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A B S T R A C T

Patients with chronic kidney disease (CKD) are at an alarming risk of cardiovascular disease and fracture-as-
sociated mortality. CKD has been shown to have negative effects on vascular reactivity and organ perfusion.
Although alterations in bone blood flow are linked to dysregulation of bone remodeling and mass in multiple
conditions, changes to skeletal perfusion in the setting of CKD have not been explored. The goal of this study was
to establish the effect of CKD on skeletal perfusion in a rat model of CKD. In two experiments with endpoints at
30 and 35weeks of age, respectively, normal (NL) and Cy/+ (CKD) animals (n=6/group) underwent in vivo
intra-cardiac fluorescent microsphere injection to assess bone tissue perfusion. These two separate time points
aimed to describe skeletal perfusion at 30 and 35 weeks based on previous studies demonstrating significant
progression of hyperparthyroid bone disease during this timeframe. CKD animals had blood urea nitrogen (BUN)
levels significantly higher than NL at both 30 and 35weeks. At 30 weeks, perfusion was significantly higher in
the femoral cortex (+259%, p < 0.05) but not in the tibial cortex (+140%, p=0.11) of CKD animals relative
to NL littermates. Isolated tibial marrow perfusion at 30 weeks showed a trend toward being higher (+183%,
p=0.08) in CKD. At 35 weeks, perfusion was significantly higher in both the femoral cortex (+173%,
p < 0.05) and the tibial cortex (+241%, p < 0.05) in CKD animals when compared to their normal littermates.
Isolated tibial marrow perfusion (−57%, p<0.05) and vertebral body perfusion (−71%, p<0.05) were lower
in CKD animals. The current study demonstrates two novel findings regarding bone perfusion in an animal model
of high turnover CKD. First, cortical bone perfusion in CKD animals is higher than in normal animals. Second,
alterations in bone marrow perfision differed among the stages of CKD and were distinct from perfusion to the
cortical bone. Determining whether these changes in bone perfusion are drivers, propagators, or consequences of
skeletal deterioration in CKD will necessitate further work.

1. Introduction

Patients with chronic kidney disease (CKD) have accelerated bone
loss, vascular calcification and abnormal biochemistries. Together,
these factors contribute to patients being at an alarming risk of cardi-
ovascular disease and fracture-associated mortality (Demer and Tintut,
2010). In CKD patients, the risk of cardiovascular disease is increased 3
to 100-fold (Kundhal and Lok, 2005) and the risk of fracture 4 to 14-
fold (Alem et al., 2000) compared to the normal population. These risks
rise progressively as kidney function deteriorates. More striking, car-
diovascular disease accounts for nearly 60% of deaths in those with
CKD (compared to 28% in the normal population); similarly over 60%
of CKD patients that sustain a hip fracture die within a year (compared
to 20% in the normal population) (Coco and Rush, 2000). These

striking statistics emphasize the critical need to better understand the
underlying mechanism driving altered cardiovascular and skeletal
homeostasis, as well as any potential connection between the two.

Bone is a highly vascularized tissue and bone perfusion plays a
crucial role in bone growth (Fleming et al., 2001), fracture repair
(Tomlinson and Silva, 2014; Maes et al., 2010; Grundnes and Reikerås,
2009), and bone homeostasis (Carulli et al., 2013; McCarthy, 2006).
Disturbances to bone blood flow have been shown to have associated
effects on bone health and function (Carulli et al., 2013; Prisby et al.,
2008; Colleran et al., 2000; Stabley et al., 2015; Stabley et al., 2013).
Conditions that alter bone remodeling (diabetes, disuse, aging, estrogen
withdrawal, anabolic drug treatment) have all been associated with
changes in bone blood flow (Prisby et al., 2008; Colleran et al., 2000;
Prisby et al., 2012; Prisby et al., 2007; Kwon et al., 2010; Bergula et al.,
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1999; Prisby et al., 2013; Prisby and Guignandon, 2011). Moreover,
disturbances to bone vasculature, due to any of a number of causes,
result in alterations in tissue perfusion (Schipani et al., 2009) and often
bone loss (Arnett, 2010). CKD-induced elevations in uremic toxins have
long been associated with vascular dysfunction of multiple arterial beds
through endothelium-dependent, endothelium-independent and/or
vascular remodeling mechanisms (Geenen et al., 2016; Palmer et al.,
2011; Dhaun, 2006; Costa-Hong et al., 2009). In the setting of CKD,
decreased cardiac output (Bleeker et al., 2006), vascular calcification
(Moe and Chen, 2008), and endothelial dysfunction (Malyszko, 2010;
Le Brocq et al., 2008; Vettoretti et al., 2006) could all contribute to
altered end-organ perfusion. Surprisingly data describing alterations in
skeletal vascular perfusion in the setting of CKD are lacking.

The goal of the present study was to test the hypothesis that skeletal
perfusion is altered in the setting of CKD. To accomplish this goal, we
utilized fluorescent microspheres, which lodge in tissue capillaries in
direct proportion to the fraction of cardiac output perfusing the tissue.
This technique has been shown to allow measurement of organ perfu-
sion as effectively as radioactive microspheres (Glenny et al., 1993), the
experimental gold standard (McCarthy, 2006), and has recently been
applied to study skeletal perfusion in rats (Aref et al., 2017).

2. Methods

2.1. Animals

Male Cy/+ rats, Han:SPRD rats (n=12) with autosomal dominant
polycystic kidney disease (Moe et al., 2009a), and their unaffected
(normal) littermates (n=12) were used for this study. Male hetero-
zygous rats (Cy/+) develop characteristics of CKD around 10weeks of
age that progress to terminal uremia by about 40 weeks. Our laboratory
has demonstrated that this animal model recapitulates all three mani-
festations of CKD-Mineral and Bone Disorder (CKD-MBD) - biochemical
abnormalities, extraskeletal calcification, and abnormal bone (Colleran
et al., 2000; Prisby et al., 2007)(Moe et al., 2009a). There are many
other animal models of the systemic repercussions of kidney disease,
but unlike the Cy/+ model, most animal models of CKD are either
acute injury or developmental/growth alterations and do not model the
effect of the progressive nature of CKD on mineral metabolism. The
model utilized in the current study (the Cy/+ rat) avoids this draw-
back. All animals were fed a casein diet (Purina AIN-76A, Purina An-
imal Nutrition, Shreevport, LA, USA); 0.53% Ca and 0.56% P from
24 weeks on during the experiment, which has been shown to produce a
more consistent kidney disease in this model (Moe et al., 2009a). Blood
was collected ~24 h prior to the end of the study for measurement of
plasma biochemistries. All procedures were reviewed and approved by
the Indiana University School of Medicine Institutional Animal Care
and Use Committee prior to study initiation.

2.2. Experiments

CKD animals and their normal littermates were used in two separate
studies, designed to assess alterations in two distinct time points along
the progression of disease in the Cy/+ model:

2.2.1. Experiment 1–30 week time point (~25% normal kidney function)
Normal (NL) and Cy/+ (CKD) animals (n=6/group) were assessed

for serum biochemistries ~ one day before undergoing in vivo micro-
sphere injection to assess bone tissue perfusion.

2.2.2. Experiment 2–35 week time point (~15% normal kidney function)
Normal (NL) and Cy/+ (CKD) animals (n=6/group) were assessed

for serum biochemistries ~ one day before undergoing in vivo micro-
sphere injection to assess bone tissue perfusion.

These two separate experiments aimed to describe skeletal perfusion
at 30 and 35weeks were designed based on previous work

demonstrating significant progression of skeletal disease in this time-
frame (Newman et al., 2014; Moe et al., 2014). While elevations in
blood urea nitrogen (BUN) are noted by 25weeks, progressive hyper-
phospatemia, hyperparathyroidism, and skeletal abnormalities become
evident by 30weeks. Between 30 and 35weeks there is marked pro-
gression of all of the end organ manifestations of CKD-MBD, including
left ventricular hypertrophy, cardiac and vascular calcification, and
severe high turnover bone disease evident by severe cortical porosity,
high turnover and compromised mechanical properties (Newman et al.,
2014; Moe et al., 2014; Hsueh et al., 2014; Moe et al., 2009b).

2.3. Bone perfusion measurement

Microsphere injection was performed as previously described (Aref
et al., 2017). Briefly, under isoflurane anesthesia, polystyrene red
fluorescent (580/605), 15 μm microspheres (FluoSpheres, Thermo-
Fisher) were injected into the apex of the beating left ventricle after
opening the chest cavity. The spheres were allowed to circulate for 60 s
before the animal was euthanized by cardiac dissection. A total of
5.0× 106 spheres/kg were injected, a number sufficient to assess per-
fusion in skeletal tissue (Aref et al., 2017).

Tibiae, femora, humeri, vertebrae (L4 body), kidneys and testes
were collected and weighed. Testes were used as a positive control for
assessing adequacy of microsphere delivery within each animal.
Microsphere mixing and injection was considered adequate for an an-
imal when right and left testicle perfusions were within 25% of each
other. On the basis of this criterion, no animals were excluded from the
study. Femur samples were divided into proximal, middle (diaphysis),
and distal segments as previously described (Colleran et al., 2000), and
weighed separately. Right femoral diaphysis marrow was left intact in
bone while left femoral diaphysis marrow was thoroughly flushed and
femoral cortex was weighed. Marrow was extracted from the tibial
diaphysis by centrifugation; both marrow and tibial cortex were
weighed. Marrow was left intact in the remainder of all specimens.

Bone samples were placed in individual amber vials with 15mL of
Cal-Ex Decalcifier solution. After 7 days, decalcified bone samples were
placed in 10% ethanolic postassium hydroxide (KOH) for degradation.
Soft tissue samples (kidney and testes) were placed in KOH directly.
After 24 h of degradation, samples were vortexed to complete the de-
gradation process and then filtered through polyamide mesh filters
(5 μm pore size). 1 mL of Cellosolve acetate (2-ethoxyethyl acetate,
98%, Sigma) was added to each of the filtered samples to dissolve the
microspheres and expose the fluorescence. The 24 h KOH degradation
step differed from the original protocol (Aref et al., 2017), where
samples were degraded in KOH for 48 h. This slight alteration was made
based on developmental work in our lab showing 24 h was sufficient for
degradation with longer durations causing progressive decline in
fluorescence.

All fluorescence measurements were made using the SpectraMax i3x
microplate reader (Molecular Devices, CA). Three 100 μL aliquots from
each sample were placed in a 96-well V-bottom polypropylene micro-
plate for fluorescence quantification. The readings from the three ali-
quots were averaged to produce a single fluorescence measurement per
sample. Red fluorescence was measured using an excitation of 580 nm
and an emission of 620 nm. Standard curves of serial dilutions with
known amounts of microspheres were generated on the day of analysis.
Fluorescent measurements of samples found to be outside the standard
curve (kidneys) were serially diluted and measured in order to detect
any potential quenching effects. All data is presented as tissue fluor-
escence density (TFD) with units of Arbitrary Units per gram of tissue
(AU/g) and scaled by 106.

2.4. Biochemistries

Blood plasma was analyzed for blood urea nitrogen (BUN) and
calcium using colorimetric assays (BioAssy System, DIUR-100). Intact
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PTH was determined by ELISA (Immutopics, REF-60-2500).

2.5. Statistical analysis

All analyses were performed using GraphPad Prism software.
Student's t-tests were used to compare CKD and NL groups within each
experiment. Pearson product correlations were used to assess relation-
ships between BUN, PTH and tissue perfusion. A priori α-levels were set
at 0.05 to determine statistical significance.

3. Results

3.1. Experiment 1: 30 week data

There was no significant difference in body or bone mass between
the two groups of animals (Supplemental Tables 1 and 2). Kidney mass
was significantly higher in CKD due to cystic disease compared to age-
matched normal littermates (NL) (Supplemental Tables 2). Plasma
BUN, but not PTH, was significantly higher in CKD compared to age-
matched normal littermates (NL), the former being consistent with

reduced kidney function (Table 1). TFD was significantly higher in the
femoral cortex (+259%, p < 0.05) (Fig. 1A) but not the tibial cortex
(+140%, p=0.11) (Fig. 1B) of CKD animals relative to NL. Isolated
tibial marrow perfusion showed a trend toward being higher (+183%,
p=0.08) in CKD compared to NL (Fig. 1C). Vertebral body TFD was
significantly higher in CKD animals (+116%, p < 0.05) while neither
distal femur (+109%, p=0.18) or humerus (+136%, p=0.08), sig-
nificantly differed between groups (Fig. 1E–G). These three bone sites
all had intact marrow. Kidney perfusion was not significantly different
in CKD animals when compared to their normal littermates at 30 weeks
(p=0.06) (Supplemental Table 3). There were no scientifically sig-
nificant correlations between PTH and TFD for either NL or CKD ani-
mals (data not shown).

3.2. Experiment 2: 35 week data

Animal body mass was significantly lower in CKD (−15%) com-
pared to NL animals (Supplemental Table 1). Kidney mass was sig-
nificantly higher and femoral diaphysis (with marrow) mass was sig-
nificantly lower in CKD compared to age-matched normal littermates
(NL) (Supplemental Table 2). Plasma BUN and PTH were both sig-
nificantly higher in CKD compared to NL (Table 1). TFD in CKD animals
was significantly higher in both the femoral cortex (+173%, p < 0.05)
(Fig. 2A) and the tibial cortex (+241%, p < 0.05) (Fig. 2B) relative to
NL. Isolated tibial marrow TFD was significantly lower (−57%,
p < 0.05) in CKD animals when compared to age-matched normal
littermates (Fig. 2C). Vertebral body perfusion (−71%, p < 0.05) was
significantly lower in CKD animals compared to NL while neither distal
femur (−27%%, p=0.17) or humerus (−10%, p=0.95) perfusions,
both with marrow intact, were significantly different between groups
(Fig. E–G). Kidney perfusion was significantly lower in CKD animals
when compared to their normal littermates (p < 0.05) (Supplemental
Table 3). There was no significant correlation between PTH and TFD for

Table 1
Serum biochemistries.

NL CKD

Experiment 1–30weeks
BUN, (mg/dL) 19.1 ± 1.7 39.7 ± 6.0⁎

PTH, (pg/mL) 376 ± 298 420 ± 378

Experiment 2–35weeks
BUN, (mg/dL) 17.8 ± 1.9 50.4 ± 8.0⁎

PTH, (pg/mL) 123 ± 49 1305 ± 237⁎

Data presented as mean and standard deviation.
⁎ p < 0.05.

Fig. 1. 30 week time point bone perfusion data (n=6/group). Tissue fluorescence density (TFD) of (A) femoral cortical bone (p < 0.05) (B) tibial cortical bone
(p=0.11) (C) tibial bone marrow (p=0.08) (D) femoral diaphysis including marrow (p < 0.05) (E) L4 vertebral body (p < 0.05) (F) humerus (p=0.08) and (G)
distal femur (p=0.18). Dots represent data points, and error bars represent standard deviation.
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any site in the NL animals while 4 of the 6 sites assessed for TFD had
significant negative relationships with PTH values (Table 2).

4. Discussion

Deterioration of both bone and cardiovascular properties have been
well documented during the progression of CKD. Bone is a highly vas-
cularized tissue that depends on regulated perfusion for growth, repair,
and homeostasis (Marenzana and Arnett, 2013). Since CKD is known to
be associated with both cardiac and vascular abnormalities, the in-
vestigation of skeletal perfusion in the setting of CKD could provide
insights into the pathophysiology of abnormal bone in CKD. The current
study demonstrates two findings regarding bone perfusion in an animal
model of high turnover CKD. First, cortical bone perfusion is higher
than it is in animals with normal kidney function. Second, changes in
bone marrow perfusion are more complex than those of bone, with
higher perfusion early in disease and lower levels with prolonged/late
stage disease. The differential changes in bone and marrow perfusion
likely account for the more modest differences between CKD and NL in
bone segments containing both tissues (Figs. 1 and 2). The opposite
trends of cortical bone and bone marrow and the proportional amount
and type of marrow in each of the tested whole bones may play a role in
the unclear trend observed in whole bone at 35 weeks.

Using fluorescent microspheres to measure regional bone perfusion,
we show that animals with high turnover CKD have higher cortical
bone perfusion at both 30 and 35weeks compared to normal. Despite
evidence of vascular pathologies in the current model (Moe et al.,
2009a; Hsueh et al., 2014; Moe et al., 2009b) and known vascular
dysfunction in CKD (Gansevoort et al., 2013; Haydar et al., 2004;
Ameer et al., 2015), we show that cortical bone perfusion in isolated
femoral and tibia cortical bone diaphyses is nonetheless higher. We
hypothesize that this elevated cortical perfusion is due to one, or a
combination, of two separate mechanisms. Cortical perfusion may be
increased in response to increased metabolic needs of high turnover
CKD bone, necessitating endothelial cells to express vasoactive sub-
stances that increase tissue blood flow (Adair et al., 1990). Alter-
natively, PTH has been shown to have direct effects on the endothelial
expression of vascular endothelial growth factor (Rashid et al., 2008)
such that worsening secondary hyperparathyroidism could be driving
increased perfusion.

Conditions that alter bone remodeling (diabetes, disuse, aging, es-
trogen withdrawal, anabolic drug treatment) have all been associated
with changes in bone blood flow (Prisby et al., 2008; Colleran et al.,
2000; Prisby et al., 2012; Prisby et al., 2007; Kwon et al., 2010; Bergula
et al., 1999; Prisby et al., 2013; Prisby and Guignandon, 2011). Pre-
vious work has demonstrated that changes in perfusion can precede
alterations to bone structure and function in these models. Increased
perfusion occurs prior to fatigue loading-induced addition of bone mass
(Matsuzaki et al., 2007). By 30weeks in this model Cy/+ rats have
significant elevations in bone remodeling on trabecular bone surfaces
whereas by 35weeks they not only have high remodeling but also
significant increases in intracortical remodeling and peritrabecular fi-
brosis. Previous work from our group suggests the escalation of skeletal
deterioration in terms of increased turnover, impaired mechanics,
cortical porosity, loss of cortical mass, and increased marrow fibrosis in
the Cy/+ rat model between the two time points evaluated in this study

Fig. 2. 35 week time point bone perfusion data (n=6/group). Tissue fluorescence density (TFD) of (A) femoral cortical bone (p < 0.05) (B) tibial cortical bone
(p < 0.05) (C) tibial bone marrow (p < 0.05) (D) femoral diaphysis including marrow (p < 0.05) (E) L4 vertebral body (p < 0.05) (F) humerus (p=0.95) and (G)
distal femur (p=0.17). Dots represent data points, and error bars represent standard deviation.

Table 2
35 week correlations between PTH and tissue fluorescence density.

Femoral
cortex
TFD

Tibial
cortex
TFD

Tibial
marrow
TFD

Distal
femur
TFD

L4 TFD Humerus TFD

PTH (NL) 0.337 −0.264 −0.617 0.294 0.465 0.465
PTH (CKD) −0.764 −0.772 0.338 −0.888 0.653 −0.724

Data presented at r values with bolded values indicating p < 0.05.
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– 30 and 35weeks (Moe et al., 2014; Allen et al., 2013). Further in-
vestigations will be needed to determine whether blood flow changes
are driven by metabolic demands in CKD and whether these drive the
skeletal phenotype (cortical porosity) or whether the bone and/or
marrow changes alter the vascular perfusion.

In the setting of CKD, we and others have shown that sustained
elevated PTH contributes to high bone remodeling which drives in-
creases in cortical porosity and ultimately compromised bone me-
chanics (Newman et al., 2014; Moe et al., 2014) but its contribution in
vascular perfusion in CKD is unknown. The direct role of PTH in
modulating vasculature, including that of the bone, has been well-es-
tablished in the literature (Prisby and Guignandon, 2011; Roche et al.,
2014; Rostand and Drüeke, 1999; Wang et al., 1993). Early studies il-
lustrated the acute effects of intravenous injection of PTH to increase
tibial and femoral perfusion within 30min after administration of in-
travenous PTH (Kapitola and Zák, 2003). This suggested a vasodilatory
effect that was confirmed in a recent study that showed PTH enhanced
endothelium-dependent vasodilation of the femoral principal nutrient
artery via augmented nitric oxide production (Prisby et al., 2013). Both
of these studies represent acute PTH, and the effects of chronic eleva-
tion of PTH as seen in CKD may be different, given the divergent effects
of intermittent and continuous PTH on bone mass. Roche et al. found
intermittent PTH stimulated bone formation and prevented OVX-in-
duced reduction in bone perfusion and bone vessel density, while
continuous PTH resulted in a decrease in vessel size (Roche et al.,
2014). Another study showed that treatment with teriparatide resulted
an increase in bone blood flow, evaluated for up to 18months (Moore
et al., 2010). Our correlation analysis of PTH and tissue perfusion re-
sulted in an unexpected strong negative relationship between PTH and
tissue perfusion across multiple bones. While these data cannot speak to
cause/effect, they provide a basis for future hypotheses that can fuel
studies aimed at dissecting the role of PTH levels in CKD-related ske-
letal perfusion changes.

Patterns of marrow perfusion (marrow having been extracted from
the diaphyseal region only) in CKD animals diverged from those of
cortical bone in late-stage high turnover disease. Although CKD animals
show no change to marrow perfusion (trending toward higher) in the
30 week time point there was significantly lower perfusion at 35-weeks
compared to NL animals. This is in contrast to cortical bone perfusion
which was significantly higher in CKD animals at both of the time
points. Previous work from our group has demonstrated lower levels of
VEGF-A expression in bone marrow of 35-week old CKD animals
compared to their normal littermates (Chen et al., 2015). These suggest
there may either be a dramatic shift in marrow VEGF signaling or
marrow content during the later-stage manifestation of CKD. Given the
known fibrosis that occurs with the severe hyperparathyroid bone
disease osteitis fibrosis cystica this may have decreased the overall non-
fibrotic marrow in the 35 weeks animals. An alternative explanation is
that more severe cardiac dysfunction due to heart calcification or aorta
calcification may limit the ability to perfusion distal organs such as
bone at late stage CKD (Moe et al., 2009b).

Our results should be interpreted in the context of various as-
sumptions and limitations. Injection of microspheres in the left ven-
tricle to assess perfusion is based on a set of assumptions, including:
microspheres are homogeneously distributed in the left ventricle,
trapped in capillaries on first passage with no shunting or dislodging,
and do not themselves alter the hemodynamics upon injection. This is
the same set of assumptions made in any blood flow measurement using
microspheres, the current experimental gold standard for the determi-
nation of skeletal perfusion. A recovery standard was not utilized in
order to ensure that sample is not lost during processing. The animals
are anesthetized using isoflurane, which is known to affect organ per-
fusion (Bernard et al., 1991) and cardiovascular dynamics (Bernard
et al., 1990). Without the use of assisted ventilation, the open-chest
cardiac injection of microspheres is performed under diminishing
physiologic hemodynamic, as well as hypoxic, conditions. Given that

the time from anesthesia to injection is consistent in experiments at
each time point, and the injected spheres are fully circulated within the
60 s between injection and euthanasia, declining kidney function is not
a major factor in the differences detected by our perfusion measure-
ments.

In conclusion, we have shown that bone perfusion is altered in an
animal model of progressive high turnover chronic kidney disease.
Determining whether these changes in bone perfusion are drivers,
propagators, or consequences of skeletal deterioration in CKD will ne-
cessitate further work.
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