
Identification of Tse8 as a Type VI secretion system toxin 
from Pseudomonas aeruginosa that targets the bacterial 
transamidosome to inhibit protein synthesis in prey cells

Laura M. Nolan1,*, Amy K. Cain2,&,†, Thomas Clamens1,†, R. Christopher D. Furniss1,§, Eleni 
Manoli1, Maria A. Sainz-Polo3, Gordon Dougan2, David Albesa-Jové3,4,‡, Julian Parkhill2,^, 
Despoina A.I. Mavridou1,5,#, Alain Filloux1,#

1MRC Centre for Molecular Bacteriology and Infection (CMBI), Department of Life Sciences, 
Imperial College London, London, SW7 2AZ, United Kingdom

2Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 
1SA, United Kingdom

3Structural Biology Unit, CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Spain

4IKERBASQUE, Basque Foundation for Science, Bilbao, Spain

5Department of Molecular Biosciences, University of Texas at Austin, Austin, 78712, Texas, USA

Abstract

The Type VI secretion system (T6SS) is a bacterial nanomachine which delivers toxic effectors 

to kill competitors or subvert some of their key functions. Here we use transposon directed 

insertion-site sequencing (TraDIS) to identify T6SS toxins associated with the H1-T6SS, one 

of the three T6SS machines found in Pseudomonas aeruginosa. This approach identified several 

putative toxin-immunity pairs, including Tse8-Tsi8. Full characterization of this protein pair 

demonstrated that Tse8 is delivered by the VgrG1a spike complex into prey cells where it targets 
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the transamidosome, a multiprotein complex involved in protein synthesis in bacteria that lack 

either one, or both, of the asparagine and glutamine tRNA synthases. Biochemical characterization 

of the interactions between Tse8 and the transamidosome components GatA, GatB and GatC 

suggests that the presence of Tse8 alters the fine-tuned stoichiometry of the transamidosome 

complex, and in vivo assays demonstrate that Tse8 limits the ability of prey cells to synthesize 

proteins. These data expand the range of cellular components targeted by the T6SS by identifying 

a T6SS toxin affecting protein synthesis proteins and validate the use of a TraDIS-based global 

genomics approach to expand the repertoire of T6SS toxins in T6SS-encoding bacteria.

Bacteria rarely exist in a single-species planktonic state and instead form complex 

polymicrobial structures, called biofilms1,2. Within this context bacteria often compete with 

other microorganisms to secure space and nutrients. The Type VI secretion system (T6SS) is 

a Gram-negative bacterial nanomachine that delivers toxins into neighbouring competitors to 

either kill or subvert their key functions in order to attain dominance within a given niche3–5. 

The T6SS is composed of 13 core components, several of which are structurally related to 

proteins from the T4 bacteriophage tail6. The Hcp tube-like structure is capped by a VgrG

PAAR tip complex, or spike, and encapsulated within a TssBC (also known as VipAB) 

contractile sheath 7–9. Upon extension of the sheath within the cytoplasm and subsequent 

contraction, the spike is thought to facilitate the puncturing of the cell membranes of both 

the producing and target cells, allowing delivery of the attached toxins8,10. T6SS toxins 

have been shown to be secreted in association with the VgrG tip complex, the Hcp tube, or 

as extension domains of the VgrG, PAAR or Hcp proteins11–14. Importantly, neighbouring 

bacterial sister cells are protected from the effects of the toxins by production of cognate 

immunity proteins, which are usually encoded adjacent to the toxin gene in the genome15. 

The major identified targets of T6SS toxins to date are components of the cell wall, as well 

as the cell membrane and nucleic acids16. These T6SS toxins have mainly been identified by 

searching in the genomic proximity of known T6SS components, or by detection of toxins in 

the secretome11,14,17.

Pseudomonas aeruginosa is a highly antibiotic-resistant Gram-negative pathogen and ranked 

second by the World Health Organization in the list of bacteria that require immediate 

attention. It is also equipped with three independent T6SS systems (H1- to H3-T6SS)18. In 

the current study we used a global genomics-based approach called TraDIS (Transposon 

directed insertion-site sequencing) to identify toxins associated with the P. aeruginosa 
H1-T6SS 19. A previous study has used Tn-Seq, a similar global transposon mutagenesis 

approach, and confirmed the presence of three T6SS toxin-immunity genes which are 

located in the vicinity of vgrG genes in V. cholerae 41. Our TraDIS approach identified 

several remote and previously unidentified putative T6SS toxin-immunity pairs. We found 

that one of the identified toxins, Tse8 (Type six exported 8), targets the bacterial 

transamidosome complex, which is required for protein synthesis in bacteria that lack the 

asparagine and/or glutamine tRNA synthases20. This is a previously unidentified target for a 

T6SS toxin, demonstrating that T6SS toxins can impair bacterial protein synthesis.
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TraDIS identifies known and previously unidentified H1-T6SS toxin

immunity pairs

To systematically identify P. aeruginosa PAK H1-T6SS associated immunity genes we 

generated duplicate high-density insertion transposon mutant libraries consisting of ~2 

million mutants in a H1-T6SS active (PAKΔretS) and a H1-T6SS inactive (PAKΔretSΔH1) 

background. We reasoned that transposon insertions in immunity genes would only be 

tolerated in the H1-T6SS inactive library, while in the H1-T6SS active library, cells lacking 

an immunity protein would be killed upon injection of the cognate toxin from neighbouring 

sister cells or due to self-intoxication. Each duplicate library was plated separately at high

contact density on agar plates and passaged in an overnight incubation step to promote 

T6SS-mediated killing of mutants with transposon insertions in immunity genes (Extended 

data Fig. 1). The genomic DNA of mutants which were not killed in both the H1-T6SS 

active and inactive libraries were then separately sequenced using a mass-parallel approach 

as described previously21,22 (Extended Data Fig. 1). The relative frequencies of transposon 

insertion in genes in the H1-T6SS active and inactive libraries revealed a large number 

of genes which had changes in relative numbers of transposon insertions. Forty-five genes 

which had a significantly greater number of normalized transposon insertions in the H1

T6SS inactive library background, compared to the H1-T6SS active library background, 

were identified (Supplementary Table 1), and considered as potential H1-T6SS immunity 

proteins. Our approach is validated by our ability to identify five (tsi1-tsi5) out of the seven 

known H1-T6SS immunity genes, whose gene products protect against cognate toxins acting 

in both the cytoplasm and periplasm (Table 1). Our screen was unable to identify tsi6 as this 

gene is deleted in our PAKΔretSΔH1 strain, thus there is no possibility to assess the relative 

frequency of transposon insertions in this gene between the two library backgrounds. In the 

case of tsi7 we did not see any difference in the levels of insertions between the two libraries 

(Supplementary Table 1). It is not clear why this was the case, but we cannot exclude 

the possibility that one of the uncharacterized proteins encoded by the vgrG1b cluster23 

containing the tse7-tsi7 pair, or a gene elsewhere in the genome, can also confer protection 

against the Tse7 toxin in the absence of Tsi7.

In addition to known H1-T6SS associated immunity genes, our TraDIS approach identified 

multiple uncharacterised small coding sequences that displayed a decrease in transposon 

insertions in the H1-T6SS active, compared to the inactive, background (represented 

by a negative log fold change), suggesting a role for these genes in protecting against 

H1-T6SS mediated killing (Supplementary Table 1). Upstream of several of these loci 

were genes encoding proteins with putative enzymatic activity which could be T6SS 

toxins: PAKAF_04415 (PA0801) encodes a putative M4 peptidase regulator; PAKAF_02303 

(PA2778) encodes a putative C39 peptidase domain-containing protein; PAKAF_01709 

(PA3272) encodes a putative nucleoside triphosphate hydrolase; and PAKAF_00798 

(PA4163) encodes a putative amidase (Table 1 and Extended Data Fig. 2). In the 

present study, we selected the putative toxin/immunity pair PAKAF_00798/PAKAF_00797 

(PA4163/PA4164) for further characterization, and we refer to it as tse8-tsi8 (type six 

exported 8-type six immunity 8) in all subsequent sections.
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Tse8-Tsi8 is a toxin-immunity pair

To assess the toxic role of Tse8, a strain lacking both tse8 and the downstream putative 

immunity gene (tsi8) was generated in a PAKΔretS background, yielding PAKΔretSΔtsei8. 

In this mutant, expression of tse8 from pMMB67HE with and without a C-terminal HA tag 

affected growth (Fig. 1a). Furthermore, in a competition assay this mutant strain carrying a 

lacZ reporter gene (recipient PAKΔretSΔtsei8::lacZ) was outcompeted only by donor strains 

with an active H1-T6SS, i.e. PAKΔretS or PAKΔretSΔH2ΔH3 (Fig. 1b). The observed 

killing of the receiver strain was further demonstrated to be Tse8-dependent in competition 

assays with a donor lacking Tse8 (Extended Data Fig. 3a). The PAKΔretS strain lacking 

either tsei8 or tse8 could be complemented in a competition assay by expression of tsei8 
from pBBR-MCS5 or tse8 from pBBR-MCS4 (Extended Data Fig. 3b, c).

The toxicity associated with the H1-T6SS-dependent delivery of Tse8 into a sensitive 

receiver strain could be rescued by expressing the tsi8 immunity gene from pJN105 in both 

a competition assay (Fig. 1c) and a growth assay (Fig. 1d), further confirming the protective 

role of Tsi8. In several cases, T6SS immunity proteins have been shown to directly interact 

with their cognate toxins17,24,25. Here, bacterial-two-hybrid (BTH) assays demonstrate that 

indeed Tse8 interacts strongly with Tsi8 (Fig. 1e). In addition, pull-down experiments using 

Tsi8-His as a bait, show direct interaction of the two proteins (Fig. 1f); this interaction is 

specific to Tsi8 as almost no Tse8-HA-Strep elutes from the pull-down beads in the absence 

of Tsi8 or in the presence of the non-specific binding control, CcmE-His (Fig. 1f).

T6SS toxin delivery frequently relies on a direct interaction between the toxin and 

components of the T6SS spike11,14. BTH assays (Fig. 2a), as well as dot blot assays, 

revealed that Tse8 interacts strongly with VgrG1a (Fig. 2b). While the interaction of 

Tse8 with VgrG1c was significant in the BTH assay (Fig. 2a), no interaction above the 

non-specific binding control (CcmE-His) was observed in the dot blot assay (Fig. 2b). 

Finally, no interaction between Tse8 and VgrG1b was observed in BTH (Fig. 2a) or dot blot 

assays (Fig. 2b).

Overall, the above results demonstrate that Tse8-Tsi8 is an antibacterial toxin-immunity 

pair associated with the H1-T6SS, and that Tse8 interacts with the VgrG1a tip to facilitate 

delivery into target cells.

Tse8 is a predicted amidase family enzyme

Using Phyre226 we found that the closest 3D homologs of Tse8 are the Stenotrophomonas 
maltophilia Peptide amidase (Pam)27 (sequence identity 29%), the Staphylococcus aureus 
Gln-tRNA(Gln) transamidosome subunit A (GatA)28 (sequence identity 20%), the P. 
aeruginosa Asn-tRNA(Asn) transamidosome subunit A (GatA)29 (sequence identity 25%), 

the Flavobacterium sp. 6-aminohexanoate cyclic dimer hydrolase (NylA)30 (sequence 

identity 24%), the Bradyrhizobium japonicum malonamidase E2 (MAE2)31 (sequence 

identity 25%), the Pseudomonas sp. allophanate hydrolase (AtzF)32 (sequence identity 

30%), and the Bacterium csbl00001 Aryl Acylamidase (AAA)33 (sequence identity 22%). 

Amino acid sequence analysis indicates that Tse8 contains an Amidase Signature (AS) 
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domain (Pfam PF01425) (Extended Data Fig. 4). AS sequences are characterized by a 

stretch rich in glycine and serine residues, as well as a highly conserved Ser-cisSer-Lys 

catalytic triad27,28,34–37. The catalytic Lys is located in the C-terminal end of a conserved 

β-strand (region 1) (Extended Data Fig. 4), while the cisSer is located at the C-terminus 

of region 2 (Extended Data Fig. 4). Finally, the nucleophilic Ser residue is located in a 

highly conserved short loop of region 3. All these AS signature sequence characteristics 

(underlined by a dashed line in Extended Data Fig. 4) are present in Tse8 and its closest 3D 

homologues.

Given that Tse8 possesses the conserved catalytic features of amidase family enzymes 

(Extended Data Fig. 4), we tested whether it has amidase activity. Tse8 was purified and 

confirmed to be intact (Extended Data Fig. 5). Subsequently, its capacity to hydrolyse 

carbon-nitrogen bonds was tested on two molecules, epinecidin-1 and glutamine, which 

are substrates for Pam from S. maltophilia and GatA of the transamidosome, respectively. 

The amidase activities of Pam and Tse8 were analysed by Mass Spectrometry (MS) by 

monitoring the modifications of epinecidin-1 in the presence and absence of the tested 

proteins and of the small nucleophile hydroxylamine (Extended Data Fig. 6). While the 

C-terminus of epinecidin-1 was deaminidated in the presence of Pam (Extended Data Fig. 

6b), it remained amidated in the presence of Tse8, suggesting that Tse8 has no amidase 

activity on this substrate (Extended Data Fig. 6 and Extended Data Fig. 7). The amidase 

activity of Tse8 was also tested on the GatA substrate glutamine (Extended Data Fig. 8) 

and no modification was detected by MS (Extended Data Fig. 8b). In addition, whole-cell 

glutaminase assays were performed and the amidase activity of E. coli whole cell lysates 

expressing GatA or Tse8 on L-glutamine was determined by monitoring the accumulation 

of NADPH. These experiments demonstrated that while GatA expressed from plasmid 

pET41a had a significant amidase activity, whole cells expressing Tse8 from the same 

vector produced a level of NADPH which was not significantly different to the empty 

vector-carrying control strain (Extended Data Fig. 8c). Overall, these data demonstrate that 

the substrates for Pam and GatA are not substrates for Tse8, suggesting that Tse8 is highly 

specific or unlikely to utilize amidase activity to elicit toxicity.

To assess whether Tse8 toxicity is mediated through amidase activity in vivo, we replaced 

the tse8 gene on the chromosome by an allele encoding a putative catalytic site mutant 

of Tse8 with a Ser186Ala (S186A) substitution. This conserved Ser186 residue (Extended 

Data Fig. 4) acts as the catalytic nucleophile in homologous amidases, and is necessary for 

enzymatic function38. PAKΔretS and PAKΔretSΔH1 donor strains encoding either wild-type 

Tse8 or Tse8S186A were competed against the recipient strain PAKΔretSΔtsei8::lacZ. This 

showed that there was no difference in the recovered CFUs/mL of the recipient when the 

attacking strain delivered either wild-type Tse8 or Tse8S186A (Fig. 2c), further suggesting 

that Tse8 does not utilize amidase activity to elicit toxicity in vivo.
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Tse8 elicits toxicity by interacting with the bacterial amidotransferase 

complex

Since Tse8 toxicity does not appear to depend on it having amidase activity (Fig. 2c), we 

hypothesized that Tse8 could instead be eliciting toxicity by competing with a functional 

amidase either within the cell, or within a complex in the cell. Two 3D homologues 

of Tse8 are the A subunit of the S. aureus Gln-tRNA(Gln) transamidosome and the P. 

aeruginosa Asn-tRNA(Asn) transamidosome. Both of these proteins are the A subunit 

of transamidosome complexes, which are used by bacteria that lack the cognate tRNA 

synthases for asparagine (Asn) and/or glutamine (Gln)20. These bacteria utilize a two-step 

pathway instead, whereby a non-discriminating tRNA synthase generates a misacetylated 

aspartate- or glutamate-loaded tRNA which is then transaminated by the heterotrimeric 

amidotransferase enzyme GatCAB, within the transamidosome complex, to leave asparagine 

or glutamine correctly loaded onto their cognate tRNA. Given that not all bacteria rely on 

the transamidosome for protein synthesis, we reasoned that if Tse8 toxicity is directed at this 

enzymatic complex, then expression of Tse8 should only be toxic in bacteria which use the 

transamidosome. P. aeruginosa relies on the transamidosome for Asn-tRNA synthesis39 and 

we see a growth defect when Tse8 is expressed from a plasmid or delivered into a strain 

lacking Tsi8 (Fig. 1a-d). Agrobacterium tumefaciens lacks both Asn-tRNA and Gln-tRNA 

synthases and generates these cognate tRNAs through the transamidosome (Supplementary 

Table 4), while E. coli possesses both the Asn- and Gln-tRNA synthases and does not 

have a transamidosome complex (Supplementary Table 4). The effect of Tse8 expression 

was examined for both A. tumefaciens and E. coli. A growth defect was observed for A. 

tumefaciens, which could be rescued by co-expression of Tsi8 (Fig. 3a), but no growth 

defect was observed for E. coli (Fig. 3b) despite Tse8 expression at high levels from pET28a 

(Fig. 3c). Taken together these data suggest that Tse8 toxicity depends on the presence of the 

transamidosome.

We generated a structural homology model of Tse8 based on the solved S. aureus GatA 3D 

structure (PDB: 2F2A). By overlaying this model with the A subunit of the P. aeruginosa 
transamidosome structure (PDB: 4WJ3) (Extended Data Fig. 9a), we found that Tse8 shares 

a high level of structural similarity to the A subunit of the complex. Further, comparison 

of the homologous residues within the substrate binding pockets of SaGatA and PaTse8 

revealed that while the catalytic triad residues are conserved, the substrate binding residues 

(Tyr309, Arg358 and Asp425 in SaGatA)24 are not (Extended Data Fig. 9b), supporting our 

data and hypothesis that Tse8 does not have the same substrate as GatA (Extended Data 

Fig. 8). While this manuscript was in preparation a structure for Tse8 was published (RDB: 

6TE4)40 that agrees with the overall conclusions from our homology modelling data.

Given the high level of predicted structural similarity between GatA and Tse8 we 

hypothesized that Tse8 may be able to interact with the transamidosome and could be 

eliciting toxicity by altering the functionality of this complex. The most likely scenario 

was that Tse8 replaces GatA, thus rendering the GatCAB complex inactive. To investigate 

this, we performed a pull-down experiment using purified proteins. GatCAB was purified 

as a complex using a Ni-affinity column through histidine-tagged GatB (His-GatB); GatA 
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and GatC also had tags which were appropriate for their detection by western blot (GatA

V5 and GatC-HA). Tse8 was purified separately through a StrepII tag (Tse8-HA-Strep). 

GatCAB was pulled down in the presence and absence of a 15-fold molar excess of Tse8 

via His-GatB on His-Tag Dynabeads. Tse8 was found to co-purify with GatCAB (lane 

2, Fig. 3d). This interaction is specific to GatCAB, as minimal amounts of Tse8 elute 

from the pull-down beads in the absence of the transamidosome or in the presence of the 

non-specific binding control (CcmE-His) (Fig. 3d). However, even though a large molar 

excess of Tse8 was used in our pull-down experiment, the amount of GatA detected in the 

GatCAB complex remained largely unaffected (lane 2, Fig. 3d) excluding the possibility that 

Tse8 displaces GatA.

Another possibility was that Tse8 interacts with transamidosome components as the 

GatCAB complex assembles and that this interaction disrupts transamidosome function. 

To test this hypothesis, we purified GatBC as a complex using a Ni-affinity column through 

histidine-tagged GatB (His-GatB) and used this complex in pull-down experiments with 

cell lysates containing GatA and Tse8; GatA, GatC and Tse8 also had tags which were 

appropriate for their detection by western blot (GatA-V5, GatC-HA and Tse8-HA-Strep). 

We found that that the presence of Tse8, rather than inhibiting the binding of GatA to 

GatBC as we initially hypothesized, promotes it (lane 2, Fig. 3e), leading to a drastic 

accumulation of GatA on the GatBC complex (Fig. 3f). This GatA accumulation is specific 

to the presence of Tse8 and GatBC, as no GatA elutes from the pull-down beads in the 

absence of these proteins or in the presence of the non-specific binding control (CcmE

His) (Fig. 3e). The fact that we did not observe GatA accumulation upon Tse8 exposure 

in our pull down using intact GatCAB (Fig. 3d), suggests that Tse8 is more effective 

when it is acts on transamidosome components during the assembly of this complex. 

The structure of the P. aeruginosa GatCAB transamidosome reveals it to be a symmetric 

complex comprising an aspartyl-tRNA synthase (ND-AspRS), GatCAB, and tRNAAsn in 

a defined 2:2:2 stoichiometry29 (as represented in Extended Data Fig. 9aa). The function 

of this complex relies on large conformational changes between the ND-AspRS and the 

GatCAB components that are fine-tuned to accommodate the movement of the tRNAAsn 

between the domains of the transamidosome super-complex29. As such, additional Tse8 

and GatA domains attached to the optimal transamidosome complex structure would likely 

inhibit transamidosome function by obstructing the communication between the ND-AspRS, 

GatCAB and the tRNAAsn. This in turn would result in a decrease in the production of 

Asn-tRNAAsn, ultimately impairing protein synthesis.

To further support our data suggesting that Tse8 exerts its toxicity by impairing protein 

synthesis through inhibition of the transamidosome, we hypothesized that if we were able 

to override the need for transamidosome function by providing the bacterium with the 

tRNA synthase it lacked, we would be able to rescue the observed growth defect when 

Tse8 is either expressed from a plasmid (Fig. 1a,d) or delivered by an attacker (Fig. 

1b,c). P. aeruginosa only lacks the asparagine tRNA synthase39 (Supplementary Table 

4), thus in this case Tse8 toxicity should be rescued by simply providing the cell with 

this tRNA synthase. To investigate this possibility, the Asn-tRNA synthase (asnS) from 

E. coli was expressed in PAKΔretSΔtsei8 from pJN105, and the strain competed against 

PAKΔretS and PAKΔretSΔH1. Expression of AsnS was able to rescue Tse8 toxicity (Fig. 
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4a) to the same extent as expression of the cognate immunity protein, Tsi8 (Fig. 1c). 

Furthermore, to directly test the effect of Tse8 expression on protein synthesis in vivo we 

expressed superfolder Gfp (sfGfp) from the Tn7 site of the P. aeruginosa chromosome in 

a Tse8-sensitive strain (PAKΔretSΔtsei8) that also expressed Tse8 or harboured the empty 

pMMB67HE vector. We found that the strain expressing Tse8 produces less sfGfp compared 

to the empty vector control (sfGfp signal was normalised to OD600; Fig. 4b), while this 

effect is specific to Tse8, since the decrease in sfGfp/total cells level in the presence of Tse8 

could be rescued by co-expression of Tsi8 (Fig. 4b). Finally, co-expression of Tse8 with E. 

coli AsnS, also rescues the production of sfGfp/total cells (Fig. 4b), demonstrating that the 

decrease in fluorescent signal observed in the presence of Tse8 alone is originating from 

the specific interaction of Tse8 with its target, the transamidosome complex. Together these 

data demonstrate that strains containing Tse8 are less able to produce sfGfp, which, in turn, 

indicates that protein synthesis is inhibited by this T6SS toxin.

Discussion

In the current study we demonstrate that our global genomic approach can be used to 

identify T6SS toxin-immunity pairs associated with the H1-T6SS of P. aeruginosa. Our 

approach not only confirmed previously characterized P. aeruginosa T6SS toxin-immunity 

pairs, but also revealed several previously unidentified putative toxin-immunity pairs, 

including Tse8-Tsi8, which would probably not have been found using targeted approaches 

or bioinformatics. Characterization of the Tse8-Tsi8 pair, revealed that Tsi8 is the cognate 

immunity protein for the Tse8 toxin, and that Tse8 interacts with VgrG1a, hence it is likely 

delivered into target cells via the VgrG1a-tip complex.

Tse8 was also found to interact with GatCAB of the bacterial transamidosome complex, 

which is required for protein synthesis in certain bacteria that lack one or both of the 

asparagine or glutamine tRNA synthases20. Our pull-down data (Fig. 3e,f) demonstrate 

that Tse8 interaction with transamidosome components leads to accumulation of GatA 

onto GatBC, resulting in an amidotransferase complex with altered stoichiometry. 

Transamidosome function depends on a series of interactions between its ND-AspRS, 

GatCAB and the tRNAAsn components. These interactions are, in turn, reliant on the 

optimal architecture of the transamidosome that allows for extensive conformational changes 

to take place in order for the tRNAAsn to efficiently move between the domains of the 

super-complex29. It would be expected that Tse8-mediated precipitation of several additional 

GatA molecules on this complex will impact upon its fine-tuned architecture, resulting in 

functional deficits. According to our pull-down data, very little Tse8 is pulled with GatBC 

(Fig. 3e; all the blots in this figure have been exposed for the same amount of time using 

comparable commercial antibodies). This small amount of toxin is sufficient to nucleate 

the accumulation of GatA in significant amounts (Fig. 3f) and impair transamidosome 

function. Overall, this is in agreement with the logistics of Tse8 being delivered through the 

VgrG1a-tip complex, since only a maximum of three molecules of toxin can be delivered per 

T6SS firing event through VgrG. Based on this data, we propose that in bacteria where the 

transamidosome is essential (i.e. in bacteria lacking one or both of the Asn- or Gln-tRNA 

synthases), activity of Tse8 results in reduced fitness due to decreased levels of protein 

synthesis. In agreement with this, Tse8 toxicity can be rescued if the transamidosome 
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function is bypassed upon provision of the transamidosome-independent tRNA-synthase 

lacked by the bacterium (i.e. AsnS for P. aeruginosa (Fig. 4a and 4b)).

Future work, focusing on further characterization of the specifics of the Tse8-GatCAB 

interaction, could point to ways of inhibiting the transamidosome and may provide a basis 

for the development of antibacterial agents against this target. Such agents might be useful 

in inhibiting the growth of important pathogens that rely on the transamidosome, without 

affecting the viability of many commensal bacteria which produce their proteins without 

depending on this pathway. Moreover, investigation of the other putative toxins detected in 

this study could also open new therapeutic avenues; elucidation of the substrates of these 

putative toxins could offer insights into pathways that are naturally validated antibacterial 

targets against P. aeruginosa. Looking beyond the T6SS of P. aeruginosa, there are many 

Gram-negative bacteria that infect human and animal hosts, or are plant pathogens or 

plant-associated organisms and possess at least one, if not multiple T6SSs clusters41–44. 

Furthermore, in several cases it has been demonstrated that distinct T6SS machines deliver 

a specific subset of toxins into target cells, often under certain conditions9,12,16, suggesting 

that toxins are not only bacterial specific, but potentially even niche specific. Given this 

diversity, we predict that our TraDIS approach could be useful for drastically expanding the 

repertoire of known T6SS toxins across a range of bacteria and ecologically or clinically 

relevant growth environments.

Methods

Bacterial strains, plasmids and growth conditions

Bacterial strains and plasmids used in this study are reported in Supplementary Table 2. P. 

aeruginosa PAK was used for TraDIS library generation and subsequent assays using mutant 

strains generated by allelic exchange mutagenesis as described previously45,46. P. aeruginosa 
strains were grown in tryptone soy broth (TSB), Lysogeny Broth (LB) or M9 or MOPS 

minimal media (with indicated supplements), supplemented with antibiotics as appropriate 

(streptomycin 2000 μg/mL, carbenicillin 100 μg/mL, gentamicin 50 μg/mL) at 37 °C with 

agitation. E. coli strains DH5α, SM10, CC118λpir and BL21(DE3) were used for cloning, 

conjugation and protein expression steps. E. coli cells were grown in TSB, LB, Terrific 

Broth or M9 minimal media (with indicated supplements), supplemented with antibiotics 

as appropriate (streptomycin 50 μg/mL, ampicillin 100 μg/mL, kanamycin 50 μg/mL) at 

37 °C with agitation. A. tumefaciens C58 was grown in LB or M9 minimal media (with 

indicated supplements), supplemented with antibiotics as appropriate (gentamicin 50 μg/mL, 

spectinomycin 100 μg/mL) at 30 °C with agitation.

DNA manipulation

DNA isolation was performed using the PureLink Genomic DNA mini kit (Life 

Technologies) except for TraDIS library genomic DNA isolation (see below). Isolation 

of plasmid DNA was carried out using the QIAprep spin miniprep kit (Qiagen). Primers 

(Sigma) used are shown in Supplementary Table 3. DNA fragments were amplified with 

either KOD Hot Start DNA Polymerase (Novagen) or standard Taq polymerase (NEB) as 

described by the manufacturer, with the inclusion of Betaine (Sigma) or DMSO (Sigma). 
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Restriction endonucleases (Roche) were used according to the manufacturer’s specifications. 

DNA sequencing was performed by GATC Biotech.

TraDIS library generation

A highly saturated transposon mutant library was generated in P. aeruginosa PAKΔretS 
or PAKΔretSΔH1 strains by large scale conjugation with an E. coli SM10 [pBT20] donor 

which allowed for random insertion of a mariner transposon throughout the genome and 

conferred gentamicin resistance in the recipient PAK strain. The E. coli donor strain was 

grown in LB supplemented with gentamicin (15 μg/mL) overnight at 37 °C and the recipient 

PAK strain was grown overnight at 37 °C in LB. Equivalent amounts of both strains were 

spread uniformly on separate LB agar plates and incubated overnight at 37 °C for E. coli and 

at 43 °C under humid conditions for the PAK recipient. The next day one E. coli donor plate 

was harvested and combined by extensive physical mixing on a fresh LB agar plate with one 

plate of harvested recipient PAK strain. Conjugation between the two strains was achieved 

by incubation of the high-density mixture of both strains at 37 °C for 2 hrs under humid 

conditions. The conjugation mix was then harvested, pelleted by centrifugation (10,000 g, 10 

mins, 4 °C), and resuspended in LB. The resuspended cells were recovered onto large square 

(225 mm) Vogel-Bonner Media (VBM) (MgSO4.7H2O (8 mM), citric acid (anhydrous) (9.6 

mM), K2HPO4 (1.7 mM), NaNH5PO4.4H20 (22.7 mM), pH 7) agar plates supplemented 

with gentamicin (60 μg/mL) and incubated for 16 hrs at 37 °C. The numbers of mutants 

obtained were estimated by counting a representative number of colonies across multiple 

plates. Mutants for each library background on plates were recovered as two separate pools 

(T6SS active and T6SS inactive), resuspended in LB, then pelleted by centrifugation (10,000 

g, 10 mins, 4 °C), and then finally resuspended in LB plus glycerol (15% (v/v)) and stored 

at -80 °C. The protocol was repeated on a large scale until ~2 million mutants were obtained 

in each library background. For the TraDIS assay glycerol stocks of harvested PAKΔretS or 

PAKΔretSΔH1 TraDIS libraries were combined at normalized cell density for each separate 

replicate (i.e two final pools in total) and spread onto large square (225 mm) VBM agar 

plates supplemented with gentamicin (60 μg/mL) and incubated for 16 hrs at 37 °C to 

facilitate T6SS delivery of toxins and subsequent killing/self-intoxication of mutants lacking 

immunity genes for the cognate toxin. Cells were then harvested into 5 mL LB and pelleted 

by centrifugation (10,000 g, 15 mins, 4 °C). Cell pellets were resuspended in 1.4 mL LB and 

1 mL was retained for subsequent genomic DNA extraction (see ‘TraDIS library genomic 

DNA extractions’ section below).

TraDIS library assay

Glycerol stocks of harvested PAKΔretS or PAKΔretSΔH1 TraDIS libraries were combined at 

normalized cell density for each separate replicate and spread onto large square (225 mm) 

VBM agar plates supplemented with gentamicin (60 μg/mL) and incubated for 16 h at 37 

°C. Cells were then harvested into 5 mL LB and pelleted by centrifugation (10,000 g, 15 

min, 4 °C). Cell pellets were resuspended in 1.4 mL LB and 1 mL was taken for subsequent 

genomic DNA extraction (see below).
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TraDIS library genomic DNA extractions

Genomic DNA from the harvested pooled library pellets either before or after undergoing 

the ‘TraDIS library assay’ (above) were resuspended in 1.2 mL lysis solution (10 mM 

Tris-HCl, 400 mM NaCl and 2 mM Na2EDTA, supplemented with Proteinase K in storage 

buffer (50 mM Tris-HCl, 50% (v/v) glycerol, 100 mM NaCl, 0.1 mM EDTA, 10mM CaCl2, 

0.1% (v/v) Triton X-100 and 1 mM DTT) to a concentration of 166 μg/mL. Cell lysis was 

achieved by incubation at 65 °C for 1 h, with occasional vortexing. The samples were then 

cooled to room temperature and RNA removed by addition of RNase A (5 μg/mL) and 

incubation at 37 °C for 80 min. Samples were then placed on ice for 5 min. Each lysate 

was then split into 2 eppendorf tubes at ~600 μL per tube, and 500 μL NaCl (5 M) were 

added to each tube. Cell debris were removed by centrifugation (10,000 g, 10 min, 4 °C) 

and 500 μL from each tube was added to 2 volumes of isopropanol to precipitate the DNA. 

DNA was then collected by centrifugation (10,000 g, 10 min, 4 °C), and DNA pellets were 

washed twice in 70% (v/v) ethanol. The fully dried DNA pellet was finally resuspended in 

Tris-EDTA buffer.

PAK reference genome

The PAK genome under the NCBI number accession number LR657304, also listed in the 

European Nucleotide Archive (ENA) under accession number ERS195106, was used. See 

details in Cain et. al. (2019)47. PAK loci in Table 1, Extended Data Fig. 9 and throughout the 

text are the corresponding loci names from this genome.

Generation of TraDIS sequencing libraries, sequencing and downstream analysis

TraDIS sequencing was performed using the method described previously22, with some 

minor modifications for this study, as described below. Also see Extended Data Fig. 10, and 

Supplementary Table 1.

PCR primers were designed for library construction and used for both the PAK libraries 

(5′: AATGATACGGCGACCACCGAGATCTACACACAGGAAACAGGACTCTAGAGG 

ATCACC and 3′: AATGATACGGCGACCACCGAGATCTACACCTTCTGTATGGAACG 

GGATGCG) and the sequencing TraDIS primers (5′: CAGCTTTCTTGTACACTAGA 

GACCGGGGACTTATCAG, and 3′: AAGCCTGCTTTCTAGAGACCGGGGACTTAT 

CAG). During library production, a post-ligation double digest with restriction enzymes 

AgeI and SgrAI was performed according to the manufacturer’s instructions (New England 

Biolabs) to prevent amplification of plasmid background. The T6SS TraDIS sequencing was 

performed on a HiSeq2500 Illumina platform on the RAPID 50bp SE read setting. Reads 

were mapped onto the PAK genome (accession number: ERS195106), and comparisons 

were performed using the TraDIS Toolkit informatics package22. 10% of the 3′ end of each 

gene was discounted, and a 10 read minimum cut-off was used to be included in analysis. 

On average there was a unique transposon insertion site every 53 bp over the whole genome 

for each of the T6SS active and T6SS inactive backgrounds and, thus the genome was 

highly saturated in each library. The distribution of transposon insertions across the genome 

based upon the normalized transposon insertions in a H1-T6SS inactive library background, 

compared to the H1-T6SS active library background is shown in Extended Fig. 10. The 
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resulting sequences of the T6SS TraDIS assays are available from the European Nucleotide 

archive (ENA) under study accession number PRJEB1597.

To pinpoint genes involved in protection of T6SS-mediated killing, EdgeR48 was used to 

identify significant differences in read counts of genes in strains with (PAKΔretS) and 

without (PAKΔretSΔH1) an active H1-T6SS. Then the trimmed mean of M values (TMM) 

normalization was used to account for differences between then libraries, and tagwise 

dispersion was estimated. Only genes exhibiting greater than 5 reads in both replicates of 

the conditions or control sets were examined for differences in the prevalence of mutants. 

Genes with zero read counts in the other condition were offset using the prior count function 

in EdgeR48 so that fold changes could be estimated. P values were corrected for multiple 

testing using the Benjamini-Hochberg method, and genes with a corrected P value (Q 

value) of <0.05 (5% false discovery rate) and an absolute log2 fold change (log2FC) 

of >2 were considered significant (see Tab 2 in Supplementary Table 1). A list of 49 

genes resulted having statistically significant decreased insertions in the T6SS active library 

PAKΔretS compared to normalized values in the PAKΔretSΔHI library. These genes were 

then interrogated as potential immunities, based firstly on gene size (the known H1-T6SS 

associated immunity genes (tsi1-6) at the time of analysis are all less than 600bp, thus this 

was used as a guide to shorten the list to 29 genes) (see Tab 3 in Supplementary Table 1) and 

also on whether a protein upstream these genes appeared to have a predicted enzymatic or 

putative toxin function.

Bacterial growth assays

Growth assays were performed as follows. For Fig. 1a, overnight cultures of 

PAKΔretSΔtsei8 were diluted down to OD600 = 0.1 in M9 minimal media (supplemented 

with MgSO4 (2 mM), CaCl2 (0.1 mM), glucose (0.4% (w/v)) and FeSO4.7H2O (0.01 mM)) 

and grown shaking at 37 °C. Expression of Tse8 was induced with IPTG (1 mM) at 4 

h. For Fig 1d, PAKΔretSΔtsei8 cells carrying both pJN105 and pMMB67HE plasmids 

(+/- Tsi8/Tse8) were grown in MOPS minimal media (MOPS (40mM, pH 7.5), Tricine 

(4 mM, pH 7.5), NH4CL (9.52 mM), CaCL2 (0.5 uM), MgCl2.7H20 (0.52 mM), NaCl 

(50 mM), FeSO4.7H2O 20 mM (0.01 mM), K2HPO4 (1.32 mM) supplemented with 1x 

micronutrient mix (100x: Ammonium molybdate tetrahydrate (3 uM), Boric acid (400 uM), 

Cobalt chloride (30 uM), Cupric sulphate (10 uM), Manganese chloride (80 uM), Zinc 

sulphate (10 uM) and Nickel chloride hexahydrate (0.1% (w/v/)) and glucose (0.4% (w/v)) 

and L-Glutamine (0.05% (w/v)) shaking at 37 °C (without antibiotics). Expression of Tse8 

was induced with IPTG (1 mM) and Tsi8 with arabinose (0.2% (w/v)) at 5 h. For Fig. 

3a, overnight cultures of A. tumefaciens with pTrc200/pJN105 plasmids (+/- Tse8/Tsi8) 

were diluted down to OD600 = 0.1 in MOPS media without antibiotics as above and grown 

shaking at 30 °C. Expression of Tse8 was induced with IPTG (1 mM) and Tsi8 with 

arabinose (0.2% (w/v)) at 8 h. For Fig. 3b, overnight cultures of E. coli were diluted down 

to OD600 = 0.1 in M9 minimal media (supplemented with MgSO4 (2 mM), CaCl2 (0.1 

mM), FeSO4.7H2O (0.01 mM) and glucose (0.4% (w/v)) and grown shaking at 37 °C. Tse8 

expression was induced with IPTG (1 mM) after 2 h. For Fig. 4b, overnight cultures of the 

indicated P. aeruginosa strain were diluted down to OD600 = 0.1 in LB (without antibiotics) 

Nolan et al. Page 12

Nat Microbiol. Author manuscript; available in PMC 2021 August 31.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



and grown shaking at 37 °C. Expression of Tse8 was induced with IPTG (0.25 mM) and 

Tsi8 or AsnS with arabinose (0.2% (w/v)) at 0 h.

T6SS competition assays

T6SS competition assays were performed as described previously49 with modifications as 

indicated. Briefly, overnight cultures of donor and recipient bacteria alone or in a 1:1 

ratio were combined and spot plated on LB agar plates for 5 h at 37 °C and recovered 

in serial dilution on LB agar plates supplemented with Xgal (5-bromo-4-chloro-3-indolyl-β

D-galactopyranoside) (100 μg/mL) to differentiate recipient (PAKΔretSΔtsei8::lacZ seen as 

blue) from donor (white). For recovery of competition assays between donor and recipient 

PAKΔretSΔtsei8 [pBBR1-MCS5] and [pBBR1:tsei8], the competition assay was plated 

onto LB agar plates with gentamicin (50 μg/mL) to differentiate donor from recipient 

(GmR). For recovery of competition assays between donor and recipient PAKΔretSΔtsei8 
[pBBR1-MCS4] and [pBBR4:tse8], the competition assay was plated onto LB agar plates 

with carbenicillin (50 μg/mL) to differentiate donor from recipient (CarbR). In other cases, 

expression of Tsi8 or AsnS in the recipient strains was induced in the overnight cultures by 

addition of arabinose (0.2% (w/v)). These overnight cultures of donor and induced recipient 

alone or in a 1:1 ratio, were combined and spot plated onto LB agar supplemented with 

arabinose (1% (w/v)) for induction of Tsi8-V5 or AsnS-His for 5 h, with the competition 

assay finally being recovered on LB agar plates supplemented with gentamycin (50 μg/mL) 

and arabinose (1% (w/v)).

Bacterial Two Hydrid (BTH) and β-Galactosidase assays

Protein-protein interactions were analysed using the BTH system as described previously50. 

Briefly, the DNA region encoding the protein of interest were amplified by PCR and were 

then cloned into plasmids pKT25 and pUT18C, which each encode for complementary 

fragments of the adenylate cyclase enzyme, as previously described50 resulting in N

terminal fusions of T25/T18 from the adenylate cyclase to the protein of interest. 

Recombinant pKT25 and pUT18c plasmids were simultaneously used to transform the 

E. coli DHM1 strain, which lacks adenylate cyclase, and transformants were spotted onto 

Xgal (40 μ/mL) LB agar plates supplemented with IPTG (1 mM), Km (50 μg/mL) and 

Amp (100 μg/mL). Positive interactants were identified after incubation at 30 °C for 48 h. 

The positive controls used in the study were pUT18C or pKT25 derivatives encoding the 

leucine zipper from GCN4, which forms a dimer under the assay conditions. The strength 

of the interactions in the BTH assays was quantified from the β-galactosidase activity of 

co-transformants scraped from Xgal plates and measured as described previously; activity 

was calculated in Miller units50.

Western Blot analysis

SDS-PAGE and western blotting were performed as described previously11. Proteins were 

resolved in 8%, 10%, 12% or 15% gels using the Mini-PROTEAN system (Bio-Rad) and 

transferred to nitrocellulose membrane (GE Healthcare) by electrophoresis. Membranes 

were blocked in 5% (w/v) milk (Sigma) before incubation with primary antibodies (anti-His 

at 1:1000 dilution and anti-V5 or anti-HA at 1:5000 dilution). Membranes were washed with 

TBST (0.14 M NaCl, 0.03 M KCl and 0.01 M phosphate buffer plus Tween 20 (0.05% v/v)) 
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before incubation with HRP-conjugated secondary antibodies (Sigma; anti-mouse at 1:5000 

dilution). The resolved proteins on the membrane blots were detected using the Novex ECL 

HRP Chemiluminescent substrate (Invitrogen) or the Luminata Forte Western HRP substrate 

(Millipore) using a Las3000 Fuji Imager. For Fig. 3c, samples were taken after 8 h of 

growth and expression of Tse8 was assessed by Western blot as above; detection of Tse8 

was performed using anti-HA antibody (1:5000 dilution).

Dot blotting

For Tse8 interactions with VgrG1a, VgrG1b and VgrG1c purified untagged Tse8 was 

spotted on nitrocellulose membrane (3 mg/ml) and dried at room temperature. Membranes 

were blocked with TBST with 5% (w/v) milk or 2.5% (w/v) bovine serum albumin for 

7 h at room temperature. E. coli overexpressing VgrG1a-V5, VgrG1b-V5, VgrG1c-V5 or 

CcmE-His (equivalent 150 OD600 units) were pelleted and then resuspended in 10 mL 

100 mM NaCl, 20 mM Tris, 10% (w/v) glycerol, 2% (w/v) milk powder and 0.1% (v/v) 

Tween-20 (Tween-20 was added after sonication) (pH 7.6) and sonicated. 10 mL of the 

crude lysates were applied directly to the membranes and incubated overnight at room 

temperature. The membranes were immunoblotted with anti-V5 (1:5000 Invitrogen) or anti

His (1:1000 Sigma) overnight at 4 °C and anti-mouse secondary (1:5000). Quantification of 

dot blots was performed using the Gel Analyzer plugin in ImageJ51. Levels were normalised 

to the control signal based on 3 independent experiments.

Pull-down experiments

E. coli BL21(DE3) strains expressing simultaneously GatA-V5, GatB-His and GatC-HA or 

GatB-His and GatC-HA were grown in LB at 37°C to an OD600 of 0.8 and expression was 

subsequently induced using 1 mM IPTG (Sigma) for 16 h at 18 °C. E. coli BL21(DE3) 

cells expressing Tse8-HA-Strep were grown in Terrific Broth at 37°C to an OD600 of 0.8 

and expression was subsequently induced using 1 mM IPTG (Sigma) for 16 h at 30 °C. 

The same expression strategy used for Tse8-HA-Strep was also used for E. coli BL21(DE3) 

strains expressing Tsi8-His or CcmE-His except that TSB medium was used. Cell pellets 

resulting during expression of GatCAB, GatBC, Tsi8 or CcmE were resuspended in 

buffer A (50 mM Tris-HCl, 150 mM NaCl, 20 mM imidazole (pH 7.5)) and lysed by 

sonication after the addition of protease inhibitors (Roche). Cell debris were eliminated by 

centrifugation (48,000 g, 30 min, 4 °C). Proteins were purified by immobilized metal affinity 

chromatography using nickel-Sepharose resin (GE Healthcare) equilibrated in buffer A. 

Proteins were then eluted off the resin with buffer A containing 200 mM instead of 20 mM 

imidazole. Cell pellets resulting during expression of Tse8 were resuspended in 50 mM Tris

HCl, 150 mM NaCl (pH 7.5) and lysed by sonication after the addition of protease inhibitors 

(Roche). Tse8-HA-Strep was purified using Strep-Tactin Sepharose (IBA), according to the 

manufacturer’s specifications.

For pull-down experiments using pure-proteins, the above purified protein solutions and 

His-Tag Isolation & Pull Down Dynabeads (ThermoFischer Scientific) were used. Briefly, 

the appropriate protein mixtures were generated by mixing 40 μM of the bait protein with 

equimolar amounts of Tse8-HA-Strep (Tsi8 bait) or 15-fold molar excess of Tse8-HA-Strep 

(GatCAB bait); a condition containing solely the same amount of Tse8-HA-Strep was also 
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tested as a negative binding control. Mixtures were added to a 25 μL bed of Dynabeads and 

incubated at 25 °C with agitation for 1 h, before the beads were washed 8x with 800 μL 

of wash buffer (50 mM Tris pH 7.5, 150 mM NaCl, 0.01% Tween 20) and resuspended in 

elution buffer (50 mM Tris pH 7.5, 150 mM NaCl, 0.01% Tween 20, 200 mM imidazole).

For pull-down experiments using purified GatCB and cell lysates containing GatA-V5 and 

Tse8-HA-StrepII, 150 OD600 units of cells expressing GatA-V5 and Tse8-HA-StrepII were 

resuspended in binding buffer (20 mM Tris pH 7.5, 100 mM NaCl, 10% (v/v) glycerol 

and 3% (w/v) bovine serum albumin) and lysed by sonication. Pull-downs were performed 

by adding a total volume of 6 mL of cell lysate (3 mL GatA-V5 lysate mixed with 3 mL 

binding buffer or 3 mL GatA-V5 lysate mixed with 3 mL Tse8-HA-StrepII lysate) to a 25 

μL bed of His-Tag Isolation & Pull Down Dynabeads (ThermoFischer Scientific) loaded 

with 40 μg of purified GatCB. Mixtures were incubated at 25 °C with agitation for 1 h 

before the beads were washed 8x with 800 μL of wash buffer (50 mM Tris pH 7.5, 150 mM 

NaCl, 0.01% Tween 20) and resuspended in elution buffer (50 mM Tris pH 7.5, 150 mM 

NaCl, 0.01% Tween 20, 200 mM imidazole).

For all experiments, eluted samples were denatured in 4 x Laemmli buffer and subjected 

to western blotting as described above. Anti-V5 (1:5000 Invitrogen), anti-HA (1:5000 

Biolegend) or anti-His (1:1000 Sigma) primary antibodies were used along with an 

anti-mouse secondary (1:5000 Sigma). For detection of StrepII tags a Strep-Tactin HRP 

conjugate was used (1:3000 IBA Lifesciences). Quantification of Western blot bands was 

performed using the Gel Analyzer plugin in ImageJ51.

Whole-cell glutaminase assays

The whole-cell glutaminase activity was measured as described previously52 with some 

modifications as follows. E. coli B834 cells containing empty vector, gatA or tse8 in pET41a 

were grown to OD600 ~ 0.6 when expression was induced by addition of IPTG (0.5 mM) and 

grown at 18 °C for 16 h. Cells pellets equivalent to 45 OD600 units were washed in sodium 

acetate solution (sodium acetate (100 mM, pH 6), L-glutamine (20 mM)) and resuspended in 

a final volume of 600 μL sodium acetate solution, and incubated at 37 °C for 30 min. 20 μL 

of cells were retained and serially diluted to quantify the CFUs present. The remaining cell 

volume was then lysed by heating at 99 °C for 3 min. Once cooled to room temperature 100 

μL of cell lysate was added to 2 mL of glutamate dehydrogenase solution (sodium acetate 

(10 mm), NAD+ (4 mM), hydroxylamine HCl (400 mM), 30 U of glutamate dehydrogenase 

(GDH) enzyme (Sigma) in potassium phosphate buffer (100 mM, pH 7.2)) and incubated at 

60 °C for 60 min. 150 μL of the reaction was added to a 96 well clear plate and the relative 

accumulation of NADPH was calculated using the measured absorbance at 340 nm.

Expression and purification of Tse8 used for activity measurements

The pET41a::GST-TEV-Tse8 vector coding for P. aeruginosa 
Tse8 was obtained by FastCloning53 using pET41a:GST-Tse8 

(see Supplementary Table 2) as template. This construct was 

subcloned using the forward primer 5′-AACCTGTATTTTCAGGGCGGATCC 

ATCGAGGTCACCGAGGTTTCCATCG-3′ and reverse primer 5′-CCTGAAAATACAGG 
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TTTTCGGTACCCAGATCTGGGCTGTCCATGTGCTGG-3′ in order to exchange the 

Human Rhinovirus (HRV) 3C cleavage site (LEVLFQ/GP) with a TEV protease cleavage 

site (ENLYFQ/G). The resulting construct includes (i) a 651-nucleotide sequence encoding 

a N-terminal GST tag, (ii) an 18-nucleotide sequence encoding a 6x histidine tag, (iii) a 

45-nucleotide sequence encoding a S15 tag and a 21-nucleotide sequence encoding the 

optimal tobacco etch virus (TEV) protease cleavage site Glu-Asn-Leu-Tyr-Phe-Gln-Gly 

(Extended Fig. 5). For protein expression, E. coli BL21(DE3) cells were transformed 

with the pET41a::GST-TEV-Tse8 plasmid and grown in 2xYT (Yeast Extract Tryptone) 

medium (supplemented with 50 μg/ml kanamycin) at 37 °C. When the culture reached 

an OD600 value of 0.7, Tse8 expression was induced by adding 1 mM isopropyl β-D-1

thiogalactopyranoside (IPTG) and the temperature was dropped to 18°C. After 18 hr, cells 

were harvested and frozen for later use.

For protein purification, each 1 L pellet was resuspended in 50 ml of 50 mM Tris-HCl pH 

8, 500 mM NaCl, 20 mM imidazole, 0.5 mM EDTA and 2 μL of benzonase endonuclease 

(without addition of protease inhibitors). Cells were then disrupted by sonication and the 

suspension was centrifuged for 40 mins at 56,000 g. The supernatant was filtered with a 

0.2 μm syringe filter and subjected to immobilized metal affinity chromatography using a 

1 ml HisTrap HP column (GE Healthcare), on a fast protein liquid chromatography system 

(ÄKTA FPLC; GE Healthcare) equilibrated with 5 ml of 50 mM Tris-HCl pH 8, 500 mM 

NaCl and 20 mM imidazole (buffer A). The column was washed with buffer A at 1 ml/min 

until no absorbance at 280 nm was detected. Elution was performed with a linear gradient 

between 0-50% of 50 mM Tris-HCl pH 8, 500 mM NaCl and 500 mM imidazole in 30 

mL and at 1 ml/min. Fractions containing GST-TEV-Tse8 fusion protein were pooled and 

protein concentration was measured. The cleavage of the GST-His-S15 tag was performed 

with TEV protease (1 mg per 10 milligrams of protein) overnight at 18 °C in buffer 50 

mM Tris–HCl pH 7.5, 2 mM DTT, at a protein concentration between 0.3-0.5 mg/mL. The 

cleaved Tse8, non-cleaved Tse8 and TEV protease were collected, filtered and applied onto 

a HisTrap HP column (5 ml; GE Healthcare) equilibrated with 25 ml of 50 mM Tris-HCl pH 

7.5. The cleaved Tse8 was eluted in the flow-through and applied onto a Mono Q column of 

5 mL (GE Healthcare) equilibrated with 25 ml of 50 mM Tris-HCl pH 7.5. The protein was 

eluted in a single step using 500 mM NaCl in 50 mM Tris-HCl pH 7.5. The Tse8 protein 

was dialyzed with 20 mM sodium phosphate buffer pH 7.6 and concentrated using Centricon 

centrifugal filter units of 30 kDa molecular mass cut-off (Millipore) to a final concentration 

of 5 mg/mL for enzymatic assays. The purity of the protein was verified by SDS-PAGE 

(Extended Data Fig. 5) and protein integrity was evaluated following desalting with stage-tip 

C4 microcolumns (Zip-tip, Millipore) by electrospray ionization mass spectrometry (ESI

MS). The sampling cone energy was set at 35 V. The m/z data were then deconvoluted 

into MS-data using the MaxEnt software (MaxEnt Solutions Ltd, Cambridge, UK) with a 

resolution of the output mass of 0.5 Da/channel and Uniform Gaussian Damage Model at the 

half height of 0.5 Da. The analysis indicates that 90% of the protein sample corresponds to 

the expected Tse8 molecular weight (60,564 Da; Extended Data Fig. 5).
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Tse8 substrate activity assays

Putative Tse8 substrates were selected based on the predicted GatA and PAM homology. 

Thus, the capacity of Tse8 to hydrolyse carbon-nitrogen bonds was analysed by mass 

spectrometry (MS) using as putative substrates the free amino acid glutamine and the C

terminally amidated peptide epinecidin-1 (sequence: GFIFHIIKGLFHAGKMIHGLV-NH2) 

(Bachem AG). Glutamine (10 mM) was incubated with 2 μM of freshly purified Tse8. 

Reactions were carried out in two different buffers to test the possible effect of pH; one 

set of reactions was carried out in 10 mM sodium phosphate buffer (pH 7.6) and another 

set of reactions was carried out in 20 mM Tris-HCl buffer (pH 8.3). For epinecidin-1, 

5 μM of freshly-purified Tse8 or the positive control protein Pam (purified as described 

previously54), were incubated with 50 μM of putative substrate in 10 mM sodium phosphate 

buffer (pH 7.2); control reactions, lacking Tse8 or Pam, were also tested. Reactions were 

incubated overnight at 30 °C, followed by MS analysis. For full details on the MS analysis 

see the relevant section below for use of epinecidin-1 or glutamine as a substrate.

Mass spectrometry analysis of Tse8/Pam enzymatic assays using epinecidin-1 as a 
substrate

Samples were desalted and peptides were isolated using stage-tip C18 microcolumns (Zip

tip, Millipore) and further resuspended in 0.1% formic acid prior to MS analysis. Peptide 

separation was performed on a nanoACQUITY UPLC System (Waters) on-line connected 

to an LTQ Orbitrap XL mass spectrometer (Thermo Electron). An aliquot of each sample 

was loaded onto a Symmetry 300 C18 UPLC Trap column (180 μm x 20 mm, 5 μm 

(Waters)). The precolumn was connected to a BEH130 C18 column (75 μm x 200 mm, 1.7 

μm (Waters), and equilibrated in 3% acetonitrile and 0.1% FA. Peptides were eluted directly 

into an LTQ Orbitrap XL mass spectrometer (Thermo Finnigan) through a nanoelectrospray 

capillary source (Proxeon Biosystems), at 300 nl/min and using a 120 mins linear gradient of 

3-50% acetonitrile. The mass spectrometer automatically switched between MS and MS/MS 

acquisition in DDA mode. Full MS scan survey spectra (m/z 400-2000) were acquired 

in the orbitrap with mass resolution of 30,000 at m/z 400. After each survey scan, the 

six most intense ions above 1,000 counts were sequentially subjected to collision-induced 

dissociation (CID) in the linear ion trap. Precursors with charge states of 2 and 3 were 

specifically selected for CID. Peptides were excluded from further analysis during 60 s using 

the dynamic exclusion feature. RAW files were searched with the Mascot search engine 

(www.matrixscience.com) through Proteome Discoverer v1.4 (Thermo) against a FASTA 

database containing the protein and peptide sequences of interest, together with a Pichia 
pastoris database from Uniprot/Swissprot as a background. Search parameters were: 10 ppm 

peptide mass tolerance, 0.5 Da fragment mass tolerance, carbamydomethylation of cysteines 

as fixed modification, and oxidation of methionine, amidation and deamidation of protein 

C-terminus as variable modifications. Only highly reliable hits (p<0.01) were considered.

Mass spectrometry analysis of Tse8 enzymatic assay using glutamine as substrate

Overnight incubations were quenched by addition of 150 μL 20% acetonitrile (MeCN). 

Controls for the experiment were prepared by first adding MeCN to the reaction blank and 

subsequently adding enzyme. In order to determine LC-MS performance, 100 μM stock 
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solutions of glutamine substrate in 2:3 water/MeCN were injected before the experimental 

samples. Quenched incubations and controls were shaken in the tubes for 30 mins at 

4°C and 1,000 g. Next, samples were centrifuged for 30 mins at 4°C and 25,000 g. The 

resulting solutions were immediately injected in the LC-MS. Samples were measured with 

a UPLC system (Acquity, Waters Inc., Manchester, UK) coupled to a Time of Flight mass 

spectrometer (ToF MS, SYNAPT G2, Waters Inc.). A 2.1 x 100 mm, 1.7 μm BEH amide 

column (Waters Inc.), thermostated at 40 °C, was used to separate the analytes before 

entering the MS. Mobile phase solvent A (aqueous phase) consisted of 99.5% water, 0.5% 

formic acid and 20 mM ammonium formate while solvent B (organic phase) consisted of 

29.5% water, 70% MeCN, 0.5% formic acid and 1 mM ammonium formate. In order to 

obtain a good separation of the analytes the following gradient was used: from 5% A to 50% 

A in 2.4 mins in curved gradient (#8, as defined by Waters), from 50% A to 99.9% A in 0.2 

mins constant at 99.9% A for 1.2 mins, back to 5% A in 0.2 mins. The flow rate was 0.250 

mL/min and the injection volume was 2 μL. The MS was operated in positive (ESI+) and 

negative (ESI-) electrospray ionization in full scan mode. The cone voltage was 25 V and 

capillary voltage was 250 V for ESI+ and 500 V for ESI-. Source temperature was set to 

120 °C and capillary temperature to 450 °C. The flow of the cone and desolvation gas (both 

nitrogen) were set to 5 L/h and 600 L/h, respectively. A 2 ng/mL leucine-enkephalin solution 

in water/acetonitrile/formic acid (49.9/50/0.1% (v/v/v)) was infused at 10 μL/min and used 

for a lock mass which was measured each 36 seconds for 0.5 seconds. Spectral peaks were 

automatically corrected for deviations in the lock mass.

Bioinformatics analysis of prokaryotic organisms encoding AsnS and GlnS

Escherichia coli AsnS and GlnS protein sequences were interrogated against the National 

Center for Biotechnology Information (NCBI) collection of non-redundant protein 

sequences of bacteria and archaea (non-redundant Microbial proteins, update: 2017/11/29) 

using the pBLAST search engine. The search was further restricted for non-redundant 
RefSeq proteins, with a 20,000-hit limit, the BLOSUM62 matrix scoring function and 

an Expect threshold value (E-value) of 1e-5. Hits were selected if sequence identity was 

above 50% with respect to the query sequences and those associated with bacterial species 

Agrobacterium tumefaciens, Escherichia coli and Pseudomonas aeruginosa were extracted 

(Supplementary Table 4).

Bioinformatics analysis of prokaryotic organisms predicted to encode the 
amidotransferase GatCAB complex

A none-exhaustive search for organisms encoding GatCAB was carried out using the 

National Center for Biotechnology Information (NCBI) database. Pseudomonas aeruginosa 
GatA and GatB protein sequences were interrogated against the NCBI collection of 

non-redundant protein sequences of bacteria and archaea (non-redundant Microbial 
proteins, update: 2017/11/29) using the pBLAST search engine. The search was further 

restricted for non-redundant RefSeq proteins, with a 20,000-hit limit, BLOSUM62 matrix 

scoring function and an Expect threshold value (E-value) of 1e-5. Hits were selected if 

annotated as Asp-tRNA(Asn)/Glu-tRNA(Gln) amidotransferase subunits, and the results for 

Agrobacterium tumefaciens, Escherichia coli and Pseudomonas aeruginosa were extracted 

(Supplementary Table 4).
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Statistical analyses

Statistical analyses were performed using GraphPad Prism version 9 and are detailed in the 

figure legends.

Extended Data

Extended data Fig. 1. 
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Extended data Fig. 2. 
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Extended data Fig. 3. 
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Extended data Fig. 4. 
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Extended data Fig. 5. 
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Extended data Fig. 6. 
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Extended data Fig. 7. 
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Extended data Fig. 8. 
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Extended data Fig. 9. 
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Extended data Fig. 10. 

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Tse8-Tsi8 is a H1-T6SS toxin-immunity pair.
a-b, Expression of Tse8 (either HA tagged or untagged) in PAKΔretSΔtsei8 is toxic 

when expressed in trans from pMMB67HE ((-) no induction; (+) with induction) (a) or 

when delivered by the H1-T6SS into a recipient strain lacking tsi8 (b). c-d, Tsi8 can 

rescue Tse8 toxicity in competition assays with donors PAKΔretS or PAKΔretSΔH1 and 

recipient PAKΔretSΔtsei8 expressing either pJN105 or pJN:tsi8 (c) and in growth assays 

with PAKΔretSΔtsei8 expressing pMMB:tse8 or pJN:tsi8 (d). e, Bacterial-Two-Hybrid 

(BTH) assays were used to quantify the level of interaction between Tse8 and Tsi8 with 
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β-galactosidase activity assays performed on the cell lysates of each interaction pair. 

f, Tse8-HA-Strep interacts directly and specifically with Tsi8-His. Proteins were added 

to His-Tag Dynabeads as indicated. Lane 1: Tsi8-His (as bait) interacts with Tse8-HA

Strep. Lane 2: Tse8-HA-Strep alone does not interact with the Dynabeads. Lane 3: Tse8

HA-Strep does not interact with a different His-tagged bait protein, CcmE. Molecular 

weight markers positions are indicated on the left in kDa. Black vertical lines indicate 

where a lane was removed. Statistical analyses: (a) mean OD600 ± SEM is plotted over 

time from three independent replicates; (b) Mean CFUs/mL ± SEM of recipient cells in 

competition/alone are represented from three independent replicates performed in triplicate 

(n=3). Two-tailed student’s t-test, *** P<0.001; * P<0.05; ns between PAKΔretS and 

PAKΔretSΔH2ΔH3 (P=0.436); (c) Mean CFUs/mL ± SEM of recipient cells in competition/

alone are represented from three independent replicates performed in triplicate (n=3). Two

tailed student’s t-test, * P<0.05 for each sample to PAKΔretS and ns between PAKΔretSΔH1 

[pJN105] and PAKΔretS [pJN:tsi8] (P=0.598); (d) Mean OD600 ± SEM is plotted over time 

from three independent replicates; (e) Mean ± SEM of three biological replicates performed 

in triplicate (n=3). One-way Anova with Tukey’s multiple comparison post-test, * P<0.05 

compared to the Miller units for T18c + T25 for Zip + Zip, or compared to Tsi8 + T25 and 

T18c + Tse8 for Tsi8 + Tse8; (f) Representative blot from one independent replicate (n=1).
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Figure 2. Tse8 interacts with VgrG1a and does not require putative catalytic residue for toxicity.
a, BTH assays were used to quantify the level of interaction between Tse8 and VgrGs 

with β-galactosidase activity assays performed on the cell lysates of each interaction pair. 

b, Tse8 interacts with VgrG1a in dot blot assays (top panel). Densitometry quantifications 

of Tse8 interactions with respective partners (bottom panel). CcmE-His is used as a non

specific binding control. c, Tse8 toxicity is not dependent on the conserved putative catalytic 

residue S186. Competition assays were performed with donors PAKΔretS, PAKΔretSΔH1, 

PAKΔretS::tse8S186A or PAKΔretSΔH1::tse8S186A and recipient PAKΔretSΔtsei8::lacZ. 
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Statistical analyses: (a) Mean ± SEM of three biological replicates performed in triplicate 

(n=3). One-way Anova with Tukey’s multiple comparison post-test, * P<0.05 compared 

to the Miller units for each of VgrG1a, VgrG1b, VgrG1c and Tse8 with the respective 

T18c or T25 partner. (b) Densitometry measurements normalized to the control and 

represented as the Mean ± SEM from three independent replicates (n=3). Two-tailed 

student’s t-test, ** P<0.005 compared to control; ns between control and VgrG1b (P=0.169), 

VgrG1c (P=0.067) and CcmE (P=0.159). (c) Mean CFUs/mL ± SEM of recovered 

recipient are represented from three independent replicates performed in triplicate (n=3). 

Two-tailed student’s t-test, * P<0.05 for PAKΔretS compared to PAKΔretSΔH1 and 

PAKΔretSΔH1::tse8S186A; ns between PAKΔretS and PAKΔretS::tse8S186A (P=0.226).
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Figure 3. Tse8 targets the transamidosome.
a-c, Tse8 is only toxic in bacteria which rely on the transamidosome for protein synthesis. 

Expression of Tse8 in A. tumefaciens is toxic but can be rescued by coexpression of Tsi8 

((-) no induction; (+) with induction) (a). Expression of Tse8 in E. coli is not toxic ((-) 

no induction; (+) with induction) (b), despite Tse8 being expressed (c). d-e, Proteins were 

added to His-Tag Dynabeads as indicated. d, Left panel, lane 1: His-GatB (as bait) interacts 

with GatC-HA and GatA-V5. Left panel, lane 2: Tse8 HA-Strep interacts with the GatCAB 

complex, but does not displace GatA-V5, even at a 15-fold molar excess. Right panel, 
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lane 1: Tse8-HA-Strep alone does not interact with the Dynabeads. Right panel, lane 2: 

Tse8-HA-Strep does not interact with a different His-tagged bait protein, CcmE. e, Left 

panel, lane 1: His-GatB (as bait) interacts with GatC-HA and GatA-V5. Left panel, lane 

2: The presence of Tse8-HA-Strep leads to drastic increase of the amount of GatA-V5 

interacting with His-GatB and GatC-HA. Right panel, lane 1: GatA-V5 alone does not 

interact with the Dynabeads. Right panel, lane 2: GatA-V5 does not interact with a different 

His-tagged bait protein, CcmE. f, Quantification of the amount of GatA-V5 bound to His

GatB and GatC-HA in the presence or absence of Tse8-HA-Strep by densitometry. For 

panels (c-e) molecular weight markers positions are indicated on the left in kDa. Statistical 

analyses: (a-b) Mean OD600 ± SD is plotted over time from three independent replicates; (c) 
Representative blot from three independent replicates (n=3); (d) Representative blots from 

one independent replicate (n=1); (e) Representative blots from three independent replicates 

(n=3) for the left panel and one independent replicate (n=1) for the right panel; (f) Mean 

densitometry ± SEM from three independent replicates (n=3). Two-tailed student’s t-test, 

*** P<0.001 for GatBC+GatA compared to GatBC+GatA+Tse8.
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Figure 4. Tse8 impacts on protein synthesis in vivo.
a, Asn tRNA synthase (asnS) can rescue Tse8 toxicity. Competition assays were performed 

with donors PAKΔretS or PAKΔretSΔH1 and recipient PAKΔretSΔtsei8 expressing either 

pJN105 or pJN:asnS. b, Cells expressing Tse8 produce less sfGfp/total cells compared 

to an empty vector control. This effect can be rescued by expression of Tsi8 or AsnS. 

sfGfp levels normalised to total cells (measured by OD600) were monitored over time in 

PAKΔretSΔtsei8 with sfGFP expressed from the vacant Tn7 chromosomal site in cells 

containing the indicated plasmids ((+) with induction). Statistical analyses: (a) Mean 

CFUs/mL ± SEM of recipient cells in competition/alone are represented from represented 

from three independent replicates performed in triplicate (n=3). Two-tailed student’s t-test, 

* P<0.05; ns for PAKΔretSΔH1 [pJN105] vs PAKΔretS [pJN:asnS] (P=0.687) or vs 
PAKΔretSΔH1 [pJN:asnS] (P=0.631). (b) Mean fluorescent AU/OD600 ± SEM is plotted 

over time from three independent replicates performed in 8 technical replicates (n=3).
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Table 1
TraDIS allows identification of known and putative previously unidentified H1-T6SS 
immunity genes.

Immunity gene PAK/PA number Immunity Toxin Log fold change* Toxin activity/target

PAKAF_RS16410/PA1845 tsi1 tse1 -2.30 Amidase/peptidoglycan

PAKAF_RS11975/PA2703 tsi2 tse2 -7.30 Unknown cytoplasmic target

PAKAF_RS07460/PA3485 tsi3 tse3 -1.28 Muramidase/peptidoglycan

PAKAF_RS11540/PA2775 tsi4 tse4 -7.30 Unknown periplasmic target

PAKAF_RS12070/PA2683.1 tsi5 tse5 -7.02 Unknown periplasmic target

PAKAF_RS22000/PA0802 PA0802 PA0801 -6.60 Putative M4 peptidase regulator

PAKAF_RS11515/PA2779 PA2279 PA2778 -5.50 Putative C39 peptidase

PAKAF_RS08570/PA3274 PA3274 PA3272 -4.70 Putative nucleoside triphosphate hydrolase

PAKAF_RS03995/PA4164 tsi8 tse8 (PA4163) -3.30 Putative amidase

*
Log fold change compared to normalized levels of insertions in T6SS inactive and T6SS active libraries
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