

MiR-506 Targets *UHRF1* to Inhibit Colorectal Cancer Proliferation and Invasion via the *KISS1/PI3K/NF-κB* Signaling Axis

Yilin Lin^{1†}, Zhihua Chen^{1†}, Yan Zheng¹, Yisu Liu¹, Ji Gao², Suyong Lin¹ and Shaoqin Chen^{1*†}

¹ Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China, ² School of Nursing, Fujian Medical University, Fuzhou, China

OPEN ACCESS

Edited by:

Patricia P. Reis, São Paulo State University, Brazil

Reviewed by:

Hua Zhang, Guangdong Medical University, China Marc Mousli, Université de Strasbourg, France

> *Correspondence: Shaoqin Chen chenshaoqin1613@163.com †These authors have contributed equally to this work

Specialty section:

This article was submitted to Molecular and Cellular Oncology, a section of the journal Frontiers in Cell and Developmental Biology

Received: 15 July 2019 Accepted: 18 October 2019 Published: 15 November 2019

Citation:

Lin Y, Chen Z, Zheng Y, Liu Y, Gao J, Lin S and Chen S (2019) MiR-506 Targets UHRF1 to Inhibit Colorectal Cancer Proliferation and Invasion via the KISS1/PI3K/INF-x:B Signaling Axis. Front. Cell Dev. Biol. 7:266. doi: 10.3389/fcell.2019.00266 **Background:** The *UHRF1* gene is an epigenetic modification factor that mediates tumor suppressor gene silencing in a variety of cancers. Related studies have reported that *UHRF1* can inhibit the expression of the *KISS1* gene. However, the regulatory mechanism underlying *UHRF1* expression in colorectal cancer (CRC) is still unclear. The aim of this study was to gain a better understanding of the regulation of *UHRF1* expression in CRC and to determine whether it regulates the mechanism by which *KISS1* promotes CRC metastasis.

Methods: In the present study, the levels of *miR-506*, *UHRF1* and *KISS1* expression in CRC tissues and in human CRC cell lines were studied using quantitative real-time PCR (qRT-PCR) and Western blotting. Cell proliferation, migration, and invasion assays are used to detect cell proliferation, migration, and invasion. A dual-luciferase reporter system was used to confirm the target gene of *miR-506*.

Results: This study found that *UHRF1* protein is highly expressed in CRC tissues and negatively correlated with *KISS1* protein expression. *UHRF1* overexpression activates the *PI3K/NF*- κ B signaling pathway by inhibiting the mRNA expression levels of pathway mediators. Bioinformatics analysis and luciferase reporter gene assays confirmed that *miR-506* targets *UHRF1*.

Conclusion: This study identified the regulation of *UHRF1* expression in CRC and the mechanism of CRC metastasis. *UHRF1* may be a new potential target molecule for future CRC metastasis treatment.

Keywords: CRC, miR-506, UHRF1, proliferation, invasion

1

Abbreviations: BSP, bisulfite sequencing PCR; CRC, colorectal cancer; DAPI, 4,6-diamidino-2-phenylindole; ECL, electrochemiluminescence; EdU, 5-ethynyl-2'-deoxyuridine; PVDF, polyvinylidene fluoride; qRT-PCR, quantitative real-time PCR; RIPA, radioimmunoprecipitation assay; ROS, reactive oxygen species; UHRF1, ubiquitin-like with plant homeodomain and RING finger domains 1; 3' UTR, 3' untranslated region.

Colorectal cancer (CRC) is a common malignant tumor of the digestive tract. Globally, the incidence of CRC ranks third among malignancies, below lung cancer and breast cancer (Bray et al., 2018). The lack of typical clinical symptoms is one of the reasons for the low rate of early CRC diagnosis. Comprehensive treatments such as surgery, radiation therapy, chemotherapy, biological targeting, and immunotherapy are currently the standard treatment approaches for CRC (Ni et al., 2018; Ganesh et al., 2019; Li S. et al., 2019; Siravegna et al., 2019). However, CRC metastasis remains an urgent problem, as metastasis negatively affects patient prognosis. Gene-targeted therapy has great potential, and finding effective therapeutic targets is the focus of current research (de Mel et al., 2019; Erel-Akbaba et al., 2019; Schiza et al., 2019). Studies have shown that the occurrence and development of CRC involve the activation of proto-oncogenes and the inactivation of tumor suppressor genes (Sanz-Garcia et al., 2017; Zhang and Shay, 2017), as well as microRNA changes in the tumor microenvironment (Vu and Datta, 2017; De Robertis et al., 2018; Lin X. et al., 2019; Yu et al., 2019).

The UHRF1 (ubiquitin-like with plant homeodomain and RING finger domains 1) gene is an epigenetic modification factor (Harrison et al., 2016; Xie and Qian, 2018). Studies have shown that UHRF1 recognizes hemi-methylated DNA, which appears at DNA replication forks, and assists DNMT1 in DNA methylation (Lu and Wang, 2013; Ferry et al., 2017). A large number of studies have shown that UHRF1 is highly expressed in a variety of malignant tumor tissues, including breast cancer, bladder cancer, and prostate cancer (Geng et al., 2013; Ying et al., 2015; Wan et al., 2016; Li J. et al., 2019) and that it is involved in tumorigenesis and cancer progression (Alhosin et al., 2011, 2016). In addition, UHRF1 can inhibit cell apoptosis through the ROS-related signaling pathway in gastric cancer (Zhang et al., 2018), and UHRF1 was found to enhance the invasive ability of tumor cells through the Keap1-Nrf2 pathway in pancreatic cancer (Abu-Alainin et al., 2016). A recent study found that UHRF1 silencing can inhibit retinoblastoma proliferation and promote apoptosis through the PI3K/AKT signaling pathway (Liu et al., 2019). Studies have found that the expression of UHRF1 in CRC is related to the depth of invasion of the tumor and that knocking down the expression of UHRF1 can inhibit the proliferation of CRC cells (Kofunato et al., 2012). Additionally, UHRF1 silences PPARG expression and mediates the progression of CRC (Sabatino et al., 2012). Furthermore, UHRF1 may promote CRC growth and metastasis by inhibiting p16 (ink4a) (Wang et al., 2012). Ashraf et al. (2017) highlighted the deregulation of UHRF1 in various cancers, including CRC, and its prognostic value in cancers. This highlights UHRF1 dysregulation and the importance of identifying different strategies to target UHRF1 in cancers, as well as the prognostic value of UHRF1 (Ashraf et al., 2017). Therefore, UHRF1 may be an important biomarker in the diagnosis, treatment, and prognosis of CRC.

KISS1 was first discovered in melanoma; subsequently, KISS1 was reported to affect the growth, invasion, and migration of

tumor cells and confirmed to be an important tumor suppressor gene in multiple types of malignant tumors (Manley et al., 2017; Liu et al., 2018; Platonov et al., 2018). Suppression of *KISS1* expression is closely related to DNA methylation in CRC tissues (Chen et al., 2014), while *KISS1* overexpression has been reported to inhibit the invasion of CRC cells by blocking *PI3K/AKT* signaling (Chen et al., 2016; Chipman and Pasquinelli, 2019). Studies have also shown that overexpression of *UHRF1* can inhibit the expression of *KISS1* mRNA in bladder cancer (Zhang et al., 2014). However, whether *UHRF1* can inhibit *KISS1* and activate the *PI3K/NF-κB* signaling pathway in CRC remains unclear.

MicroRNAs are a class of non-coding RNAs that are abundantly found in various organisms ranging from viruses to humans. They are approximately 22 nucleotides in length. One of the functions of miRNAs is to bind to the 3'-non-coding regions of target mRNAs [3' untranslated region (3'UTR)] to inactivate the genes (Chipman and Pasquinelli, 2019). Studies have found that at least one-third of protein-coding genes are regulated by miRNAs, including those involved in cellular differentiation, proliferation, metabolism, apoptosis, and migration (Farazi et al., 2013; Hayes et al., 2014). Studies have found that miR-501-3p promotes CRC progression via activation of Wnt/β catenin signaling (Wu et al., 2019), that miR-4319 suppresses CRC progression by targeting ABTB1 (Huang et al., 2019), and that miR-144 suppresses aggressive phenotypes of tumor cells by targeting ANO1 in CRC (Jiang et al., 2019). These studies have shown that miRNA plays an important role in CRC. Previous studies have found that miR-202 inhibits CRC proliferation and invasion by targeting UHRF1 (Lin Y. et al., 2019). MiR-9 targets UHRF1 and inhibits the proliferation and apoptosis of CRC cells (Zhu et al., 2015). Choudhry et al. (2018) reported the importance of the miRNA/UHRF1 strategy for targeting various cancers. The study revealed the importance of miRNA therapy targeting UHRF1, particularly in CRC. Therefore, it is important to identify miRNAs that target UHRF1 and to study their mechanisms of action in cancer. MiR-506 is located on the X chromosome and is a member of the *miR-506-514* sequence family (Bentwich et al., 2005). Increased expression of miR-506 inhibits tumor cell proliferation and promotes tumor cell senescence and apoptosis, and it has been reported to exert anticancer effects in ovarian cancer, breast cancer, and liver cancer (Wang et al., 2014; Sun et al., 2015; Yu et al., 2015). However, studies have also confirmed that miR-506 acts as a carcinogenic factor in melanoma (Streicher et al., 2012). At present, miR-506 has been reported to be differentially expressed in different tumors and to play oncogenic or tumor-suppressive roles in different tumors. To date, the expression and mechanism of miR-506 in CRC remains unclear.

This study demonstrates that UHRF1 activates the PI3K/AKT/NF- κ B signaling pathway by inhibiting KISS1 mRNA expression in CRC. Furthermore, *miR-506* targets UHRF1 via the KISS1/PI3K/NF- κ B signaling axis to inhibit CRC proliferation, migration, and invasion both *in vivo* and *in vitro*. Our findings provide new insights into the underlying mechanisms of UHRF1 in CRC and provide potential therapeutic targets for the treatment of CRC.

MATERIALS AND METHODS

Human Tissues

A total of 121 CRC tissues and 121 adjacent normal tissues were collected from the First Affiliated Hospital of Fujian Medical University in 2017 and 2018. All tissue samples were immediately frozen in liquid nitrogen for histological examination. Tumor burden was determined using the American Joint Committee on Cancer TNM staging system. Patients provided informed consent for the use of human materials in the study, which was approved by the Ethics Committee of Fujian Medical University.

Immunohistochemical Staining and Analysis

Immunohistochemistry was performed on 4-µm-thick paraffinembedded sections of both CRC tissues and adjacent normal tissues. Sections were stained to determine the expression levels of the UHRF1 and KISS1 proteins. The slides were incubated overnight at 4°C with an anti-UHRF1 antibody (Sigma, United States) or anti-KISS1 antibody (Sigma, United States) diluted 1:200. After incubation, the slides were washed with phosphate-buffered saline (PBS) and incubated with a fluorescein isothiocyanate-conjugated goat anti-mouse IgG secondary antibody (ZSGB-BIO, Beijing, China) for 30 min. The slides were washed with PBS and then mounted with anti-fade reagent (Invitrogen, Carlsbad, CA, United States). Finally, the stained slides were observed using an Olympus CX41 fluorescence microscope (Olympus, Tokyo, Japan). The stained tumor sections were examined for positively stained tumor cells and the intensity of immunohistochemical signals and scored independently by two observers. According to the proportion of positively stained tumor cells, the sections were scored as follows: (0) no positive tumor cells; (1) <10% positive tumor cells; (2) 10-50% positive tumor cells; and (3) >50% positive tumor cells. The staining intensity was graded according to the following criteria: (0) no staining; (1) weak staining (light yellow); (2) moderate staining (yellow brown); and (3) strong staining (brown). A total score of > 3 points was considered high expression, and \leq 3 points was considered low expression.

Detection of *miR-506* and *UHRF1* mRNA Expression in Human Specimens

Human tissue specimens were ground into a powder using liquid nitrogen. Tissue RNA was extracted with TRIzol reagent (TransGen Biotech, Beijing, China), and then, *miR-506* and *UHRF1* mRNA expression levels were analyzed by quantitative real-time PCR (qRT-PCR). The qRT-PCR assay was performed as follows: RNA was detected using a reverse transcription kit (TaKaRa, Dalian, China) and an amplification kit (TaKaRa) following the manufacturer's instructions. *U6* was used as the internal control for *miR-506* expression levels, and *GAPDH* was used as the internal control for the *UHRF1* gene. The reaction mixture contained 10 µl of SYBR Premix Ex Taq 2, 1 µl of each primer, 2 µl of the cDNA template, and 6 µl of ddH₂O for a final volume of 20 µl. The thermal cycling parameters for amplification were as follows: a denaturation step at 95°C for 30 s,

followed by 40 cycles at 95°C for 5 s and a final holding step at 60°C for 34 s. Relative gene expression was evaluated with Data Assist software version 3.0 (Applied Biosystems, Foster City, CA, United States). The relative expression levels were determined according to the $2^{-\Delta} \Delta^{CT}$ method. The assays were performed in triplicate. Primer sequences for each gene were shown in **Table 1**.

Cell Culture

The four human CRC cell lines HCT116, LoVo, HT29, and SW480 were purchased from the Cell Bank of the Chinese Academy of Sciences (Shanghai, China). HCT116 cells and HT29 cells were grown in McCOY's 5A medium, LoVo cells were grown in F12K medium, and SW480 cells were grown in L-15 medium (Gibco, Carlsbad, CA, United States) containing 10% fetal bovine serum (FBS) (Gibco), and cells were incubated at 37° C with 5% CO₂.

Screening of Cell Lines

Cells from each cell line were plated on six-well plates (2×10^5) cells per well) and incubated for 48 h to achieve a cell density of 80%. One milliliter of TRIzol reagent was added to lyse the cells. RNA was extracted with TRIzol reagent (TransGen Biotech, Beijing, China). *MiR-506* and *UHRF1* mRNA expression levels were detected by qRT-PCR. The assays were performed in triplicate.

Vector Construction and Cell Infection

Pre-miR-506 lentivirus, *miR-506* inhibitor lentivirus, *UHRF1*-overexpressing lentivirus, *sh-UHRF1* lentivirus, *KISS1*overexpressing lentivirus and *PI3K*-overexpressing lentivirus were purchased from GeneChem (Shanghai, China). Infection was performed using polybrene (GeneChem). A lentivirus infection efficiency of more than 80% was considered successful. According to the manufacturer's instructions, the multiplicity of infection for HCT116 cells was 10, and the multiplicity of infection for SW480 cells was 30. After 48 h of infection, the cells were digested for further cell culture. All experiments were performed according to the manufacturer's instructions.

Detection of *miR-506*, *UHRF1*, and *KISS1* mRNA Expression

Cells from each cell line were plated on six-well plates (2 \times 10⁵ cells per well) and then incubated for 48 h to achieve a cell

Gene UHRF1	Primer sequence				
	Forward	5'-CGACGGAGCGTACTCCCTAG-3'			
	Reverse	5'-TCATTGATGGGAGCAAAGCA-3'			
GAPDH	Forward	5'-CCCTTCATTGACCTCAACTACATG-3			
	Reverse	5'-TGGGATTTCCATTGATGACAAGC-3'			
U6	Forward	5'-CGCTTCGGCAGCCACATATACTA-3'			
	Reverse	5'-CGCTTCACGAATTTGCGTGTCA-3'			
KISS1	Forward	5'-AGCCGCCAGATCCCCGCA-3'			
	Reverse	5'-GCCGAAGGAGTTCCAGTTGT-3'			
MiR-506	Forward	5'-GCGGCTTTGTGCTTGATCTAA-3'			
	Reverse	5'-GTGCAGGGTCCGAGGT-3'			

density of 80%. One milliliter of TRIzol reagent was added to lyse the cells. Then, *miR-506*, *UHRF1*, and *KISS1* mRNA expression levels were analyzed by qRT-PCR. All assays were performed in triplicate.

Western Blot Analysis

Radioimmunoprecipitation assay buffer was added to each group of transfected cells for protein extraction, and approximately 60 µg of total protein was loaded onto an 8% SDS-PAGE gel (Beyotime) and transferred to a PVDF membrane at 300 mA for 1.5 h. The PVDF membrane was blocked with 5% skim milk for 2 h at room temperature and then incubated with anti-*UHRF1*, anti-*KISS1* or anti-*GAPDH* (1:1000; Sigma, St. Louis, MO, United States) and anti-*p*-*PI3K*, anti-*AKT*, anti-*p*-*AKT*, anti-*NF*- κ *B* (*p65*) or anti-*MMP9* (1:1000; Abcam, United States) antibodies overnight at 4°C. After washing, the membrane was incubated with HRP-conjugated goat anti-mouse IgG (1:5000; Beyotime) at room temperature for 90 min, washed three times in PBS and then visualized using ECL reagent. All assays were performed in triplicate.

Proliferation Assay

Each group of transfected cells $(1 \times 10^5$ cells per well) was seeded in 24-well plates and then incubated for 24 h at 37°C and 5% CO₂. The reagent 5-ethynyl-2'-deoxyuridine (EdU; Beyotime, Haimen, China) was added to each well, and then, the cells were incubated for another 2 h. The cells were subsequently fixed with paraformaldehyde and stained with 4,6-diamidino-2-phenylindole (DAPI) and Alexa Fluor 555 azide (Beyotime). Proliferating cells were stained red with Alexa Fluor 555 azide, and all nuclei were stained blue with DAPI. Five fields of view were randomly photographed under a microscope for statistical analysis and measurement. The statistical method used was as follows: cell proliferation rate = number of proliferating cells/total number of cells. All assays were performed in triplicate.

Migration Assay

Transwell chambers (Corning, NY, United States) were used for the migration assay. Infected HCT116 cells (6×10^4 cells per well) or SW480 cells (9×10^4 cells per well) were suspended in serum-free culture medium and seeded into the upper chamber, and 800 µl of complete medium was added to the lower chamber. After incubation for 48 h at 37°C and 5% CO₂, the cells were fixed with paraformaldehyde and stained with crystal violet. Five random fields of view were photographed under a microscope for statistical analysis and measurements. Images were obtained using an Olympus CX41 microscope (Nikon, Tokyo, Japan), and the number of cells in different treatment groups was assessed by manual counting. All assays were performed in triplicate.

Invasion Assay

Transwell chambers (Corning, NY, United States) were used for the invasion assays. Matrigel (100 μ l) (Becton Dickinson, Franklin Lake, NJ, United States) was placed into the upper chamber. Transfected HCT116 cells (9 \times 10⁴ cells per well) or SW480 cells (12 \times 10⁴ cells per well) were suspended in

serum-free culture medium and seeded into the upper chamber, and 800 μ l of complete medium was added to the lower chamber. After incubation for 48 h at 37°C and 5% CO₂, the cells were fixed with paraformaldehyde and stained with crystal violet. Five random fields of view were photographed under a microscope for statistical analysis and measurements. Images were obtained using an Olympus CX41 microscope (Nikon, Tokyo, Japan), and the number of cells in different treatment groups was assessed by manual counting. All assays were performed in triplicate.

Target Gene Screening Assay

TargetScan¹, MiRanda², and PicTar³ online tools were applied to jointly predict miRNAs that bind to *UHRF1*. Through predictive analysis, we obtained four miRNAs, of which *miR-124-3p* and *miR-9-5p* had been previously reported, and we therefore excluded them from our analysis. We found that the function of *miR-2836* had not been reported in the literature, so it was also excluded from our analysis. As *miR-506* is known to act as a tumor suppressor in other cancer tissues, we speculated that *UHRF1* may be the target of *miR-506*.

Luciferase Assay

MiR-506 mimics and miR-506 negative control vectors were purchased from GenePharma (Shanghai, China). The UHRF1 wild-type vector with a potential binding sequence and the mutant vector were purchased from GeneChem (Shanghai, China). Transfection was performed using Lipofectamine 3000 (Invitrogen). HCT116 cells transfected with miR-506 mimics (5'-UAAGGCACCCUUCUGAGUAGA-3', 5'-UACUCAGAAGGGUGCCUUAUU-3') or miR-506 negative control vectors (sense 5'-UUCUCCGAACGUACGUTT-3', 5'-ACGUGACACGUUCGGAGAATT-3') antisense were cultured for 24 h. Firefly/Renilla luciferase activity was used as an internal control. The wild-type vector and mutant vector (1 µg) were transfected into the cells, and the cells were collected after 48 h of culture. A fluorescein assav kit (Beyotime) was used to extract fluorescein from each group, and then, the fluorescence level of each group was determined by a multi-function microplate reader. All assays were performed in triplicate.

Tumor Formation in a Nude Mouse Model

Athymic male BALB/c nude mice (SLAC, Shanghai, China) were bred in the absence of specific pathogens. The trial protocol was approved by the Experimental Animal Ethics Committee of Fujian Medical University. MiR-506-overexpressing cells and vector control cells were trypsinized, and then, the cells were resuspended in medium at a concentration of 3×10^7 cells/ml. HCT116 cells (0.2 ml) were injected subcutaneously into the left flanks of 5-week-old mice (4 mice per group). *MiR-506* inhibitor cells and the vector control cells were trypsinized, and then, the

³http://www.pictar.org/

¹http://www.targetscan.org/

²http://www.microrna.org/microrna/home.do

cells were resuspended in medium at a concentration of 3×10^7 cells/ml. SW480 cells (0.2 ml) were injected subcutaneously into the left flank of 5-week-old mice (4 mice per group). The subcutaneously growing tumors were evaluated twice weekly after transplantation. The mice were sacrificed 4 weeks (HCT116 cells) or 6 weeks (SW480 cells) later, and the weights of the subcutaneous tumors were recorded. The tissues were embedded in paraffin, sectioned, and then stained to determine the protein expression of *UHRF1*, *KISS1*, *p-PI3K*, *NF-* κ *B*, and *MMP9* via immunohistochemistry.

Statistical Analysis

Data were statistically analyzed using SPSS 16.0 software. Quantitative data were analyzed by Student's *t*-test, and the results are expressed as the mean \pm SD. The results of immunohistochemistry were tested by an independent sample χ^2 test. p < 0.05 was considered significant.

RESULTS

UHRF1 Is Highly Expressed in CRC Tissues Compared to Adjacent Normal Tissues

In our investigations into the expression of UHRF1 in CRC, we found that UHRF1 was highly expressed in CRC according to The Cancer Genome Atlas (TCGA) database (p < 0.001; Figure 1A). Next, we collected human CRC specimens (T1, n = 28; T2, n = 26; T3, n = 31; and T4, n = 36) and adjacent normal tissues (n = 27) and examined the expression of *UHRF1* in each sample by qRT-PCR. The results showed that the expression of UHRF1 was significantly higher in T1 than in adjacent normal tissues (p < 0.001; Figure 1B). Additionally, no significant difference in UHRF1 expression was found between T1 and T2 (p = 0.356); UHRF1 expression in T4 and T3 was significantly higher than that in T2 (p < 0.001; Figure 1B), but UHRF1 expression was significantly higher in T4 than in T3 (p < 0.001; Figure 1B). The immunohistochemistry results revealed that among CRC tissues, 87 cases were positive for UHRF1 expression, and 34 cases were negative for UHRF1 expression; among the adjacent normal tissues, 29 cases were positive for UHRF1 expression, and 92 cases were negative for UHRF1 expression. Altogether, these results demonstrate that UHRF1 expression is significantly higher in CRC than in adjacent normal tissues (p < 0.001; Figure 1C and Table 2).

UHRF1 Inhibits KISS1 Expression in CRC

To investigate the association between the *UHRF1* and *KISS1* proteins in CRC, immunohistochemistry was used to detect the expression of *KISS1* in 121 CRC specimens. The results showed that in 87 CRC tissues with high UHRF1 protein expression, 23 cases were positive for *KISS1* protein expression, and 64 cases were negative. Among the 34 cases of CRC with low levels of *UHRF1* protein, 21 and 13 cases were positive and negative, respectively, for *KISS1* protein expression. Thus, *UHRF1* protein and *KISS1* protein expression were found to

be negatively correlated in CRC (p < 0.0001; Figure 1D and Table 2). Next, we investigated whether UHRF1 inhibits KISS1 expression. We detected the expression of UHRF1 mRNA in four colorectal cell lines (HCT116, LoVo, HT29, and SW480) by qRT-PCR. The results showed that the expression of UHRF1 mRNA was highest in HCT116 cells and lowest in SW480 cells (Figure 2A). SW480 cells were infected with UHRF1overexpressing lentivirus, and HCT116 cells were infected with sh-UHRF1 lentivirus. The results of the gRT-PCR analyses showed that UHRF1 expression was significantly higher in the UHRF1-overexpressing group than in the negative control group and that the expression of UHRF1 was significantly lower in the sh-UHRF1 group than in the negative control group (Figure 2B), confirming that the cells were successfully infected. KISS1 mRNA expression was decreased in the UHRF1overexpression group, while it was increased in the sh-UHRF1 group (Figure 2C).

UHRF1 Promotes the Proliferation, Migration, and Invasion of CRC Cells by Inhibiting KISS1-Induced Activation of the PI3K/NF-κB Signaling Pathway

Next, we explored the mechanism of UHRF1 in CRC metastasis. Western blotting results revealed that the overexpression of UHRF1 inhibits KISS1 protein expression and promotes the expression of PI3K/NF-kB signaling pathway-related proteins; when we activated KISS1 protein expression in cells infected with the UHRF1 overexpression vector, the expression of PI3K/NFκB signaling pathway-associated proteins was subsequently inhibited (Figure 3A). Infection of CRC cells with sh-UHRF1 promoted the expression of the KISS1 protein and inhibited the expression of PI3K/NF-κB signaling pathway-related proteins. When we activated the expression of PI3K protein in cells infected with the sh-UHRF1 vector, the expression of the $PI3K/NF-\kappa B$ signaling pathway-associated proteins was then activated (Figure 3B). This result revealed that UHRF1 activates the PI3K/NF-κB signaling pathway by inhibiting KISS1 in CRC. To further explore whether this mechanism is involved in the malignant behavior of CRC, we performed proliferation, migration, and invasion assays and further verified that UHRF1 promotes the proliferation, migration, and invasion of CRC; however, the activation of KISS1 reversed this trend. Additionally, sh-UHRF1 inhibited the proliferation, migration and invasion of CRC, but the activation of PI3K reversed this trend (Figures 4A-C). Therefore, the results of this study revealed that UHRF1 inhibits the proliferation, migration, and invasion of CRC by inhibiting KISS1-induced activation of the PI3K/NF-κB signaling pathway.

MiR-506 Is Expressed at Low Levels in CRC and Targets *UHRF1*

To further explore the mechanism of *UHRF1* expression in CRC, this study used data from three databases to predict miRNAs that might bind to *UHRF1*. The results revealed that four miRNAs (*miR-1283*, *miR-506*, *miR-9-5p*, and *miR-124-3p*) may bind to *UHRF1* (**Figure 5A**). A review of the literature revealed

FIGURE 1 Expression of UHRF1 and KISS1 in CHC. (A) Expression of UHRF1 mRNA in CHC and adjacent normal tissues from the FICGA database. (B) The expression level of UHRF1 mRNA in tissues was detected by qRT-PCR. (C) Immunohistochemistry results showed that UHRF1 protein expression was significantly different between cancer tissues and adjacent normal tissues. (D) Immunohistochemistry showed that UHRF1 protein and KISS1 protein expression were negatively correlated in colorectal cancer. ***p < 0.001.

that low *miR-506* expression has been reported in a variety of tumors. Moreover, by qRT-PCR, we found that *miR-506* was downregulated in CRC and negatively correlated with *UHRF1* mRNA expression (**Figures 5B,C**). Potential binding sites were predicted by the TargetScan database (**Figure 5D**). Finally, the results of a luciferase reporter assay revealed that h-*UHRF1*-WT significantly inhibited luciferase expression in HCT116 cells and SW480 cells, whereas h-*UHRF1*-MU failed to inhibit luciferase expression (**Figure 5E**).

MiR-506 Inhibits CRC Proliferation, Migration, and Invasion via the *UHRF1/KISS1* Signaling Axis

Next, we investigated whether *miR-506* targets *UHRF1* in CRC and found that the proliferation, migration, and invasion of CRC are affected by the *KISS1/PI3K/NF-*κ*B* signaling axis. We detected the expression of *miR-506* in four colorectal cell lines (HCT116, LoVo, HT29, and SW480) by qRT-PCR. The results showed that

TABLE 2 Relationship between the UHRF1	levels and clinicopathological
features of 121 patients with CRC.	

Variable		n	UHRF1 level		p
			Low	High	
Age	<60	58	13	45	0.1819
	≥60	63	21	42	
Sex	Male	69	23	46	0.1401
	Female	52	11	41	
Histological grade	Well	37	14	23	0.1137
	Moderate, poor	84	20	64	
Depth of invasion	T1 + T2	54	22	32	0.0055
	T3 + T4	67	12	55	
KISS1 level	Low	77	13	64	0.0003
	High	44	21	23	

the expression of miR-506 was highest in SW480 cells and lowest in HCT116 cells (Figure 6A). Therefore, this study used miR-506 knockdown lentivirus to infect SW480 cells and infected HCT116 cells with *pre-miR-506* lentivirus. The qRT-PCR results showed that miR-506 expression was significantly higher in the *pre-miR-506* group than in the negative control group and significantly lower in the miR-506 inhibitor group than in the negative control group (Figure 6B). These results confirmed that the cells were successfully infected with lentivirus. The Western blotting results further showed that *pre-miR-506* inhibited the expression of the *UHRF1* protein and activated *KISS1* expression to suppress the expression of *PI3K/NF-* κ *B* signaling pathway-related proteins. When the expression of *UHRF1* was activated, the expression of the *KISS1/PI3K/NF-* κ *B* signaling axis was reversed. The *miR-506* inhibitor led to the opposite effect (**Figures 6C,D**). Finally, the results of the proliferation, migration, and invasion experiments further confirmed that *miR-506* inhibited the proliferation, migration, and invasion of *UHRF1* reversed this trend (**Figures 7A–C**).

MiR-506 Inhibits Cell Proliferation and Invades CRC Cells in Xenograft Nude Mice

Finally, we further verified the previous results through *in vivo* experiments. Compared with the negative control group, CRC proliferation was significantly inhibited in the *miR-506* group (**Figure 8A**), and CRC proliferation was significantly enhanced in the *miR-506* inhibitor group (**Figure 8B**). Immunohistochemistry revealed that *miR-506* inhibits *UHRF1*, *p-PI3K*, *NF*- κ B, and *MMP9* protein expression and promotes *KISS1* protein expression in xenograft nude mice. In contrast,

FIGURE 2 | *UHRF1* inhibits *KISS1* mRNA expression. (A) qRT-PCR was used to detect the expression of *UHRF1* mRNA in four colorectal cancer cell lines. The expression of *UHRF1* mRNA in HCT116 cells was significantly higher than that in SW480 cells (****p < 0.0001). (B) SW480 and HCT116 cells were infected with *UHRF1*-overexpressing and knockdown lentivirus. The expression of *UHRF1* mRNA and protein in each group was detected by qRT-PCR. (C) The overexpression of *UHRF1* significantly inhibited the expression of *KISS1* mRNA, and the knockdown of *UHRF1* expression significantly promoted *KISS1* mRNA expression. ***p < 0.001, ****p < 0.0001.

protein is activated, PI3K/NF- κ B signaling axis-related protein expression levels are reversed. *p < 0.05.

the *miR-506* inhibitor promotes *UHRF1*, *p-PI3K*, *NF-\kappa B*, and *MMP9* protein expression and inhibits *KISS1* protein expression (**Figure 8C**).

DISCUSSION

Colorectal cancer is a type of malignant tumor with high invasive and metastatic abilities. CRC is currently

ranked third among all cancer deaths, and CRC metastasis is an important factor in increasing mortality (Bray et al., 2018). Although multimodal treatments improve the prognosis of CRC (Ganesh et al., 2019; Li S. et al., 2019; Siravegna et al., 2019), the distant metastasis of cancer cells remains the chief culprit of treatment failure. Therefore, a better understanding of the mechanisms of CRC metastasis is essential for the development of new therapeutic strategies.

The occurrence and development of CRC is accompanied by the activation of proto-oncogenes and the loss of tumor suppressor genes (Sanz-Garcia et al., 2017; Zhang and Shay, 2017). DNA methylation has been found to play an important role in the inactivation of tumor suppressor genes (Schubeler, 2015; Li Z. et al., 2019), and studies have

FIGURE 6 *MiR-506* activates *KISS1* expression and inhibits the *PI3K/NF-* κ *B* signaling axis by targeting *UHRF1*. (A) qRT-PCR was used to detect the expression level of *miR-506* in four CRC cells. (B,C) HCT116 cells and SW480 cells were infected with *pre-miR-506* lentivirus and *miR-506* knockdown lentivirus. The expression level of *miR-506* in each group was examined by qRT-PCR. (C) *Pre-miR-506* activated KISS1 to repress *PI3K/NF-* κ *B* signaling pathway-associated proteins by inhibiting *UHRF1* protein; when *UHRF1* protein was activated, *KISS1/PI3K/NF-* κ *B* signaling axis-related protein expression levels were reversed. (D) The miR-506 inhibitor inhibited *KISS1* activation of *PI3K/NF-* κ *B* signaling pathway-related proteins by promoting *UHRF1* protein expression; when *KISS1* protein was activated, *FI3K/NF-* κ *B* signal transduction axis-related protein expression levels were reversed. *p < 0.05, ***p < 0.001, ****p < 0.0001.

shown that DNA methylation requires the involvement of UHRF1 (Nishiyama et al., 2013; Ferry et al., 2017; Li et al., 2018b). High expression of UHRF1 in tumor tissues has been reported to promote tumor metastasis (Oh et al., 2018; Hu et al., 2019). Related studies have also found that UHRF1 is highly expressed in breast cancer, bladder cancer, prostate cancer, and CRC (Jenkins et al., 2005; Zhu et al., 2015; Wan et al., 2016; Saidi et al., 2017). In this study, UHRF1 was found to be highly expressed in CRC tissues through the TCGA database. The expression of UHRF1 in T1- and T2-stage tumors was significantly higher than that in adjacent normal tissues but significantly lower than that in T3- and T4-stage tumors. In addition, UHRF1 overexpression was found to promote the proliferation, migration and invasion of CRC, which suggests that the high expression of UHRF1 in CRC is closely related to CRC initial and development. However, the specific mechanism by which UHRF1 regulates CRC metastasis remains unclear.

The *KISS1* gene is an important tumor suppressor. The loss of *KISS1* expression in CRC has been reported (Chen et al., 2014); *KISS1* expression is low in various tumor tissues, which can enhance the growth, invasion, and migration of tumor cells (Chen et al., 2016). In this study, immunohistochemical analysis revealed that *KISS1* protein expression in CRC was negatively correlated with *UHRF1* expression. Moreover, *UHRF1* overexpression promotes CRC proliferation, migration, and invasion by inhibiting *KISS1* gene expression and activating the *PI3K/NF-κB* signaling pathway. Conversely, knockdown of *UHRF1* expression can promote *KISS1* gene expression to block the *PI3K/NF-κB* signaling pathway, inhibiting the proliferation, migration, and invasion of CRC.

The aim of gene-targeted therapy is the design of a therapeutic drug that is appropriate at the cellular and molecular level and that exhibits specificity to a well-defined carcinogenic site. After entering the body, the drug should target a carcinogenic site and cause tumor cell-specific death. Previous studies have found that the drug targeting- and drug encapsulationrelated challenges in designing targeted drugs are the high molecular weight and the difficulty in encapsulating these drugs to keep them stable in body fluids prior to reaching the target cancer cells.

MiRNAs are a class of non-coding RNAs that are approximately 22 nucleotides in length. These molecules play an important role in tumor metastasis because they are involved in tumor cell proliferation, apoptosis, invasion, and autophagy (Chipman and Pasquinelli, 2019). Previous studies have shown that in a variety of tumor tissues, targeted binding of miRNAs to mRNAs leads to gene silencing and can thus affect the biological behavior of tumor cells (Farazi et al., 2013). Related studies have found that miRNAs can be encapsulated into nanoparticles by exosomes, which can remain stable in the blood and that miRNAs encapsulated by exosomes can affect the metastatic ability of cancer cells in nude mice. MiRNAs have the advantages of their small molecular weights and ease of packaging and are currently being researched for targeted therapy. Therefore, miRNAs are highly promising for targeted therapy. Studies have shown that miR-92a-3p is upregulated in CRC and promotes the migration of CRC by targeting *NF2* (Alcantara and Garcia, 2019). *MiR-452* activates *Wnt*/ β -catenin to promote CRC metastasis (Li et al., 2018a). In addition to upregulated miRNAs, downregulated miRNAs such as *miR-144*, *miR-548c-5p*, and *miR-198* also play important roles in tumorigenesis. *MiR-144* has been reported to target *GSPT1* to inhibit the metastasis of CRC (Xiao et al., 2015), and *miR-548c-5p* has been found to act as a tumor suppressor in CRC by targeting *PGK1* (Ge et al., 2019). The above results indicate that dysregulated miRNA expression has been observed in CRC and that the abnormal expression of specific miRNAs is associated with metastasis and prognosis in CRC.

The results of our study revealed that the expression of UHRF1 in CRC is closely related to pathological stage (Figure 1B) and that UHRF1 can promote the metastasis of CRC (Figure 4), but a miRNA targeting UHRF1 expression in CRC has not yet been reported. Through bioinformatics analysis, we found that miR-506 has a potential binding site on UHRF1. Related studies have reported that miR-506 targets ZEB2 to inhibit gastric cancer invasion and is associated with the poor prognosis of gastric cancer (Wang et al., 2019). In pancreatic cancer, the overexpression of miR-506 blocks the SPHK1/AKT/NF-κB signaling pathway and inhibits pancreatic cancer metastasis (Li et al., 2016). However, the expression of miR-506 in CRC and its mechanism of action are still unclear. We detected miR-506 in CRC and adjacent normal tissues by PCR and found that miR-506 was downregulated in normal tissues adjacent to cancer tissues. In addition, the expression of miR-506 was negatively correlated with the expression of UHRF1, suggesting that UHRF1 is the target molecule of miR-506. Luciferase reporter assays confirmed that miR-506 targets UHRF1. Then, we performed Western blotting and cell proliferation assays. Migration and invasion assays further confirmed that miR-506 targets UHRF1 to inhibit the proliferation, migration, and invasion of CRC cells via the KISS1/PI3K/NF-κB signaling axis. The opposite results were found with the knockdown of *miR-506*. Finally, through in vivo ectopic tumor formation experiments, we further confirmed that miR-506 targets UHRF1 to inhibit the proliferation and invasion of CRC by the KISS1/PI3K/NF-κB signaling pathway.

Current studies in the literature have indicated that *UHRF1*, as an oncogene in CRC, activates the *PI3K/NF*- κ *B* signaling pathway by inhibiting the expression of *KISS1* to promote tumorigenesis and progression. In this work, the expression of *UHRF1* was found to be regulated by *miR-506*, which affects the biological behavior of CRC. As precision medicine continues to advance, gene-targeted therapy is an important next step. MiRNA-based targets are promising and may be important potential molecules in future targeted therapies for CRC.

DATA AVAILABILITY STATEMENT

We declare that the materials described in the manuscript, including all relevant raw data, will be freely available to any

scientist wishing to use them for non-commercial purposes, without breaching participant confidentiality.

ETHICS STATEMENT

The studies involving human participants were reviewed and approved by the Ethics Committee of the First Affiliated Hospital of Fujian Medical University. The patients/participants provided their written informed consent to participate in this study. The animal study was reviewed and approved by the Ethics Committee of the First Affiliated Hospital of Fujian Medical University.

AUTHOR CONTRIBUTIONS

SC designed the study and provided funding for the study. YLn participated in the entire experiment, and writing and modifying

REFERENCES

- Abu-Alainin, W., Gana, T., Liloglou, T., Olayanju, A., Barrera, L. N., Ferguson, R., et al. (2016). UHRF1 regulation of the Keap1-Nrf2 pathway in pancreatic cancer contributes to oncogenesis. *J. Pathol.* 238, 423–433. doi: 10.1002/path. 4665
- Alcantara, K. M. M., and Garcia, R. L. (2019). MicroRNA92a promotes cell proliferation, migration and survival by directly targeting the tumor suppressor gene NF2 in colorectal and lung cancer cells. *Oncol. Rep.* 41, 2103–2116. doi: 10.3892/or.2019.7020
- Alhosin, M., Omran, Z., Zamzami, M. A., Al-Malki, A. L., Choudhry, H., Mousli, M., et al. (2016). Signalling pathways in UHRF1-dependent regulation of tumor suppressor genes in cancer. J. Exp. Clin. Cancer Res. 35:174.
- Alhosin, M., Sharif, T., Mousli, M., Etienne-Selloum, N., Fuhrmann, G., Schini-Kerth, V. B., et al. (2011). Down-regulation of UHRF1, associated with re-expression of tumor suppressor genes, is a common feature of natural compounds exhibiting anti-cancer properties. J. Exp. Clin. Cancer Res. 30:41. doi: 10.1186/1756-9966-30-41
- Ashraf, W., Ibrahim, A., Alhosin, M., Zaayter, L., Ouararhni, K., Papin, C., et al. (2017). The epigenetic integrator UHRF1: on the road to become a universal biomarker for cancer. *Oncotarget* 8, 51946–51962. doi: 10.18632/oncotarget. 17393
- Bentwich, I., Avniel, A., Karov, Y., Aharonov, R., Gilad, S., Barad, O., et al. (2005). Identification of hundreds of conserved and nonconserved human microRNAs. *Nat. Genet.* 37, 766–770. doi: 10.1038/ng1590
- Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., and Jemal, A. (2018). Global cancer statistics: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. *CA Cancer J. Clin.* 68, 394–424. doi: 10.3322/caac.21492
- Chen, S., Chen, W., Zhang, X., Lin, S., and Chen, Z. (2016). Overexpression of KiSS-1 reduces colorectal cancer cell invasion by downregulating MMP-9 via blocking PI3K/Akt/NF-kappaB signal pathway. *Int. J. Oncol.* 48, 1391–1398. doi: 10.3892/ijo.2016.3368
- Chen, S. Q., Chen, Z. H., Lin, S. Y., Dai, Q. B., Fu, L. X., and Chen, R. Q. (2014). KISS1 methylation and expression as predictors of disease progression in colorectal cancer patients. *World J. Gastroenterol.* 20, 10071–10081. doi: 10.3748/wjg.v20.i29.10071
- Chipman, L. B., and Pasquinelli, A. E. (2019). miRNA Targeting: growing beyond the Seed. *Trends Genet.* 35, 215–222. doi: 10.1016/j.tig.2018.12.005
- Choudhry, H., Zamzami, M. A., Omran, Z., Wu, W., Mousli, M., Bronner, C., et al. (2018). Targeting microRNA/UHRF1 pathways as a novel strategy for cancer therapy. Oncol. Lett. 15, 3–10. doi: 10.3892/ol.2017.7290

the manuscript. ZC helped to solve problems throughout the experiment, and participated in the editing and revision of the manuscript. YZ, YLu, JG, and SL participated in the Western blotting experiments and statistical analysis of the data.

FUNDING

This work was supported by the Fujian Provincial Key Specialist Construction Projects (No. 2016-SLCZD), the Training Project of Young Talents in the Health System of Fujian Province (No. 2016-ZQN-45), and the Start-up Fund for Scientific Research, Fujian Medical University (No. 2017-XQ1061).

ACKNOWLEDGMENTS

We thank the reviewers and editors for their constructive comments.

- de Mel, S., Hue, S. S., Jeyasekharan, A. D., Chng, W. J., and Ng, S. B. (2019). Molecular pathogenic pathways in extranodal NK/T cell lymphoma. J. Hematol. Oncol. 12:33. doi: 10.1186/s13045-019-0716-7
- De Robertis, M., Poeta, M. L., Signori, E., and Fazio, V. M. (2018). Current understanding and clinical utility of miRNAs regulation of colon cancer stem cells. *Semin. Cancer Biol.* 53, 232–247. doi: 10.1016/j.semcancer.2018. 08.008
- Erel-Akbaba, G., Carvalho, L. A., Tian, T., Zinter, M., Akbaba, H., Obeid, P. J., et al. (2019). Radiation-induced targeted nanoparticle-based gene delivery for brain tumor therapy. ACS Nano. 13, 4028–4040. doi: 10.1021/acsnano.8b0 8177
- Farazi, T. A., Hoell, J. I., Morozov, P., and Tuschl, T. (2013). MicroRNAs in human cancer. Adv. Exp. Med. Biol. 774, 1–20. doi: 10.1007/978-94-007-55 90-1_1
- Ferry, L., Fournier, A., Tsusaka, T., Adelmant, G., Shimazu, T., Matano, S., et al. (2017). Methylation of DNA Ligase 1 by G9a/GLP Recruits UHRF1 to replicating DNA and regulates DNA Methylation. *Mol. Cell.* 67, 550–565.e. doi: 10.1016/j.molcel.2017.07.012
- Ganesh, K., Stadler, Z. K., Cercek, A., Mendelsohn, R. B., Shia, J., Segal, N. H., et al. (2019). Immunotherapy in colorectal cancer: rationale, challenges and potential. *Nat. Rev. Gastroenterol. Hepatol.* 16, 361–375. doi: 10.1038/s41575-019-0126-x
- Ge, J., Li, J., Na, S., Wang, P., Zhao, G., and Zhang, X. (2019). miR-548c-5p inhibits colorectal cancer cell proliferation by targeting PGK1. J. Cell Physiol. 234, 18872–18878. doi: 10.1002/jcp.28525
- Geng, Y., Gao, Y., Ju, H., and Yan, F. (2013). Diagnostic and prognostic value of plasma and tissue ubiquitin-like, containing PHD and RING finger domains 1 in breast cancer patients. *Cancer Sci.* 104, 194–199. doi: 10.1111/cas. 12052
- Harrison, J. S., Cornett, E. M., Goldfarb, D., DaRosa, P. A., Li, Z. M., Yan, F., et al. (2016). Hemi-methylated DNA regulates DNA methylation inheritance through allosteric activation of H3 ubiquitylation by UHRF1. *eLife* 5:e17101. doi: 10.7554/eLife.17101
- Hayes, J., Peruzzi, P. P., and Lawler, S. (2014). MicroRNAs in cancer: biomarkers, functions and therapy. *Trends Mol. Med.* 20, 460–469. doi: 10.1016/j.molmed. 2014.06.005
- Hu, Q., Qin, Y., Ji, S., Xu, W., Liu, W., Sun, Q., et al. (2019). UHRF1 promotes aerobic glycolysis and proliferation via suppression of SIRT4 in pancreatic cancer. *Cancer Lett.* 452, 226–236. doi: 10.1016/j.canlet.2019. 03.024
- Huang, L., Zhang, Y., Li, Z., Zhao, X., Xi, Z., Chen, H., et al. (2019). MiR-4319 suppresses colorectal cancer progression by targeting ABTB1.

United European Gastroenterol. J. 7, 517–528. doi: 10.1177/205064061983 7440

- Jenkins, Y., Markovtsov, V., Lang, W., Sharma, P., Pearsall, D., Warner, J., et al. (2005). Critical role of the ubiquitin ligase activity of UHRF1, a nuclear RING finger protein, in tumor cell growth. *Mol. Biol. Cell.* 16, 5621–5629. doi: 10. 1091/mbc.e05-03-0194
- Jiang, Y., Cai, Y., Shao, W., Li, F., Guan, Z., Zhou, Y., et al. (2019). MicroRNA144 suppresses aggressive phenotypes of tumor cells by targeting ANO1 in colorectal cancer. *Oncol. Rep.* 41, 2361–2370. doi: 10.3892/or.2019. 7025
- Kofunato, Y., Kumamoto, K., Saitou, K., Hayase, S., Okayama, H., Miyamoto, K., et al. (2012). UHRF1 expression is upregulated and associated with cellular proliferation in colorectal cancer. *Oncol. Rep.* 28, 1997–2002. doi: 10.3892/or. 2012.2064
- Li, J., Wang, R., Hu, X., Gao, Y., Wang, Z., Li, J., et al. (2019). Activated MEK/ERK pathway drives widespread and coordinated overexpression of UHRF1 and DNMT1 in cancer cells. *Sci. Rep.* 9:907. doi: 10.1038/s41598-018-37 258-3
- Li, J., Wu, H., Li, W., Yin, L., Guo, S., Xu, X., et al. (2016). Downregulated miR-506 expression facilitates pancreatic cancer progression and chemoresistance via SPHK1/Akt/NF-kappaB signaling. *Oncogene* 35, 5501–5514. doi: 10.1038/ onc.2016.90
- Li, T., Jian, X., He, H., Lai, Q., Li, X., Deng, D., et al. (2018a). MiR-452 promotes an aggressive colorectal cancer phenotype by regulating a Wnt/beta-catenin positive feedback loop. *J. Exp. Clin. Cancer Res.* 37:238. doi: 10.1186/s13046-018-0879-z
- Li, T., Wang, L., Du, Y., Xie, S., Yang, X., Lian, F., et al. (2018b). Structural and mechanistic insights into UHRF1-mediated DNMT1 activation in the maintenance DNA methylation. *Nucleic Acids Res.* 46, 3218–3231. doi: 10.1093/ nar/gky104
- Lin, X., Wang, S., Sun, M., Zhang, C., Wei, C., Yang, C., et al. (2019). miR-195-5p/NOTCH2-mediated EMT modulates IL-4 secretion in colorectal cancer to affect M2-like TAM polarization. *J. Hematol. Oncol.* 12:20. doi: 10.1186/s13045-019-0708-7
- Lin, Y., Chen, Z., Lin, S., Zheng, Y., Liu, Y., Gao, J., et al. (2019). MiR-202 inhibits the proliferation and invasion of colorectal cancer by targeting UHRF1. Acta Biochim. Biophys. Sin. 51, 598–606. doi: 10.1093/abbs/gmz042
- Li, S., Xu, K., Gu, D., He, L., Xie, L., Chen, Z., et al. (2019). Genetic variants in RPA1 associated with the response to oxaliplatin-based chemotherapy in colorectal cancer. J. Gastroenterol. doi: 10.1007/s00535-019-01571-z [Epub ahead of print].
- Li, Z., Li, Z., Wang, L., Long, C., Zheng, Z., and Zhuang, X. (2019). ZCCHC13mediated induction of human liver cancer is associated with the modulation of DNA methylation and the AKT/ERK signaling pathway. *J. Transl. Med.* 17:108. doi: 10.1186/s12967-019-1852-0
- Liu, G., Zhao, X., Zhou, J., Cheng, X., Ye, Z., and Ji, Z. (2018). LncRNA TP73-AS1 promotes cell proliferation and inhibits cell apoptosis in clear cell renal cell carcinoma through repressing KISS1 expression and inactivation of PI3K/Akt/mTOR signaling pathway. *Cell Physiol. Biochem.* 48, 371–384. doi: 10.1159/000491767
- Liu, Y., Liang, G., Zhou, T., and Liu, Z. (2019). Silencing UHRF1 inhibits cell proliferation and promotes cell apoptosis in retinoblastoma Via the PI3K/Akt signalling pathway. *Pathol. Oncol. Res.* doi: 10.1007/s12253-019-00656-7 [Epub ahead of print].
- Lu, R., and Wang, G. G. (2013). Tudor: a versatile family of histone methylation 'readers'. Trends Biochem. Sci. 38, 546-555. doi: 10.1016/j.tibs.2013. 08.002
- Manley, S. J., Liu, W., and Welch, D. R. (2017). The KISS1 metastasis suppressor appears to reverse the warburg effect by shifting from glycolysis to mitochondrial beta-oxidation. *J. Mol. Med.* 95, 951–963. doi: 10.1007/s00109-017-1552-2
- Ni, K., Lan, G., Veroneau, S. S., Duan, X., Song, Y., and Lin, W. (2018). Nanoscale metal-organic frameworks for mitochondria-targeted radiotherapyradiodynamic therapy. *Nat. Commun.* 9:4321. doi: 10.1038/s41467-018-06 655-7
- Nishiyama, A., Yamaguchi, L., Sharif, J., Johmura, Y., Kawamura, T., Nakanishi, K., et al. (2013). Uhrf1-dependent H3K23 ubiquitylation couples maintenance

DNA methylation and replication. Nature 502, 249-253. doi: 10.1038/ nature12488

- Oh, Y. M., Mahar, M., Ewan, E. E., Leahy, K. M., Zhao, G., and Cavalli, V. (2018). Epigenetic regulator UHRF1 inactivates REST and growth suppressor gene expression via DNA methylation to promote axon regeneration. *Proc. Natl. Acad. Sci. U.S.A.* 115, E12417–E12426. doi: 10.1073/pnas.181251 8115
- Platonov, M. E., Borovjagin, A. V., Kaverina, N., Xiao, T., Kadagidze, Z., Lesniak, M., et al. (2018). KISS1 tumor suppressor restricts angiogenesis of breast cancer brain metastases and sensitizes them to oncolytic virotherapy in vitro. *Cancer Lett.* 417, 75–88. doi: 10.1016/j.canlet.2017.12.024
- Sabatino, L., Fucci, A., Pancione, M., Carafa, V., Nebbioso, A., Pistore, C., et al. (2012). UHRF1 coordinates peroxisome proliferator activated receptor gamma (PPARG) epigenetic silencing and mediates colorectal cancer progression. Oncogene 31, 5061–5072. doi: 10.1038/onc.2012.3
- Saidi, S., Popov, Z., Janevska, V., and Panov, S. (2017). Overexpression of UHRF1 gene correlates with the major clinicopathological parameters in urinary bladder cancer. *Int. Braz J. Urol.* 4, 224–229. doi: 10.1590/S1677-5538.IBJU. 2016.0126
- Sanz-Garcia, E., Argiles, G., Elez, E., and Tabernero, J. (2017). BRAF mutant colorectal cancer: prognosis, treatment, and new perspectives. *Ann. Oncol.* 28, 2648–2657. doi: 10.1093/annonc/mdx401
- Schiza, N., Georgiou, E., Kagiava, A., Medard, J. J., Richter, J., Tryfonos, C., et al. (2019). Gene replacement therapy in a model of charcot-marie-tooth 4C neuropathy. *Brain* 142, 1227–1241. doi: 10.1093/brain/awz064
- Schubeler, D. (2015). Function and information content of DNA methylation. *Nature* 517, 321–326. doi: 10.1038/nature14192
- Siravegna, G., Sartore-Bianchi, A., Nagy, R. J., Raghav, K., Odegaard, J. I., Lanman, R. B., et al. (2019). Plasma HER2 (ERBB2) copy number predicts response to HER2-targeted therapy in metastatic colorectal cancer. *Clin. Cancer Res.* 25, 3046–3053. doi: 10.1158/1078-0432.CCR-18-3389
- Streicher, K. L., Zhu, W., Lehmann, K. P., Georgantas, R. W., Morehouse, C. A., Brohawn, P., et al. (2012). A novel oncogenic role for the miRNA-506-514 cluster in initiating melanocyte transformation and promoting melanoma growth. Oncogene 31, 1558–1570. doi: 10.1038/onc.2011.345
- Sun, Y., Hu, L., Zheng, H., Bagnoli, M., Guo, Y., Rupaimoole, R., et al. (2015). MiR-506 inhibits multiple targets in the epithelial-to-mesenchymal transition network and is associated with good prognosis in epithelial ovarian cancer. *J. Pathol.* 235, 25–36. doi: 10.1002/path.4443
- Vu, T., and Datta, P. K. (2017). Regulation of EMT in colorectal cancer: a culprit in metastasis. *Cancers* 9:E171. doi: 10.3390/cancers9120171
- Wan, X., Yang, S., Huang, W., Wu, D., Chen, H., Wu, M., et al. (2016). UHRF1 overexpression is involved in cell proliferation and biochemical recurrence in prostate cancer after radical prostatectomy. *J. Exp. Clin. Cancer Res.* 35:34. doi: 10.1186/s13046-016-0308-0
- Wang, F., Yang, Y. Z., Shi, C. Z., Zhang, P., Moyer, M. P., Zhang, H. Z., et al. (2012). UHRF1 promotes cell growth and metastasis through repression of p16(ink(4)a) in colorectal cancer. *Ann. Surg. Oncol.* 19, 2753–2762. doi: 10. 1245/s10434-011-2194-1
- Wang, G. J., Jiao, B. P., Liu, Y. J., Li, Y. R., and Deng, B. B. (2019). Reactivation of microRNA-506 inhibits gastric carcinoma cell metastasis through ZEB2. *Aging* 11, 1821–1831. doi: 10.18632/aging.101877
- Wang, Y., Cui, M., Sun, B. D., Liu, F. B., Zhang, X. D., and Ye, L. H. (2014). MiR-506 suppresses proliferation of hepatoma cells through targeting YAP mRNA 3'UTR. Acta Pharmacol. Sin. 35, 1207–1214. doi: 10.1038/aps.2014.59
- Wu, F., Xing, T., Gao, X., and Liu, F. (2019). miR5013p promotes colorectal cancer progression via activation of Wnt/betacatenin signaling. *Int. J. Oncol.* 55, 671–683. doi: 10.3892/ijo.2019.4852
- Xiao, R., Li, C., and Chai, D. (2015). miRNA-144 suppresses proliferation and migration of colorectal cancer cells through GSPT1. *Biomed. Pharmacother*. 74, 138–144. doi: 10.1016/j.biopha.2015.08.006
- Xie, S., and Qian, C. (2018). The growing complexity of UHRF1-mediated maintenance DNA methylation. *Genes* 9:E600. doi: 10.3390/genes9120600
- Ying, L., Lin, J., Qiu, F., Cao, M., Chen, H., Liu, Z., et al. (2015). Epigenetic repression of regulator of G-protein signaling 2 by ubiquitin-like with PHD and ring-finger domain 1 promotes bladder cancer progression. *FEBS J.* 282, 174–182. doi: 10.1111/febs.13116

- Yu, F., Lv, M., Li, D., Cai, H., Ma, L., Luo, Q., et al. (2015). MiR-506 over-expression inhibits proliferation and metastasis of breast cancer cells. *Med. Sci. Monit.* 21, 1687–1692. doi: 10.12659/MSM.893522
- Yu, X., Wang, D., Wang, X., Sun, S., Zhang, Y., Wang, S., et al. (2019). CXCL12/CXCR4 promotes inflammation-driven colorectal cancer progression through activation of RhoA signaling by sponging miR-133a-3p. *J. Exp. Clin. Cancer Res.* 38:32. doi: 10.1186/s13046-018-1014-x
- Zhang, H., Song, Y., Yang, C., and Wu, X. (2018). UHRF1 mediates cell migration and invasion of gastric cancer. *Biosci. Rep.* 38:BSR20181065. doi: 10.1042/ BSR20181065
- Zhang, L., and Shay, J. W. (2017). Multiple roles of APC and its therapeutic implications in colorectal cancer. *J. Natl. Cancer Inst.* 109. doi: 10.1093/jnci/djw332
- Zhang, Y., Huang, Z., Zhu, Z., Zheng, X., Liu, J., Han, Z., et al. (2014). Upregulated UHRF1 promotes bladder cancer cell invasion by epigenetic silencing of KiSS1. *PLoS One* 9:e104252. doi: 10.1371/journal.pone.0104252

Zhu, M., Xu, Y., Ge, M., Gui, Z., and Yan, F. (2015). Regulation of UHRF1 by microRNA-9 modulates colorectal cancer cell proliferation and apoptosis. *Cancer Sci.* 106, 833–839. doi: 10.1111/cas. 12689

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2019 Lin, Chen, Zheng, Liu, Gao, Lin and Chen. This is an openaccess article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.