVD grown graphene is used in order to
allow electrostatic gating of the channel region (see Supplemen-
tary Note 11). This demonstrates that this technology is also
compatible with CVD grown materials and their subsequent
transfer. The total area of the capacitor in this instance was
estimated to be 2x1079m2 The impedance spectrum is
presented in Fig. 1f and can be well described by the capacitive
contribution, |Zt| = (2nfC)~! at low frequency. The gradient to
the linear fit, gives 1/C which yields, C= 9.8 pF. If we assume a
plane plate capacitor model, then the capacitance is related to the
dielectric constant, ¢,, by the relation C = %. This allows us to
make an estimate of the dielectric constant of the abraded hBN
dielectric, which we find to be, ¢, =3 + 1. We note that previous
reports have found widely varying values for the dielectric
constant of nanocrystal hBN dielectrics with values ranging from
1.5 up to 2002128-30, whilst single crystal hBN is known to
possess values around ~431. The lower value in our material could
be due to air voids in the films lowering the effective capacitance
of the whole barrier.

We also performed similar electrical characterisation of vdW
heterostructures and films under strain. Figure le shows some
typical current-bias voltage (I-V},) curves for a planar
Au-WS,-Au channel on a PET substrate, fabricated through
shadow mask evaporation with a 25 um channel separation. The
different curves are for increasing (red to blue) uniaxial strain
generated by bending the 0.5mm thick PET substrate in a
custom-built bending rig (see Supplementary Note 10). We find
that the device resistance increases for increased levels of tensile
strain, expected as the nanocrystals are being separated. We also
find that the resistance changes are highly reversible under both
compressive and tensile strain and highly reproducible over 103
cycles (see Supplementary Note 10, Fig. 19). This demonstrates
that abraded films could be used for future strain sensor
applications.

Photodetection and photovoltaic devices. TMDC’s are indirect
semiconducting materials in the bulk and have already shown
great promise for future flexible photovoltaic and photodetection
applications3?=3> Heterostructures based on LPE nanocrystals
typically display poor photoresponsivity in the order of 10-1000
HA W1, restricting their use in practical applications21:36-39,

We explore the use of abraded TMDC materials for
photodetection applications in a variety of device architectures,
both planar and vertical geometry. Starting with the simplest, we
explore a graphitic channel coated with different TMDC’s as
depicted in the inset of Fig. 2a. This device consists of a tape
thinned graphitic channel (required to increase its transparency)
with a subsequent layer of TMDC nanocrystals (MoS,, WS, or
MoSe,) abraded on top. Similar double-layered devices have
been reported previously and they typically consist of graphene-
semiconductor heterostructures®'-42 or graphene hybrid struc-
tures such as graphene coated with PbS quantum dots*3,
Essentially, upon illumination photoexcited carriers on the
semiconductor transfer to the graphitic layer, resulting in a
change of the free charge carrier density leading to a change of
electrical conductivity. Our planar photodetectors utilise three
different TMDC materials including MoSe,, MoS, and WS,
abraded onto an ~40% transparent graphitic channel material.
Figure 2a shows the temporal response of the photocurrent for
the three different TMDC layers with a white light power density
of 55 mWcm™2 and a bias voltage of V}, =2V, with the optical
excitation aimed through the transparent backside of the PET
substrate (enhancing the light incident on the graphite-TMDC
interface). The first devices were found to yield responsivities up
to 24mAW~! for WS,, constituting more than a 102-103
improvement compared with other printed LPE photodetec-
tors30-3844 A table comparing our devices and those produced
from LPE materials can be found in Supplementary Table 1.

Next we consider a vertical heterostructure geometry consist-
ing of an Au bottom electrode, a TMDC semiconducting barrier
and a CVD graphene top electrode. The CVD upper electrode
was specifically chosen because of its higher electrical conductiv-
ity and optical transparency compared with the abraded graphitic
electrodes allowing us to better characterise the optical quality of
the abraded TMDC layer.

Figure 2b shows the I-V,, curve in the dark for the device
architecture depicted in the inset. A magnified region of the I-V;,
curve in the dark and under white light illumination is shown in
the bottom right inset, indicating a peak photoresponsivity
around Vi, =—1V.

The asymmetry in the I-V}, curves here is due to the difference
in the work functions of the graphene layer (4.6-4.9 €V)#> and Au
(~5.2eV)#® with the conduction band edge of the WS, closely
aligned with the neutrality point of graphene#’. This means that
the conductivity is high at zero bias as electron transport occurs
through the conduction band of the WS,%8, while at negative
voltages the energy difference between the chemical potential of
graphene and the conduction band of WS, increases, therefore
increasing the barrier height and reducing the conductivity.
Figure 2c shows the spectral dependence of the photoresponsivity
for the same Au-WS,-CVD graphene heterostructure with a
peak responsivity found at 2.0 eV, consistent with the peak in
absorption associated with the A-exciton in WS,%. We find
maximal responsivities of 0.15AW~™! at V,=-1V, again
constituting a 102-10* enhancement compared with printed
liquid phase heterostructure photodetectors™21:36. The time
response to the incident white light source is also shown in
the inset of Fig. 2c, with peak photocurrent values of 100 mA at
Vsa = —1V. We also explore similar vertical devices based on n-
and p-type silicon contacts, which show similar responsivity
(see Supplementary Note 5, Fig. 9).

We now move our attention to more complex multilayer
vertical heterostructure devices formed through fabrication route
2 (i.e. top abraded graphite films are transferred from PMGI with
PMMA support layer) where the entire device comprises abraded
films. We focus on graphite-WS,-MoS,-graphite heterostructure
diodes with the top abraded graphite electrode mechanically
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Fig. 2 Mechanically abraded films for photodetection applications. a Temporal response for three planar photodetectors abraded onto PET substrates,
consisting of graphite-MoS, (black), graphite-MoSe, (blue) and graphite-WS, (red). b I-V,, for an Au-WS,-CVD graphene top electrode with device area
of Tmm x1mm and WS, film thickness of ~300 nm. ¢ Spectral dependence of the photocurrent for the device shown in b. Inset: shows the temporal
response of the photocurrent with biexponential decay fitted (red curve). d I-V}, curves for three representative graphite-WS,-MoS,-graphite devices.
Inset: -V}, curves for the top and bottom graphitic electrodes. e -V}, curves for the device D2 shown in d with (red curve) and without (blue curve) white
light excitation of 74 mW,/cm?2. Inset: temporal response of the short circuit photocurrent at Vi, = 0 V. f Photovoltage map of one of our diode structures
measured with a focussed laser (E=3.05eV) with a power output of 0.5 mW and a spot size of diameter 5um.

transferred as described above and illustrated in Fig. 1a. Figure 2d
shows the I-V}, curves of three separate diode devices, all showing
very similar behaviour. In total we fabricated and measured 12
junctions, with 10 showing similar electron transport properties.
The inset of Fig. 2d shows the I-V}, curves of the top and bottom
graphitic electrode respectively, showing Ohmic behaviour with
typical resistances of a few K Ohm’s. Figure 2e shows the I-V},
curve for device D2, with and without white light illumination
with the bottom right inset of Fig. 2e showing the optical
micrograph of the measured device. Such devices offer responsiv-
ities between 4-10 mA W1 at Vi, = —1.0V, slightly lower than
the previous device types likely due to the thicker abraded
graphitic top electrode. We also measured the temporal response
of the photocurrent as shown in the inset (top right) of Fig. 2e,
showing a response times of just ~650 ms owing to the vertical
geometry and short channel lengths.

As the white light measurements are obtained when globally
illuminating the device, it was important to rule out photocurrent
generation from contacts, or elsewhere. To demonstrate this we
performed photovoltage mapping measurements with a 405 nm
laser beam focussed to a spot size of 5pum. The photovoltage
mapping measurement of a typical device is shown in Fig. 2f, with
other devices found in Supplementary Note 5, Fig. 10. We observe
a peak open circuit voltage only over the region where all layers
overlap, indicating vertical electron transport as the dominant
mechanism in these devices. The inhomogeneity in the photo-
voltage maps arising due to variation of the contact quality of the
top graphitic electrodes with the underlying TMDC layer, which

likely explains the order of magnitude reduction in the current for
device D3, Fig. 2d.

Hydrogen evolution reaction (HER). Mono and few layer
TMDC’s have been widely studied for their potential use as
electrocatalysts for the HER. With recent reports of exceptional
HER performance seen in emerging vdW materials>.

The electrochemical performance of our abraded WS, films
have been characterised in a 0.5 M H,SO, solution via linear
sweep voltammetry (LSV)°L. To study activity toward HER for
catalysts, a three-electrode electrochemical cell was utilised
where a PTFE tape was used to define the catalyst area (Fig. 3a).
For comparison, a commercial platinum foil with circular area
of 0.196 cm? was also investigated (Fig. 3b, red curve), showing
a greater HER activity with a near zero overpotential. The HER
polarisation curves of current density are plotted as a function
of potential for a representative WS, film and shown in Fig. 3b
(black curve). The onset potential obtained for our WS, sample
was found to be —97 mV (vs RHE). Superior catalyst materials
give the highest currents at the smallest overpotential. We find
a current density of 10 mAcm ™2 at an overpotential of 350 mV,
comparable with the values observed elsewhere>2->°. This
shows that WS, films produced through mechanical abrasion
are suitable for HER catalyst applications. Figure 3b shows the
polarisation curves obtained from just the gold film substrate
used to deposit WS,. A noticeable improvement was observed
when compared with the gold substrate with the WS, catalyst,
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Fig. 3 WS, films as a catalyst for hydrogen evolution. a Optical micrograph of the electrochemical cell highlighting the different electrodes. b Polarisation
curves comparing Pt, Au and abraded WS, measured in 0.5 M H,SO,4 with a scan rate of 2 mV/s at room temperature. The inset shows the Tafel plots for

our WS, sample.

indicating that the catalytic performance is from the TMDC
film alone. The overpotential is plotted in the inset of Fig. 3b
with the absolute value of the current density within a cathodic
potential window and the corresponding Tafel fit shown by the
red curve. Thus, the polarisation curve shows exponential
behaviour, with the Tafel equation overpotential = a + b log|j|
(where b represents the Tafel slope and j is the current density).
For our WS, films we find a Tafel slope of 148 mV dec™!, see
inset of Fig. 3b. The reported Tafel slopes for WS, films vary
significantly for different studies depending strongly on the
synthesis route. For example, Bonde et al. reported the HER
activity on carbon supported WS, nanoparticles with Tafel
slopes of 135mV dec™173 Xiao et al. used an electrochemical
route to obtain amorphous tungsten sulphide thin films on
nanoporous gold, for which the Tafel slope was 74 mV dec—! %4
Chen et al. found a similar value (78 mV dec~!) for WS,
prepared at 1000 °C>>, However, those synthesis routes often
involve high temperature processes and/or several steps to
obtain the WS, catalysts. In contrast, the WS, catalysts
exfoliated here by mechanical abrasion are rapidly produced
through a single low-cost step from cheap and widely available
TMDC powders which are already industrially manufactured
for lubrication applications?®.

Triboelectric nanogenerator (TENG). The triboelectric effect in
2D materials has recently been reported, with previous devices
typically being based on thin films produced through liquid
phase exfoliation1>22.5758  Here, we demonstrate the use of
mechanically abraded thin films and heterostructures as TENG
electrodes.

Figure 4a shows a schematic for the operation of a simple
TENG charging/discharging cycle using a thin PET substrate and
an abraded nanocrystal film or multilayer stack of abraded 2D
materials.

Typically, high-quality TENG devices rely on two materials on
the opposite end of the triboelectric series®. Recently, it has been
demonstrated that one strategy for enhancing the power output
of a TENG device relies on the use of multilayered structures. In
this case, by introducing charge trapping layers such as MoS,, the
magnitude of induced charge per unit area increases leading to
enhanced power output®’->8,

To realise a working TENG device, we use an Al hammer
wrapped in PTFE tape, with a fluorinated PDMS polymer

placed on our abraded vdW electrodes. We compare the
performance of abraded graphite to a multilayer graphite/n-
type MoS, electrode. The operation of the device can be
explained as follows: after several contacts between both layers,
the PTFE pad is completely released from the PDMS pad, which
is in turn attached to the graphite-MoS, double-layer, at this
point all layers are neutrally charged, Fig. 4a(i) (process 1);
Upon approaching the PTFE to the PDMS, electrons are drawn
into the graphitic electrode which neutralises the system,
resulting in a positive current, Fig. 4a(ii) (process 2); Full
contact between these two materials results in charge transfer
from one to the other based on the triboelectric series, Fig. 4a
(iii) (process 3); Upon releasing, the graphitic electrode is
electrostatically induced by the negatively electrified PDMS,
and at this moment, free electrons in it move from the graphite
electrode to ground, resulting in a negative current, Fig. 4a(iv)
(process 4)1>22:60-62" Tq quantify any performance enhance-
ment due to the TMDC trapping layer we compared the
response for a simple graphitic TENG electrode to the same
graphite layer after coating with a film of MoS, (all other
experimental parameters were kept the same). Figure 4b shows
the generated current through a 1 M Ohm resistor connected in
series with the TENG electrodes, for the bare graphitic
electrode (black) and the graphite-MoS, electrode (red) for
several cycles. We found that our first device yields an
enhancement of ~50% for the TENG electrode with the MoS,
trapping layer (the inset shows an optical image of the setup
used). After confirming an enhancement due to the TMDC
trapping layer we turn our attention to incorporation of the
TENG electrode within a practical device. Figure 4c displays the
open circuit voltage and short circuit current for three cycles of
a secondary, larger device which yields an open circuit voltage
in excess of 15V and short circuit currents of 0.38 pA, giving a
peak power output of 5.7 uW, comparable with more complex
inkjet pinted TENG electrodes®3-64.

This larger electrode was then used to charge a 10pF
capacitor to 9V, Fig. 4d. The inset shows the energy stored on
the capacitor per cycle (~10 nJ), when connected via a rectifying
diode bridge. Given the wide variety of different 2D materials
that can be combined we expect the operating efficiency could
be significantly improved, thus making abraded 2D materials
potential candidates for future flexible energy harvesting TENG
electrodes.
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Fig. 4 TENG films based on abraded van der Waals powders. a Schematic showing the evolution of charge within the device during a charging/
discharging cycle. b Current response through a 1 MQ resistor for an abraded graphite TENG electrode (black) compared with an abraded graphite-MoS,
TENG heterostructure electrode (red). (Inset: PTFE hammer connected to a linear actuator used to generate the voltage pulses). ¢ Top: temporal response
of the open circuit voltage and bottom: temporal response of the short circuit current, for the graphite-TMDC TENG electrode. d Voltage accumulation on
a capacitor vs time (hammer frequency ~3 Hz). Inset top: rectifying circuit used to charge the capacitor. Inset middle left: three glowing LED's during
discharge of the capacitor. Inset right: zoomed in region of the charging curve highlighting the energy stored on the capacitor per cycle.

Discussion
In this work, we demonstrate the production of multilayer het-
erointerfaces through the mechanical abrasion of micron-sized
vdW crystals on a variety of substrates. We argue that the abrasion
works in two stages. Firstly, the deposition of seed layers likely
occurs via an electrostatic attraction based on the material and
substrates relative position on the triboelectric series (electrostatic
charging), the substrate roughness and vdW material hardness.
After the seed layer is deposited, the build up of thicker films is then
due to friction-facilitated basal cleavage of microcrystals as the
powder is rubbed against layers already adhered to the substrate.
However, further work is required to understand how each para-
meter modifies the efficiency of the abrasion process.

Surprisingly, we find that certain combinations of materials can
be abraded directly on top of one another resulting in large area
heterointerfaces which we confirm through STEM and electron
transport studies. We did notice however, that direct abrasion of
graphite directly onto softer materials results in damage (con-
firmed through excessive leakage current in vertical devices or
low device yield). This indicates that multilayering should follow
a sequence based on the material hardness with the preceding
layer being harder than the next to prevent material intermixing
and smeared heterointerfaces or device short circuit.

We find that our optoelectronic devices demonstrate sig-
nificantly enhanced performance compared with LPE materials.

The underlying reason for this is due to larger average crystalite
sizes with reduced disorder compared with LPE films®, we
confirm this through analysing the particle size distributions as
shown in Supplementary Note 2. This is supported by comparing
in and out of plane resistivities of our TMDC films with bulk,
exfoliated and LPE crystals. We quantitatively find that our
TMDC films display similar resistivity to exfoliated*3:66, CVD67
or bulk®® materials, while LPE films display resistivities several
orders of magnitude higher than our devices®37-38, see Supple-
mentary Table 3.

In conclusion we show that a wide variety of functional het-
erostructure devices can be built up from 2D nanocrystals
through a simple mechanical abrasion method, allowing for rapid
up-scaling of heterostructure devices. We demonstrate its prac-
tical use in several simple device applications including gate
tunable semi-transparent graphitic coatings, hBN capacitors and
photodetectors. We have extended the technology and demon-
strated the successful creation of various more complex vertical
heterostructure devices including multilayer photovoltaics and
have shown that abraded WS, coatings can be used directly as
electrocatalysts for HER, as well as demonstrating enhanced
TENG electrodes realised through multilayered heterostructures.
The ease with which the films can be applied, wide choice of
materials, simplicity of up-scalability, low cost and superior
performance compared with liquid phase processing makes this
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technology significantly attractive for a large variety of future
applications.

Methods

Materials. MoS, (234842-100G), MoSe, (778087-5G) and graphite (282863-25G)
powders were purchased from Sigma-Aldrich. WS, powder was acquired from
Manchester Nanomaterials and the hBN powder was purchased from Momentive
(AC6111). CVD graphene on copper foil was purchased from Graphene Super-
market. We used specialised tape (Nitto Denko Corporation) ELP-150E-CM for
thinning the abraded films and used both commercial PDMS pads PF-30-X4
(retention level 4) as well as PDMS pads created in-house (SYLGARD 184). The in-
house PDMS pads were created by using a 10:1 ratio of silicon elastomer base to
curing agent, respectively. These are then mixed thoroughly and left for ~1 h until
any trapped air degasses from the mixture before baking at 100 °C for 1 h, or until
the PDMS solidifies completely. This baking step is optional and serves to increase
the curing speed, as otherwise the mixture will take ~48 h to cure at room tem-
perature. The entire process is completed under ambient conditions, resulting in a
pad of elastic modulus ~1.8 MPa%.

Device fabrication. Devices based on mechanical abrasion are fabricated as
described in the main text. The thickness of the abraded films can be controlled by
the abrasion time and the force applied to the pad used to write the materials on
the substrate. To quantify the force, material feed rate and effect of multiple writing
passes, we modified a CNC writer to mount the PDMS pad, see Supplementary
Note 12. Adjustment of the film thickness via back-peeling with specialist tapes is
also possible in order to tailor the transparency/resistance of a particular film. For
devices including CVD graphene the fabrication was carried out as follows: PMMA
was spin coated onto CVD graphene on copper, a tape window was then attached
and the copper etched away in a 0.1 M aqueous solution of ammonium persulfate
(APS), which nominally took ~6 h, the CVD graphene was then transferred
through two beakers of deionised (DI) water (>8 M Ohm cm) to remove excess
APS. The graphene/PMMA membrane was then transferred onto the target device
completing the heterostructure. The device along with CVD graphene/PMMA was
baked for 1h at 150 °C to improve the mechanical contact of the CVD graphene
with the abraded nanocrystal films. Photodetector devices with amorphous carbon
top electrodes were fabricated following methods found in ref. 7%. Photodetector
devices with n- and p-type silicon substrates were produced by etching a 1 x 1 cm
square of thermally grown SiO, with a sodium biflouride etch solution as described
elsewhere’!. The freshly exposed underlying Si was then directly abraded with
TMDC powder until no pin-holes were observable under a x50 microscope
objective. A large sheet of CVD monolayer graphene top electrode was then
transferred along with PMMA membrane followed by baking at 100 °C for 1h to
improve the contact quality.

Materials characterisation. Raman spectroscopy was carried out using 532 nm
excitation at 1 mW laser power which is focused onto a 1 um spot. AFM was
performed using a Bruker Innova system operating in the tapping mode to ensure
minimal damage to the sample’s surface. The tips used were Nanosensors PPP-
NCHR, which have a radius of curvature smaller than 10 nm and operate in a
nominal frequency of 330 kHz. AFM microscopy images were then analysed using
the open source application, Gwyddion’2. Film thicknesses were measured using an
Alpha-Step D-100 Stylus Profiler using minimum force of 0.03 mg. SEM images
were obtained using a dual-beam xT Nova Nanolab 600 focussed ion beam (FIB)
SEM system. Cross-sectional lamellae were prepared using a Thermo Fisher Helios
660 Dual-Beam FIB SEM. Prior to loading, the samples were coated with a 20 nm
layer of high-quality carbon and a 10 nm layer of Au/Pd, providing a uniform
conductive coating. The samples were then milled with Ga™ ions of decreasing
acceleration voltages and currents (from 30 to 2keV and from 1nA to 15 pA,
respectively) until electron transparency had been reached. Additional over/under-
tilts were required (depending on current) for parallel milling of lamellae without
tapering.

Scanning transmission electron microscopy. The STEM image data was
acquired on an FEI Titan G2 80-200S/TEM operating at 200 kV acceleration
voltage. This microscope is equipped with a Schottky field emission gun and
spherical aberration probe corrector. STEM data were acquired with a probe
current of 380 pA, a semi-convergence angle of 21 mrad and an annular dark field
detector inner angle of 64 mrad. EDS STEM elemental mapping was acquired with
a 4-EDS detector ChemiSTEM system, a collection solid angle of 0.7 srad, a dwell
time of 50 ps and a total acquisition time of 384s.

Optical measurements. Optical transmission spectra were recorded using an
Andor Shamrock 500i spectrograph with 300 lines/mm grating resolution and iDus
420 CCD. A fibre coupled halogen white light source was used to excite the photo-
active samples which generates 1.4 W at the fibre tip. The white light is collimated
to give uniform excitation of 70-100 mW cm~2. The white light source was
blocked for the time response using a mechanical shutter with a response time of
10 ms. The spectral dependence of the photocurrent was carried out using 10 nm

band pass filters to filter the halogen white light source with the power at each
wavelength measured using a Thorlabs photodiode S120C.

Electrical measurements. Electron transport measurements were carried out
using a KE2400 source-metre for both source and gate electrodes. An Agilent
34410A multimeter was used to record the voltage drop over a variable resistor in
order to determine the drain current and photo response for different load resis-
tances. Capacitance spectroscopy was performed using a Rhode and Schwarz,
Hameg HM8118 LCR Bridge.

Electrochemical data were obtained using an Ivium-stat potentiostat/
galvanostat. LSV experiments were carried out in 0.5 M H,SO, with a scan rate of
2mV s~ L. For determination of activity of HER, a three-electrode electrochemical
cell was used, i.e., saturated calomel electrode (SCE) (reference), platinum foil
electrode (counter) and WS,/Au (working). The work electrode area used was
0.147 cm?. The reference electrode was stored in KCI solution and rinsed with
deionised water before use. For the measurements, high-purity N, gas was bubbled
into the solution for at least 60 min before the electrochemical measurements.
The potentials reported here are with respect to reversible hydrogen electrode
(E (RHE) = E (SCE) + 0.273 V>4),

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.
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