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Oxidative stress has been implicated in diabetes long-term complications. In this paper, we summarize the growing evidence
suggesting that hyperglycemia-induced overproduction of superoxide by mitochondrial electron transport chain triggers a
maladaptive response by affecting several metabolic and signaling pathways involved in the pathophysiology of cellular dysfunction
and diabetic complications. In particular, it is our goal to describe physiological mechanisms underlying the mitochondrial free
radical production and regulation to explain the oxidative stress derived from a high intracellular glucose concentration and the
resulting maladaptive response that leads to a cellular dysfunction and pathological state. Finally, we outline potential therapies
for diabetes focused to the prevention of mitochondrial oxidative damage.

1. Introduction

The Diabetes Control and Complications Trial (DCCT) and
the United Kingdom Prospective Diabetes Study (UKPDS)
established that hyperglycemia is the initiating cause of the
diabetic tissue damage which is verified clinically [1, 2]. Even
though this process is modified by both genetic determinants
of individual susceptibility and by independent accelerating
factors such as hypertension, both the repeated acute changes
in cellular metabolism and cumulative long-term changes
in cellular constituents appear to be the mechanisms that
mediate the cell-damaging effects of hyperglycemia.

The cell-damaging effects of hyperglycemia comprise the
damage to a selective subset of cell types directly involved
in diabetic complications: endothelial cells in the vascular
system, mesangial cells in the kidney, neurons and neuroglia
in the nervous system, and pancreatic β cells. Why are
these cells especially vulnerable to hyperglycemic conditions?
In the organism, most cells are able to downregulate the
transport of glucose inside the cell when they are exposed
to a hyperglycemic status, so that their intracellular glu-
cose concentration stays constant. In contrast, the cells
injured by hyperglycemia are those that cannot do this
efficiently [3, 4], leading to high glucose levels inside the

cell. In this scenario, available evidences demonstrate that
a hyperglycemia-induced cellular oxidative stress is the
basic mechanism underlying the physiopathology of the
diabetic complications. Indeed it has been suggested that
increased mitochondrial free radicals production during
hyperglycemia may be central of the pathology of diabetes
[5, 6]. Therefore, mitochondrial free radical production
and oxidation-derived molecular damage may contribute
to the onset, progression, and pathological consequences
of diabetes. Here, we discuss how mitochondrial oxidative
damage occurs, consider the maladaptive mechanisms by
which it may contribute to the pathophysiology of diabetes,
and outline potential therapeutic strategies to prevent it.

2. Physiology of the Mitochondrial
Oxidative Damage

Inside mitochondria, electrons from reduced substrates
move from complexes I and II of the electron transport
chain through complexes III and IV to oxygen, forming water
and causing protons to be pumped across the mitochondrial
inner membrane. When glucose is metabolized through
the tricarboxylic acid (TCA) cycle (or fatty acids through
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β-oxidation), it generates electron donors. The main electron
donor is NADH, which gives electrons to complex I. The
other electron donor generated by the TCA cycle is FADH2,
formed by succinate dehydrogenase, which donates electrons
to complex II. The proton motive force set up by proton
pumping [7] drives protons back through the ATP synthase
in the inner membrane, forming ATP from their precursors
ADP (adenosine diphosphate) and phosphate [8]. The
electron transport system is organized in this way so that the
level of ATP can be precisely regulated.

In this context, a major side reaction is that electrons
may leak from the respiratory chain and react with oxygen
to form the free radical superoxide. Superoxide anion,
the product of a one-electron reduction of oxygen, is the
precursor of most reactive oxygen species (ROS) and a
mediator in oxidative chain reactions [71–75]. So, oxygen
reduction, needed for aerobic life, generates three main
ROS, superoxide radical, hydrogen peroxide (H2O2), and
hydroxyl radical. The hydroxyl radical can be generated by
the combination of superoxide radical and H2O2 in the
presence of traces of iron or copper during the Fenton-
Haber-Weiss reaction. Thus H2O2, although it is not a free
radical, can work as a Trojan horse, diffusing away from
sites of ROS production to generate the hydroxyl and other
reactive radicals at other cellular locations, hereby propa-
gating oxidative damage. Other ROS of probable relevance
for endothelial cells are the perhydroxyl radical, particularly
near membranes where local pH is lower than in the bulk
solution [76], singlet oxygen, and nitric oxide. In the case
of mitochondria, nitric oxide production is much smaller
than superoxide production. However, nitric oxide can still
be important due to interaction with superoxide and other
radicals to produce reactive nitrogen species like peroxyni-
trite [77], which can modify many kinds of macromolecules
and possibly contribute to diabetes vascular complications
[78].

Despite ROS can be generated at various sites and
under various conditions (including, ischaemia-reperfusion,
enzymatic reactions (e.g., the membrane NADPH oxidase,
lipoxygenases, cyclooxygenases, peroxidases, and other heme
proteins), the enzyme xanthine oxidase, peroxisomes, or the
hepatic P-450 microsomal detoxifying system), in healthy
cells under physiological conditions, most ROS are origi-
nated in mitochondria [79]. Currently, it is well known that
mitochondrial ROS generation occurs at complex I [79–
86] and at complex III [87, 88]. Concerning the electron
transport component responsible for mtROS generation
within complex I, flavin mononucleotide, ubisemiquinone
species, or iron-sulphur clusters have been proposed [89–
97].

The finding that the percentage of total electron flow
directed to free radical generation in mitochondria is not
constant in different tissues and different conditions inside
a given tissue suggests that ROS generation is not a simple
byproduct of mitochondrial respiration as is frequently
assumed. Indeed there is a lack of stoichiometric coupling
of ROS production to oxygen consumption [98]. Therefore,
it should be better viewed as a homeostatically controlled
variable.
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Figure 1: Uncoupling proteins (UCPs) respond to hyperglycemia-
induced overproduction of mitochondrial superoxide by catalyzing
mild uncoupling, which lowers membrane potential (ΔΨm) and
decreases superoxide production by mitochondrial complex I and
III of the electron transport chain. Antioxidants limit the impact
of superoxide production on molecular oxidative damage (for
more details, see text). MS: mitochondrial redox shuttles; O2

•−:
superoxide radical; PT: pyruvate transporter; TCA: tricarboxylic
acid cycle.

Are there physiological adaptation mechanisms with
ability to modulate the rate of mitochondrial free radical
generation? Available evidence seems to suggest that this
is the case [99]. Among these adaptations, two negative
feedback loops protect cells from ROS-induced damage. The
first mechanism is characterized by regulation of uncoupling
proteins (UCPs). During oxidation of substrates, the com-
plexes of the mitochondrial electron transport chain reduce
oxygen to water and pump protons into the intermembrane
space, forming a proton motive force (Δp). However,
some electrons in the reduced complexes also react with
oxygen to produce superoxide. Superoxide can peroxidize
membrane phospholipids, forming hydroxynonenal, which
induces proton transport through the UCPs and the adenine
nucleotide translocase. The mild uncoupling caused by
proton transport lowers Δp and slightly stimulates electron
transport, causing the complexes to become more oxidized
and lowering the local concentration of oxygen; both these
effects decrease superoxide production. Thus, the induction
of proton leak by hydroxynonenal limits mitochondrial ROS
production as a feedback response to overproduction of
superoxide by the respiratory chain [89, 100, 101]. So, a
possible antioxidant physiological function for UCPs has
been proposed [100]. In this model, UCPs respond to
overproduction of matrix superoxide by catalyzing mild
uncoupling, which lowers proton motive force and would
decrease superoxide production by the electron transport
chain (Figure 1).

The second feedback loop consists of a regulation of
the flux of metabolites to mitochondria. So, a transient
overproduction of ROS by the mitochondrial electron
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Figure 2: Hyperglycemia-induced mitochondrial free radical production induces DNA damage that activates PARP and modifies GADPH
leading to a block of glycolysis (for more details, see text).

transport chain can decrease the activity of the key gly-
colytic enzyme glyceraldehyde-3 phosphate dehydrogenase
(GAPDH) by modifying the enzyme by ADP-ribosylation
[102]. Poly(ADP-ribosyl)ation represents an immediate cel-
lular response to DNA damage induced by oxidants [103–
105]. In the absence of DNA single and double-strand
breaks, poly(ADP-ribosyl)ation is a very rare event, but it
can increase over 100-fold upon DNA damage. Under these
conditions, about 90% of poly(ADP-ribose) is synthesized
by poly(ADP-ribose) polymerase 1 (PARP-1). PARP-1 is
constitutively expressed but enzymatically activated by DNA
strand breaks. So, PARP-1 functions as a DNA damage
sensor and signaling molecule binding to both single- and
double-stranded DNA breaks. It catalyses the formation
of ADP-ribose from the oxidized form of nicotinamide
adenine dinucleotide (NAD+) by cleavage of the glyco-
sidic bond between nicotinamide and ribose. Glutamate,
aspartate, and carboxyterminal lysine residues of target
(“acceptor”) proteins are then covalently modified by the
addition of an ADP-ribose subunit, via formation of an
ester bond between the protein and the ADP-ribose residue.
So, poly(ADP-ribosyl)ation is a covalent posttranslational
protein modification linked with genome protection [103,
106]. In this scenario, it is plausible to suggest that the
inhibitory effect of ADP-ribosylation on GAPDH probably
represents a feedback loop in order to reduce levels of
glycolysis and transiently block the subsequent flux of
metabolites to mitochondria allowing a decrease in the levels
of reducing equivalents and the subsequent mitochondrial
ROS production and oxidative cellular molecular damage
(Figure 2).

3. Mitochondrial Antioxidant Defenses

Oxidative stress homeostasis (e.g., balance between ROS pro-
duction and elimination) relies on endogenous cellular anti-
oxidants [99, 107–109]. Mitochondria, from an intracellular

organelle comparative approach, are endowed with the best
antioxidants, detoxifying and repair systems against oxidative
damage. So, the antioxidant enzyme MnSOD (manganese
superoxide dismutase) converts superoxide to H2O2. The
mitochondrial isoform of glutathione peroxidase (GPx) and
the thioredoxin-dependent enzyme peroxiredoxin III both
detoxify H2O2; alternatively, H2O2 can diffuse from the mito-
chondria into the cytoplasm. The mitochondrial glutathione
(GSH) pool is different from that in the cytosol and is
maintained in its reduced state by a mitochondrial isoform of
glutathione reductase (GR). This enzyme requires NADPH,
which is produced within mitochondria by the NADP-
dependent isocitrate dehydrogenase and through a proton
electrochemical potential gradient-dependent transhydroge-
nase. Within the mitochondrial phospholipid bilayer, the
fat-soluble antioxidants vitamin E and coenzyme Q (CoQ)
both prevent lipid peroxidation, while CoQ also recycles
vitamin E and is itself regenerated by the respiratory chain.
The mitochondrial isoform of phospholipid hydroperoxide
glutathione peroxidase [110] degrades lipid peroxides within
the mitochondrial inner membrane. There are also a variety
of specific mitochondrial mechanisms to repair or degrade
oxidatively damaged lipids [108, 110], proteins [111], and
mtDNA [112].

4. Hyperglycemia Induces Permanent
Overproduction of Superoxide by
Mitochondrial Electron Transport Chain

As mentioned above, the major sites of ROS generation
are the complexs I and III of the mitochondrial electron
transport chain. In cells under sustained high glucose con-
centrations, there is more glucose being oxidized in the TCA
cycle. This situation drives to pushing more electron donors
(NADH and FADH2) into the electron transport chain thus
leading to an increase in ROS generation [5, 6]. This is so
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because in this situation, there is a higher degree of reduction
of complexes I and III increasing their rate of ROS pro-
duction. The rate of mitochondrial ROS generation strongly
increases with a sigmoidal kinetics when the NADH/NAD+
ratio is increased, because this dramatically increases the
degree of reduction of the complex I ROS generator [84, 98].
In an identical way, in the insulin resistance syndrome, there
is an increased free fatty acid (FFA) flux from adipocytes
into arterial endothelial cells that might result in increased
FFA oxidation by the mitochondria. Since both β-oxidation
of fatty acids and oxidation of FFA-derived acetyl CoA by
the TCA cycle generate the same electron donors (NADH
and FADH2) generated by glucose oxidation, increased FFA
oxidation may cause mitochondrial overproduction of ROS
[113] by exactly the same mechanism described above for
hyperglycemia, and in both cases can be reversed upon
exposure to agents that act as mitochondrial uncouplers or
electron transport chain inhibitors.

Concomitantly with the hyperglycemia-induced mito-
chondrial free radical overproduction, it has been described
that in hyperglycemia Ucp2 gene transcription is activated
by key regulatory proteins such as peroxisome proliferator-
activated receptors (PPARs), forkhead transcription factors,
sterol regulatory element-binding protein-1c (SREBP-1c)
[114], and AMP-activated protein kinase [115]. Additionally,
the pathological and persistent overproduction of ROS by the
mitochondrial electron transport chain decreases the activity
of the key glycolytic enzyme GAPDH. The inhibition of
GAPDH activity by “hyperglycemia” does not occur when
mitochondrial overproduction of superoxide is prevented
by either UCP1 or MnSOD [116]. In addition, subsequent
studies demonstrate that persistent high intracellular glucose
concentration-induced superoxide inhibits GAPDH activity
in vivo by modifying the enzyme by ADP-ribosylation [102].
By inhibiting mitochondrial superoxide production with
either UCP-1 or MnSOD, it prevented the modification of
GAPDH by ADP-ribose and the reduction of its activity.
Most importantly, the modification of GAPDH is prevented
by a specific inhibitor of poly(ADP-ribose) polymerase
(PARP), the enzyme that makes these polymers of ADP-
ribose, establishing a cause-and-effect relationship between
PARP activation and the changes in GAPDH [5]. Therefore,
this mechanism seems to indicate that the stress-induced
block of glycolysis is not the result of a passive oxidative
damage but rather an active cell adaptation programmed via
ADP-ribosylation for cell self-defence.

However, the chronic increase in target cells of the intra-
cellular glucose concentration and permanent block of gly-
colysis leads to a maladaptive response derived from the
upstream accumulation of glycolytic metabolites which are
substrates for the activation of metabolic pathways involved
in the development of diabetic complications. In addi-
tion to this maladaptive response, the block of glycolysis
leads to a fall of mitochondrial substrates that originates
a re-duced mitochondrial energy production and subse-
quent cell exhaustion that can be a determinant element
in the endothelial cell dysfunction. In this scenario, other
cellular sources of free radical generation could take the

relief to mitochondria assuming a relevant role in a potential
second round of cellular oxidative molecular damage.

5. Hyperglycemia-Induced Mitochondrial Free
Radical Generation Activates Damaging
Downstream Cellular Pathways

From the scenario described above, it was proposed that
different pathogenic mechanisms leading to the development
of diabetic complications do reflect a single hyperglycemia-
induced process [5]. This process is based on that hyper-
glycemia, through the overproduction of free radicals by the
mitochondrial electron transport chain, decreases the activ-
ity of the key glycolytic enzyme GAPDH. So, when GAPDH
activity is inhibited, the level of all the glycolytic intermedi-
ates located upstream of GAPDH increases. Increased levels
of the upstream glycolytic metabolite glyceraldehyde-3-
phosphate activate two pathogenic pathways: (a) it activates
the glycation pathway because methylglyoxal, a glycation
precursor, is formed from glyceraldehyde-3 phosphate [117–
119], and (b) it also activates the protein-kinase C path-
way because diacylglycerol, one of its activators, is also
formed from glyceraldehyde-3 phosphate [102, 120]. Further
upstream, levels of the glycolytic metabolite fructose-6
phosphate increase, which increases flux through the hex-
osamine pathway, where fructose-6 phosphate is converted
by the enzyme GFAT to UDP-N-acetylglucosamine (UDP-
GlcNAc) increasing the chances for hexosamine modifi-
cation of proteins [116]. Finally, inhibition of GAPDH
increases intracellular levels of the first glycolytic metabolite,
glucose. This increases flux through the polyol pathway,
where the enzyme aldose reductase reduces it, consuming
NADPH in the process and reducing available GSH [120–
123].

Besides these maladaptive damaging cellular pathways,
it must be considered the cellular responses derived from
the PPAR overactivation as important mechanism of tissue
damage also leading to an endothelial dysfunction in dia-
betic blood vessels, which importantly contributes to the
development of various diabetic complications. Thus, PPAR
activation, in addition to the mitochondrial bioenergetic
depletion due to the block of glycolysis, potentiates in a
maladaptive process the expression of various proteins at
the transcriptional level [124]. Of special importance is
the regulation by PARP-1 of the production of inflam-
matory mediators such as inducible nitric oxide synthase
(iNOS), intercellular adhesion molecule-1 (ICAM-1), and
major histocompatibility complex class II. NF-κB is a key
transcription factor in the regulation of this set of proteins,
and PARP has been shown to act as a coactivator in the
NF-κB-mediated transcription. Poly(ADP-ribosyl)ation can
loosen up the chromatin structure, thereby making genes
more accessible for the transcriptional machinery [118].
Therefore, all these metabolic pathways originate alterations
in gene expression, inflammatory responses, and structural
and functional changes in cellular constituents that also
participate in the molecular basis of the vascular diabetic
process (Figure 3).
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Figure 3: Intracellular high-glucose metabolism and oxidative stress. When intracellular glucose concentration increases in target cells of
diabetes complications, it causes increased mitochondrial production of ROS and activates negative feedback loops to protect target cells
from ROS-induced damage. The maladaptive response, however, leads to the activation of metabolic pathways that are involved in the
diabetes vascular disfunction.

6. Protein Oxidative Damage: Protein Carbonyl
Content in Diabetes

Oxidative damage occurs whenever the ROS produced by
mitochondria evade detoxification, and the steady-state level
of molecular oxidative damage depends on the relative
rates of damage accumulation, repair, and degradation.
ROS can damage all types of biomolecules, and oxidative
damage to DNA, lipids and proteins can be deleterious
and concomitant [107]. The primary cellular target of
oxidative stress depends upon the cell type, the nature of
the stress imposed, the susceptibility to oxidation of the
target molecule, the site of generation, the proximity of
ROS to a specific target, and the severity of the stress.
In this context, protein oxidation demands an especial
mention because proteins constitute the major “working
force” for all forms of biological work. Furthermore, their
exact conformation and pattern of folding are tightly related
to their activity and function. So, the consequent loss of
function and structural integrity of modified proteins can
have a wide range of downstream functional consequences
and may be the cause of subsequent cellular dysfunctions
and tissue damage (Table 1). The products of oxidation of
amino acids are indicators of modification to proteins in
biological systems [125–129]. They include oxidized amino
acids, modified amino acids by reactive nitrogen species
and chlorination reactions, and crosslinks formed by a
combination of enzymatic and nonenzymatic mechanisms.

Amino acid residues in proteins are highly susceptible
to oxidation by one or more reactive species. Many dif-
ferent types of protein oxidative modification can be induced

Table 1: Effects of oxidative damage in protein structure and func-
tion.

(i) Cleavage of peptide bonds

(ii) Direct reaction of proteins with ROS can lead to formation of
protein derivatives or peptide fragments possessing highly reactive
carbonyl groups (ketones, aldehydes)

(iii) Formation of intra- or interprotein cross-linked derivatives
that can lead to the formation of aggregates by (a) direct
interaction of two carbon-centered radicals; (b) interaction of two
tyrosine radicals; (c) oxidation of cysteine sulfhydryl groups; (d)
interactions of the carbonyl groups of oxidized proteins with the
primary amino groups of lysine residues in the same or a different
protein; (e) by noncovalent interactions such as hydrophobic and
electrostatic interactions between oxidized residues

(iv) Partial unfolding or denaturation with a concomitant increase
in surface hydrophobicity

(v) Loss of function (e.g., enzyme activity)

directly by ROS or indirectly by reactions of secondary
byproducts of oxidative stress (basically derived from the
oxidation of both carbohydrates and polyunsaturated fatty
acids that lead to the formation of the named reactive
carbonyl species, RCOs [130]). Cysteine and methionine are
particularly prone to oxidative attack by almost all ROS.
Protein modifications are elicited by direct oxidative attack
on Lys, Arg, Pro, or Thr, or by secondary reaction of Cys,
His or Lys residues with reactive carbonyl compounds can
lead to the formation of protein carbonyl (PCO) derivatives
(aldehydes and ketones) [125, 130, 131] (Table 2).
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Table 2: Markers of oxidative damage in proteins.

Amino acid Product

(i) Arginine Glutamic-semialdehyde

(ii) Cysteine Cysteine disulfides, Sulfenic acid

(iii) Histidine

Aspartate
Asparagine
2-Oxoimidazoline
2-Oxohistidine

(iv) Leucine 3-,4-,5-Monohydroxyleucine

(v) Leucine, valine, isoleucine,
proline, and others

Protein carbonyls

(vi) Lysine 2-Amino-adipic-semialdehyde

(vii) Methionine Methionine sulfoxide

(viii) Phenylalanine ortho- and meta-tyrosine

(ix) Proline

Glutamate

Glutamic-semialdehyde

2-Pyrrolidone

4-,5-Hydroxyproline

Pyroglutamic acid

(x) Threonine 2-Amino-3-ketobutyric acid

(xi) Tryptophan
2-, 4-, 5-, 6-, or 7-OH tryptophan
N-formylkynurenine
Kynurenine

(xii) Tyrosine

Di-tyrosine (Tyr-Tyr cross-links)
Dihydroxyphenylalanine (DOPA)
3-Nitrotirosine
3-Chlorotyrosine

Glutamic semialdehyde is a product of oxidation of argi-
nine and proline, and aminoadipic semialdehyde, of oxi-
dation of lysine. They account for 55–100% of the total
carbonyl value in several metal ion-catalyzed oxidation
(MCO) systems [128, 132]. Sensitive gas chromatography-
mass spectrometry based analytical methods has allow their
quantitation in a variety of biological samples providing
specific information on the oxidative status of proteins that
is complementary to that afforded by protein carbonyls,
and will be useful tools in the ongoing effort to define and
assess the role of protein oxidation in diabetes complications
[95, 132].

Other oxidation-derived protein damage markers in-
clude protein modifications derived from reactive nitrogen
species (RNS). Nitric oxide generated from nitric oxide
synthetases plays an important role in the regulation of
various physiological parameters (very especially at the
vascular level) but due to its free radical nature, it could
also react with superoxide radical to form highly reactive
peroxynitrite functions [133]. It has been established that
aromatic amino acids, cysteine, and methionine residues of
proteins are particularly sensitive to modification by RNS.
These reactions lead to nitration of tyrosine residues of
proteins [134, 135], the oxidation of methionine residues
to methionine sulfoxide, and the nitrosation of protein
sulfhydryl groups to RSNO derivatives [136–138].

Studies of the formation of PCOs cannot differentiate
between those produced through direct protein oxidation
and those formed by the addition of previously oxidized
molecules, and hence protein carbonyl content (PCC) must
be considered as a broad and unspecific marker of oxidation.
Because carbonyls are relatively difficult to induce compared
with, for example, methionine sulphoxide and cysteinyl
derivatives, they might indicate a more rigorous oxidative
stress. Indeed, elevated levels of PCC are generally a sign
not only of oxidative stress, but also of disease-derived
protein dysfunction. PCC can have an advantage over both
carbohydrate and lipid oxidation products as markers of
oxidative stress; oxidized proteins are generally more stable.
PCCs form early and circulate in the blood for longer periods
(their elevation in serum is stable for at least four hours),
compared with other parameters of oxidative stress, such
as glutathione disulphide and malondialdehyde [131]. The
PCC seems to be a common phenomenon during oxidation-
derived protein damage, and their quantification can be
used to measure the extent of chemical and nonenzymatic
oxidative modification. This has driven the development of
various sensitive but unspecific biochemical (spectropho-
tometric and fluorometric) and immunological (western
blot, enzyme-linked immunosorbent assay (ELISA), and
proteomics) methods for the detection and measurement
of the PCC in tissues and body fluids; in all of them 2,4-
dinitrophenylhydrazine is allowed to react with the PCOs to
form the corresponding hydrazone, which can be analyzed
by the above mentioned methods. Currently, PCC is the
most general indicator and by far the most commonly used
marker of protein oxidation. Because the mechanisms of
PCC generation are nonspecific, it has been argued that other
protein modifications, such as the conversion of tyrosine
residues to 3-chlorotyrosine, 3-nitrotyrosine or dityrosine,
arginine and proline to glutamic semialdehyde, or lysine to
aminoadipic semialdehyde, are better markers of oxidative
stress. However, the tissue levels of such markers are orders
of magnitude lower than the overall PCC and, hence, their
measurement often requires highly sensitive and expensive
methods such as mass spectrometry [109, 130, 132].

Tables 3 and 4 summarize available studies where PCC
was analyzed by different methods in the diabetic status.
From this summary of the effects of diabetes on PCC,
it is possible to propose some general ideas: (1) Mouse,
rabbit, and especially rat are the animal species used
as reference for the study of the effects of experimental
diabetes, being the STZ-induced diabetes the experimental
model predominantly, but not exclusively, used. (2) PCC
levels are consistently increased in all the analyzed tissues
independently of the analytical method used. Of particular
interest are the increased PCC levels showed by the organs
containing the selective subset of cell types directly involved
in diabetic complications: vascular system, kidney, brain,
and pancreas. (3) In humans, most studies are focused to
Type 2 diabetes and the measurement of PCC in plasma
proteins. (4) In humans, elevated PCC levels have been
detected in both Type 1 and Type 2 diabetes. (5) Plasma
PCC levels are significantly higher in diabetic children and
adolescents without complications compared with control
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Table 3: Effects of experimental diabetes in levels of protein car-
bonyls.

Tissue Model Effect Reference

Mouse

Aorta
BKS.cg-m +/+ Lepr db/J
mice versus wild type

↑ [9]

Hippocampus
and cerebral
cortex

Streptozotocin ↑ [10]

Kidney
Type 2 diabetic db/db versus
normoglycemic wild type
mouse

↑ [11]

Lenses Streptozotocin ↑ [12]

Rat

Aorta Goto-Kakizaki rats ↑ [13]

Bone Goto-Kakizaki rats ↑ [14]

Brain
Galactose-induced
hyperglycemia

↑ [15]

Brain Goto-Kakizaki rats ↑ [16]

Brain Streptozotocin = [17]

Heart Streptozotocin ↑ [18]

Heart Streptozotocin ↑ [19]

Heart Streptozotocin ↑ [20]

Heart Streptozotocin ↑ [21]

Heart Streptozotocin ↑ [17]

Hemoglobin Streptozotocin ↑ [22]

Intestinal tissue Streptozotocin ↑ [23]

Kidney Streptozotocin ↑ [24]

Kidney Streptozotocin ↑ [18]

Kidney
Zucker obese hyperglycemic
rats (ZDFn Gm-fa/fa)

↑ [25]

Kidney Streptozotocin ↑ [26]

Kidney Streptozotocin ↑ [17]

Lens proteins Streptozotocin ↑ [27]

Liver Streptozotocin ↓ [24]

Liver
Pregnant diabetic rats versus
control rats

= [28]

Liver
Galactose-induced
hyperglycemia

↑ [15]

Liver Streptozotocin ↑ [18]

Liver Streptozotocin ↑ [29]

Liver Streptozotocin ↑ [23]

Liver Streptozotocin ↑ [30]

Liver Streptozotocin ↑ [17]

Lung Streptozotocin ↑ [31]

Pancreas Streptozotocin ↑ [18]

Pancreas Alloxan ↑ [32]

Pancreas Streptozotocin ↑ [17]

Pancreas Streptozotocin ↑ [33]

Plasma proteins Streptozotocin ↑ [34]

Plasma proteins Streptozotocin ↑ [35]

Plasma proteins Streptozotocin ↑ [36]

Table 3: Continued.

Tissue Model Effect Reference

Red blood cells Streptozotocin ↑ [18]

Retinal Müller
cells

Streptozotocin ↑ [37]

Skeletal muscle
Glupreclamp infusion
versus control

↑ [38]

Skeletal muscle
Otsuka Long Evans
Tokushima Fatty (OLETF)
rats versus LETO rats

↑ [39]

Skeletal muscle
(Soleus muscles)

Goto-Kakizaki rats ↑ [13]

Skeletal muscle
(Plantaris
muscle)

Obese Zucker rats versus
lean Zucker rats

↑ [40]

Skeletal muscle Streptozotocin ↑ [41]

Testis and
epididymal
sperm

Streptozotocin ↑ [42]

Vascular smooth
muscle cells

Glucose incubation ↑ [43]

Rabbit

Heart Alloxan ↑ [44]

Lens proteins
and cells

In vitro incubation ↑ [45]

subjects, suggesting that oxidative protein damage occurs at
the onset of disease and tends to increase in the later stages.
(6) The presence of a diabetic complication is associated with
higher PCC levels. (7) There is a lack of studies specifically
driven to the vascular system.

7. Current Antioxidant Therapeutic Strategies

Hyperglycemia-induced overproduction of superoxide by
mitochondrial electron transport chain induces a cellular
maladaptive response that triggers several metabolic path-
ways of injury involved in the endothelial dysfunction and
contributes to the progressive development of micro- and
macrovascular complications and multiorgan damage. Con-
sequently, inhibition of mitochondrial oxidant generation
and/or oxidative-derived molecular damage might provide
a potential approach for the prevention of diabetic vascular
complications.

Even though it is well established that good (but strict)
glycemic control is the basis for the prevention of diabetic
complications, there is no doubt that preventive measures
targeting other risk factors should be also achieved. Thera-
peutic strategies for diabetic vascular complications should
consist in the modulation of afflicted pathways. Thus, thera-
peutic strategies to limit mitochondrial radical production
during hyperglycemia and to counteract their damaging
effects could be useful complements to conventional ther-
apies designed to normalize blood glucose. As our under-
standing of molecular mechanisms evolves, it is becoming
clear that a more comprehensive approach is needed. Based
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Table 4: Effect of diabetes in protein carbonyl content (PCC) levels from human tissues.

Tissue Model/condition Effect Reference

Erythrocytes Obese type 2 diabetic patients ↑ [46]

Erythrocytes Type 2 diabetic patients versus healthy subjects ↑ [47]

Erythrocyte
membrane

Type 2 diabetic patients versus healthy subjects ↑ [48]

Lymphocytes Type 2 diabetic patients versus age-matched controls ↑ [49]

Lymphocytes DM patients versus healthy subjects ↑ [50]

Placenta Women with gestational diabetes versus healthy pregnant women ↑ [51]

Plasma proteins Type 2 diabetic patients versus healthy subjects = [52]

Plasma proteins Dialysis patients versus control subjects ↑ [53]

Plasma proteins Diabetic type 2 patients versus healthy subjects ↑ [54]

Plasma proteins Type 1 diabetes without complications ↑ [55]

Plasma proteins Type 1 diabetes with complications ↑ [55]

Plasma proteins Chronic kidney disease patients versus healthy subjects ↑ [56]

Plasma proteins Diabetes type 2 versus healthy subjects ↑ [57]

Plasma proteins Diabetes type 2 associated with CVD versus healthy subjects ↑ [57]

Plasma proteins Good glycemic control versus poor glycemic control ↑ [58]

Plasma proteins Type 1 diabetic patients = [59]

Plasma proteins End-stage renal disease ↑ [59]

Plasma proteins Heart failure + diabetes versus healthy subjects ↑ [60]

Plasma proteins Type 2 diabetes without microangiopathy versus healthy subjects ↑ [61]

Plasma proteins Type 2 diabetes with microangiopathy versus healthy subjects ↑ [61]

Plasma proteins Type 2 diabetic patients versus age-matched controls ↑ [49]

Plasma proteins Childhood type 1 diabetes ↑ [62]

Plasma proteins Diabetic patients without ulcer versus healthy subjects ↑ [63]

Plasma proteins Diabetic patients with foot ulcer grade 1 versus healthy subjects ↑ [63]

Plasma proteins Diabetic patients with foot ulcer grade 2 versus healthy subjects ↑ [63]

Plasma proteins Diabetic patients versus healthy subjects ↑ [64]

Plasma proteins IGT subjects versus healthy subjects ↑ [64]

Plasma proteins Diabetic type 2 patients versus healthy subjects ↑ [65]

Platelets Type 2 diabetes (young versus elderly) ↑ [66]

Serum Type 1 diabetic patients versus healthy subjects ↑ [67]

Serum Diabetic patients versus healthy subjects ↑ [68]

Serum Diabetic nephropathy patients versus healthy subjects ↑ [68]

Skin collagen Type 2 diabetes ↑ [69]

Subretinal fluid Diabetic patients versus control subjects ↑ [70]

on the numerous evidence of a role of oxidative stress in the
pathogenesis of vascular complications, the use of for exam-
ple, antioxidants, uncouplers, or PARP inhibitors should
represent an appealing approach. Candidate “drugs” include:
vitamins A, C, and E, alpha-lipoic acid, SOD and cata-
lase mimetics, L-propionyl carnitine, taurine, acetyl-L-
carnitine, U83836E (a ROS scavenger), M40403 (a man-
ganese superoxide dismutase mimetic), PKC-b inhibitors,
peroxynitrite catalyst FP15, mitochondrial uncoupler DNP,
PARP inhibitors, transketolase inhibitors, melatonin, statins,
angiotensin converting enzyme inhibitors, angiotensin II
receptor blockers, thiazolidinediones, synthetic pyridoindole
antioxidant stobadine (STB), extracts from different natural

sources (e.g., Artemisia campestris, Centaurium erythraea),
the metal chelator pyrrolidine dithiocarbamate (PDTC), and
plant polyphenols (e.g., myricetin), among others.

PARP inhibition may emerge as a novel approach for the
prevention or reversal of diabetic complications. The benefits
and potential risks associated with chronic administration
of PARP inhibitors are discussed in a recent review [139].
The comparative therapeutic utility of PARP inhibition for
the experimental therapy of diabetic complications should
be explored by additional preclinical and subsequent clinical
investigations. The development of uncoupling strategies
is not forthcoming [93]. So, the time is upon us to test
antioxidant therapies in diabetes [78, 93].
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8. Conclusions

Hyperglycaemia is the first trigger in the pathogenesis of dia-
betic vascular complications and it activates many metabolic
pathways and their downstream mediators. Several mito-
chondrial and other intracellular pathways are implicated
in the increased production of oxidants. In subjects with
diabetes, oxidative damage is enhanced and contributes to
the development of endothelial dysfunction and vascular
complications. Nevertheless, there still is a considerable
wealth of knowledge to be acquired, concerning oxidative
stress and diabetes. Assuming that oxidative stress has also a
signalling role (exceeding the role of NO), how the signaling
role of oxidative stress is modified by diabetic status is still
an open question. It needs to be elucidated how the general
increase of protein oxidative damage has an impact on the
signalling modules of oxidative stress. Furthermore, with a
wide knowledge on protein oxidative modification chem-
istry, there is still lacking a comprehensive study dissecting
the potential pathways of protein oxidative modifications
in diabetes and diabetes complications. Numerous antiox-
idant agents are being investigated and there is growing
interest in developing new compounds specifically targeting
oxidative stress. However, up to now, there is a lack of
supporting evidence for an extensive use of antioxidants
for preventing or treating diabetic vascular complications.
A better and more precise knowledge of the molecular
mechanisms underlying hyperglycaemia-related damage will
help in developing better therapies. When the answer of
these and other relevant questions will be available, then a
rationale intervention on ROS homeostasis, more directed
than the mere supplementation with antioxidants, will be
granted for therapy of diabetes vascular complications.
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