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Abstract: Compressive Sensing (CS) has proved to be an effective theory in the field of image acqui-
sition. However, in order to distinguish the difference between the measurement matrices, the CS
imaging system needs to have a higher signal sampling accuracy. At the same time, affected by the
noise of the light path and the circuit, the measurements finally obtained are noisy, which directly
affects the imaging quality. We propose a dual-optical imaging system that uses the bidirectional
reflection characteristics of digital micromirror devices (DMD) to simultaneously acquire CS mea-
surements and images under the same viewing angle. Since deep neural networks have powerful
modeling capabilities, we trained the filter network and the reconstruction network separately. The
filter network is used to filter the noise in the measurements, and the reconstruction network is used
to reconstruct the CS image. Experiments have proved that the method we proposed can filter the
noise in the sampling process of the CS system, and can significantly improve the quality of image
reconstruction under a variety of algorithms.

Keywords: compressive sensing; imaging system; neural networks

1. Introduction

With the development of mobile Internet and imaging technology, a large number
of images are generated in daily life. As the resolution of the images keeps increasing,
the density of the photoelectric sensor will be higher and higher. However, the signal
acquisition needs to meet the classic Shannon–Nyquist sampling theorem, which means
that, if you want to restore the sampled signal without distortion, the sampling frequency
needs to be greater than twice the highest frequency in the signal [1]. For this reason,
high-resolution image sensors will generate a large amount of data when taking images.
Normally, we will compress these image data with some compression formats, such as
the well-known JPEG and PNG. In this process, a large amount of redundant data will
be removed, and which will also consume a lot of computing resources. For this reason,
we urgently need a method that can directly sample the compressed data. Compressive
Sensing [2] is just such a theory that can sample a small amount of compressed data to
reconstruct high-quality images.

Compared with the traditional sampling compression theory, the biggest advantage
of CS is that the sampling and compression processes are carried out at the same time,
and the compressed data can be collected directly. However, the theory assumes that
the sampled signal needs to meet a certain sparsity. The proposal of this theory enables
signal acquisition to break through the Shannon–Nyquist sampling theorem under certain
conditions, and can restore the original signal by sampling a small amount of data, which
makes the theory have a wide range of applications in practice, such as medical imaging,
remote sensing imaging, and sensor networks.
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In the practical application of compressive sensing, a spatial light modulator is used
to obtain the measurements of the image by displaying the measurement matrix. However,
as the difference between the rows of the measurement matrix is very small, the brightness
of the light after being modulated by the spatial light modulator is actually similar, which
requires a high-sensitivity photoelectric sensor to sample. However, this sensor will
fluctuate greatly in response to small changes of ambient light. At the same time, we usually
need to perform a high gain of the electric signal in the imaging system. For example, in our
hardware device, mentioned later in this paper, the gain is up to 108 times. Such a large
gain will cause the noise signal to be amplified many times, and even drown the strength of
the original signal. In addition, in order to improve the collection speed of the equipment,
it is usually necessary to switch the measurement matrix image at a high rate with the
spatial light modulator. This requires a high synchronization between the photodiode and
the spatial light modulator. The small differences will cause the photodiode to fail to collect
the right light signal. In summary, the imaging quality of current CS imaging systems is
very poor.

The imaging quality of several imaging systems is shown in Figure 1. Among them,
Figure 1a shows the image quality of the single-pixel camera (SPC) [3]. Although there is
only a simple letter, and the image has only black and white colors, the edges of the image
are blurred. Figure 1b is the imaging quality of Reconnect, and Figure 1c is the result of our
imaging system with a 25% measurement rate. We can see that the image quality is very
poor. This image quality directly affects the application of CS imaging systems. For this
reason, we urgently need a CS imaging system that can adapt to its own noise.

(a) (b) (c)

Figure 1. Imaging quality of several systems. (a) Single pixel camera; (b) ReconNet hardware
imaging; (c) Our hardware system imaging.

For this reason, we propose an adaptive CS imaging system based on a dual optical
path. The main contributions are summarized as follows:

(1) Aiming at the problem that deep learning data cannot be labeled in the actual CS
sampling, a dual light path acquisition and labeling method is proposed, and this
method is used to obtain the data required for network training;

(2) A filtering method for a CS imaging system based on deep learning is proposed. At the
same time, a reconstruction network is constructed on the basis of this filtering method
to better reconstruct CS measurement data;

(3) A CS imaging system is established to adaptively filter the noise created by the
hardware, which can significantly improve the imaging quality so that the CS imaging
device can be better applied to image acquisition.

Experiments show that this filtering method not only has good reconstruction results
based on deep learning reconstruction methods, but can also improve the reconstruction
quality of other traditional algorithms.

The organization of this paper is as follows: Section 2 briefly introduces the basic
concepts of CS and existing imaging systems. In Section 3, the dual optical path acquisition
system and the reconstruction algorithm are proposed in detail. The experimental results
are shown and analyzed in Section 4. Finally, the conclusion of this paper is presented in



Sensors 2021, 21, 6200 3 of 12

Section 5.

2. Basic Concepts and Related Work

The related work will be reviewed from the perspective of the basic principles of CS
imaging and some imaging systems.

2.1. Compressive Sensing

Compressive Sensing is a theory of signal compression acquisition. Its basic principle
is to project sparse signals into a low-dimensional space through a special measurement
matrix for acquisition. This model was proposed by Donoho, Candes and Tao in their
work [2] in 2006. The basic mathematical model is expressed as follows: Assuming the
signal to be compressed is x ∈ RN , then the sampling process can be defined as the
following equation:

y = Φx, (1)

where Φ ∈ RM×N is called the measurement matrix, which is to project the original signal
into a low-dimensional space. y ∈ RM is the compressed signal, called the measurements.
The dimension of measurements is much smaller than the dimension of the original signal,
which is M� N.

The reconstruction of CS is a process of recovering an approximate solution of the
signal x through a certain algorithm using the measurements y. As we know, the dimension
of y is much smaller than the dimension of x. Therefore, the solution from y to x is an
NP-hard problem [4]. For practical problems, it is usually necessary to introduce other
assumptions to solve this problem.

Traditional CS imaging reconstruction algorithms usually consider the structural
characteristics of the image, such as the total variation (TV) model. The minimum total
variation model assumes that the image has sparseness in vertical and horizontal gradients,
so this method is widely used in CS image reconstruction [5,6]. For the solution of this
method, TVAL3 [7] is a recently proposed TV-based CS image reconstruction algorithm.
This algorithm not only has a fast convergence speed, but also supports a variety of
measurement matrices. It is a commonly used algorithm that can recover image details.
The reconstruction algorithm based on the image structure characteristics also includes
the NLR-CS [8] method. This method is based on the similar characteristics of non-local
images and reconstructs CS images according to the low-rank characteristics of non-local
image blocks. This algorithm is also a reconstruction algorithm based on image structure
characteristics. There are also some algorithms based on image filters, among which
D-AMP, proposed by [9], is more widely used.

In recent years, some scholars have used neural networks to solve the problem of
CS reconstruction. DNN was first introduced into CS recovery by Mousavi in the work
on the stacked denoising autoencoder (SDA) [10]. The work proposed an autoencoder
based on multi-layer perceptions (MLPs) to solve the CS recovery problem. Inspired
by the work on super-resolution (SRCNN) [11], Kulkarni et al. proposed a CNN-based
neural network called ReconNet in their work [1]. This work first introduced convolution
neural networks (CNN) to CS and the performance is better than that of SDA. However,
these methods do not consider the structural characteristics of the image, such as the
saliency of the image. Compressed sensing based on blocks can more effectively process
natural images [12,13]. These methods divide the image into non-overlapping blocks and
perform separate measurements on different image blocks. In [14], fewer measurement
rates are allocated to non-salient image blocks but more are allocated to salient blocks.
This can effectively improve the efficiency of compressive sensing measurements, thereby
improving the reconstruction quality of the saliency area. However, this method will
cause obvious blocking artifacts. In [15], a multi-channel deep network was proposed for
a full image to remove blocking artifacts. AMP-Net [16] iteratively uses denoising and
deblocking methods to eliminate block artifacts in the image. Since the actual light cannot
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be accurately divided into blocks, these methods cannot be applied to actual compressive
sensing image acquisition.

There are also several works based on the recent, popular Generative Adversarial
Networks (GAN). The work [17] added a discriminator to the network of ReconNet.
Dave et al. implemented the generative model RIDE [18] for pixel prediction to recover the
compressive image in [19]. This work reconstructed the image pixel by pixel, which is a new
type of reconstruction method. In [17], a fully connected layer was added to the ReconNet
architecture to learn the measurements from the scene image. The work in [20] used the
method of a joint learning measurement matrix, which greatly improves the reconstruction
quality. These methods of learning measurement matrices can obtain matrices that are
more suitable for natural images, but the training process for these matrices is complicated
and at the same time highly dependent on the training set. In recent years, DNN has also
been applied to CS video recovery [21,22].

2.2. Imaging System

The basic theory of CS sampling is y = Φx, where x is the light in the scene we need
to sample and Φ is the measurement matrix. The key problem is how to perform matrix
multiplication on the light and how to obtain the measurements. We know that the spatial
light modulator can control the amount of light passing through different pixel positions to
achieve modulation of the light, such as the commonly used devices: liquid crystal panels,
digital micromirror devices (DMD), and so forth. The modulated light is received by the
photoelectric sensor to obtain the measurements.

Using DMD to modulate light, Duarte proposed a CS imaging system: the Single Pixel
Camera (SPC) [3]. The light reflected by the objects in the scene is imaged onto the DMD
through the convergence of the lens. Then, the DMD modulates the measurement matrix
to reflect the modulated light afterwards. Finally, the modulated light is sampled by the
photodiode. SPC is the first acquisition system for CS imaging. The system uses one pixel
to reconstruct an image with a resolution of 256× 256. However, due to the acquisition
noise, its imaging quality is poor.

Using the LCD panel as the spatial light modulator, Huang proposed a lensless
camera [23]. Using the principle of small aperture imaging, the camera does not require a
lens. However, as we know, the lens is used in the traditional camera to converge the light
and increase the imaging field of view. As the light transmittance of the liquid crystal is
poor, most of the light cannot pass through the liquid crystal, which leads to poor image
reconstruction quality.

The above two cameras are based on the traditional camera model, which receives the
light reflected by the environment and modulates ir. Some scholars have also proposed an
imaging system based on active light. Zhang [24] proposed a system that uses a projector
to perform CS imaging. The camera uses a projector to project the measurement matrix
into the scene to be sampled. However, this kind of camera collects the light of the entire
projection space, which means that other light in the environment will affect the system
and increase the noise of the reconstructed image.

At present, CS imaging systems require high sampling accuracy, and generally require
high-precision signal amplification and filtering circuits. However, due to the influence of
ambient light and circuit noise, the quality of image reconstruction is poor. Therefore, a CS
imaging system that can reconstruct images with high quality is needed.

3. Adaptive Compressive Sensing Imaging System

In recent years, with the development of deep neural networks, many impressive
results have been achieved in the field of image processing. The advantage of neural
networks is that they can simulate complex mathematical models, but their disadvantage
is that they are data-driven and require a lot of training data. Based on this feature, we
propose a system to use neural networks to remove noise in CS imaging hardware and
improve imaging quality. Its basic structure is shown in Figure 2. In order to obtain the
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data needed for neural network training, we designed a data acquisition system based on
dual optical paths. Next, we will give a detailed introduction of the basic structure and
hardware system of the dual optical path design.

CS

Sampling

Image

Sampling

Filter 

Training

Recovery 

Network 

Training

Data Sampling Reconstruction

Measurements

Scene Light
CMOS Image

<y, y*>

Labeled Data

<x, y>

Figure 2. Architecture of dual optical path based adaptive CS imaging system.

3.1. Dual Optical Path Sampling

The purpose of the dual-optical acquisition system is to obtain image data and CS
sampling data of the same scene at the same time, so as to calibrate the measurements of CS
and optimize the reconstruction results. To achieve this purpose, we use the bidirectional
reflection characteristics of DMD. In other words, the DMD micromirror can reflect light at
±12 degrees. Usually in CS imaging hardware, DMD is used to modulate the measurement
matrix and the scene light. However, only +12 degrees light is used in this process. In fact,
the −12 degrees optical path can also obtain the image information. More importantly,
the viewing angle of the scene observed by the ±12 degrees optical path is the same, which
provides a guarantee for us to design a dual optical path acquisition and calibration system.

As is shown in Figure 3, the light in the scene is converged by the viewfinder lens
and is imaged on DMD. At this time, the image is divided into discrete image pixels by
micromirrors on the DMD, where each mirror represents a pixel. The forward-reflected
light is converged on the photoelectric sensor through the CS Sampling optical path lens.
At this time, if each row of the measurement matrix is displayed one by one on the DMD,
we can obtain the measurements y of CS. The reverse light is imaged on the CMOS image
sensor through the CMOS light path lens. At this time, if the DMD displays a white image,
then the CMOS will capture all the light in the scene, which is the scene image x. In this
way, we will obtain a set of label data <x, y>, where y is a set of measurements with the
optical path and circuit noise in the CS acquisition hardware, and x is the target image
data. At this point, we have obtained the calibration data required for the training of the
CS imaging system.

Photoelectric 

Sensor

CMOS Image 

Sensor

DMD

Incident Light Path

(a) (b)

Figure 3. Dual optical path design. (a) Optical path design; (b) Hardware design.

As shown in Figure 4, in order to avoid the influence of the circuit on the optical path,
the hardware of the sampling system is divided into two parts: the optical sampling part
and the circuit control part.These two parts are shielded from light. In the optical sampling
part, the main lens is used to control the aperture, focal length and focus, and so forth,
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for the convenient sampling of different scenes. DMD uses the D4100 produced by Texas
Instruments (TI) with a pixel resolution of 1920× 1080. Among them, the CMOS cannot
completely align the image on the DMD, and we also only use some of the pixels in the
center of the DMD, so the image obtained by the CMOS needs to be calibrated before it
can be used. The circuit control part mainly includes the controller of each sampling part
and a signal amplifier, among which the amplification factor of the signal amplifier reaches
108 times.

Main LensMain Lens

Main Computer

DMD

Controler

Main Lens 

Controler

Signal 

Amplifier

Single Pixel 

Controler

DMD

Single Pixel 

Sampling

CMOS 

Sampling

Main Computer

DMD

Controler

Main Lens 

Controler

Signal 

Amplifier

Single Pixel 

Controler

Circuit ControlSampling Light Path 
Shading 

Isolation

Figure 4. Sampling system architecture.

3.2. Recovery Network

To adaptively filter the device noise, we need to use the characteristics of neural net-
works to train the noise model of the imaging device. After this, the filtered measurements
are obtained, which are then reconstructed to improve the imaging quality of the device.
For this reason, the design of the neural network is divided into a filter network and a
reconstruction network.

3.2.1. Filter Network

Considering that the poor imaging quality of the CS imaging system is mainly because
the sampled measurements contain a lot of noise, we first build a CNN network to denoise
the measurements. As shown in Figure 5, a 4-layer denoising network is built based
on convolution. This process can be expressed as ŷ = C(y, Wc), where ŷ is the filtered
measurements, and Wc is the weights of the convolution layer. The basic structure of
the network is shown in Figure 5, where each convolution layer is followed by batch
normalization and the ReLU activation function. The first convolution layer takes a kernel
size of 11 and outputs 32 feature maps. The second takes a kernel size of 1 and outputs
64 feature maps. The third takes a kernel size of 7 and outputs 32 feature maps. The last
layer takes a kernel size of 3 and generates 1×M measurements. To obtain Wc, MSE is
employed as the loss function.
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Figure 5. Neural networks of the imaging system.

3.2.2. Reconstruction Network

The measurements obtained through the filter network can already be used in the
reconstruction in traditional CS algorithms, but in order to obtain better reconstruction
quality, we ran a reconstruction network after the filter network. The network is composed
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of two fully connected layers. Assuming that the approximate value of the image output
by the network is x̂, then x̂ = L(y, Wl), where Wl is the weights of the fully connected
layers, which are trained by another MSE loss function.

3.2.3. Training

The training of the neural network of the aforementioned imaging system is divided
into three parts; the first part is the training of the filter network, the second part is the
training of the reconstruction network, and the third part is the joint training. We set the
sample image size to 128× 128; a total of 44 images were sampled on the device, of which
eight images were used as the test set.

Filter Network Training

Since the measurements are a 1 × 16,384 signal, we intercept the measurements with
a length of M. The specific value of M is related to the sampling rate. The lengths of 1%,
4%, 10%, and 25% are 164, 655, 1638, 4096, respectively. After setting the step size to 20, we
obtained about 27,000 sets of training data.

Reconstruction Network Training

The training of this network is similar to the general training of a CS reconstruction
network based on deep learning, such as ReconNet. Use the existing image dataset, we
simulate the measurements and then train the network. Here we choose about 14,000 sets
of training data.

Joint Training

Joint training refers to the combination of the above two networks, the initial loading
of the two parts of the network weights that have been pre-trained, reducing the learning
rate of the network, and training on 36 datasets sampled by our device. All network
training is implemented on pytorch.

The proposed network is implemented on the public Pytorch framework. The weights
of the networks are initialized by normal Gaussian distribution with the stand variance of
0.01. The optimizer algorithm for all training is Adam. We run the training model on a PC
with 2.1 GHz CPU, 128 GB RAM and a NVIDIA GeForce RTX 2080Ti GPU. The learning
rate is initialized with 1× 10−4 and decreased by 50% at 20 epochs. The whole training
procedure takes 100 epochs for each network. The training time for each method takes
about 8 h.

4. Experimental Results
4.1. Comparison with Existing Methods

In order to verify the imaging effect of our reconstruction network, we compare the
reconstruction results of different algorithms at the same measurement rate (MR) and the
same measurements sampled by our hardware device. The algorithms include TVAL3 [7],
NLR-CS [8] and D-AMP [9]. The PSNR and SSIM results of eight images are shown in
Table 1. The reconstruction images of a 25% measurement rate can be found in Figure 6.
The quantization of all images uses 8 bits, including the calculation of reconstructed
images and PSNR. As the sampled measurements are noisy, some algorithms cannot even
reconstruct images, such as partial examples of TVAL3 and NLR-CS. It can be seen that our
algorithm has the best reconstruction quality.
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Table 1. The reconstruction results of different algorithms at different MR. The inputs of the algo-
rithms are the data directly sampled by hardware. The best results are in bold. Our algorithm can
achieve the best results at each MR.

Image Algorithm
MR = 0.25 MR = 0.10 MR = 0.04 MR = 0.01

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Barbara

TVAL3 9.84 0.43 10.23 0.42 11.66 0.03 12.51 0.23
NLR-CS 9.79 0.42 10.64 0.39 9.99 0.33 10.96 0.28
D-AMP 12.80 0.58 12.18 0.49 11.88 0.40 14.17 0.32

Ours 22.65 0.70 22.61 0.77 20.83 0.68 14.01 0.38

Boats

TVAL3 9.95 0.44 8.32 0.38 7.45 0.30 6.47 0.20
NLR-CS 9.57 0.41 7.64 0.32 7.29 0.28 6.05 0.17
D-AMP 11.98 0.50 11.42 0.41 10.44 0.37 12.66 0.29

Ours 20.76 0.64 19.97 0.71 17.75 0.63 15.92 0.43

Cameraman

TVAL3 9.68 0.46 9.85 0.48 11.06 0.44 10.01 0.30
NLR-CS 9.71 0.43 10.20 0.45 11.12 0.40 10.02 0.30
D-AMP 12.86 0.55 12.49 0.55 12.50 0.46 11.03 0.32

Ours 18.80 0.41 18.10 0.50 17.34 0.30 14.39 0.18

Parrots

TVAL3 10.38 0.0.53 9.53 0.41 9.85 0.41 9.60 0.23
NLR-CS 10.13 0.50 9.38 0.36 9.35 0.35 9.46 0.20
D-AMP 11.77 0.54 13.32 0.58 11.91 0.50 10.57 0.27

Ours 23.27 0.70 22.86 0.80 18.93 0.61 15.92 0.52

Fingerprint

TVAL3 10.54 0.21 12.57 0.21 10.11 0.11 6.60 0.10
NLR-CS 10.34 0.20 12.20 0.21 8.08 0.15 6.77 0.10
D-AMP 12.76 0.23 12.46 0.22 10.63 0.16 15.33 0.17

Ours 17.79 0.30 18.14 0.34 17.28 0.29 14.96 0.20

Foreman

TVAL3 3.44 0.06 12.11 0.47 3.46 0.06 4.36 0.19
NLR-CS 3.45 0.06 5.25 0.29 4.86 0.24 4.32 0.17
D-AMP 11.40 0.56 13.44 0.59 13.03 0.52 12.40 0.47

Ours 20.99 0.77 17.93 0.77 20.93 0.77 14.58 0.36

House

TVAL3 4.23 0.09 12.43 0.43 4.45 0.12 5.45 0.21
NLR-CS 4.30 0.10 5.86 0.28 5.15 0.21 5.42 0.19
D-AMP 10.99 0.54 11.50 0.46 11.53 0.49 12.94 0.44

Ours 24.42 0.72 17.57 0.82 17.59 0.70 16.87 0.42

Lena

TVAL3 11.81 0.48 14.09 0.25 11.99 0.25 11.79 0.28
NLR-CS 11.38 0.46 10.96 0.40 10.92 0.37 11.73 0.26
D-AMP 12.32 0.55 12.01 0.45 11.56 0.42 10.04 0.21

Ours 22.14 0.76 22.18 0.87 20.51 0.76 14.52 0.28

Mean

TVAL3 8.73 0.34 11.14 0.38 8.75 0.22 8.34 0.22
NLR-CS 8.58 0.32 9.02 0.34 8.35 0.29 8.09 0.21
D-AMP 12.11 0.51 12.35 0.47 11.69 0.42 12.39 0.31

Ours 21.35 0.63 19.92 0.70 18.89 0.59 15.14 0.34
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Compared with the existing methods, our method has the following advantages:

• It can be seen from the average value in Table 1 that our method achieves the best
reconstruction performance. Our method achieves the best PSNR and SSIM under all
the four measurement rates; especially at high sampling rates, the PSNR and SSIM are
much higher;

• Observing the results, we can find that the result of the D-AMP algorithm is the second
best, and it is obviously better than the other two algorithms. The main reason is that
the D-AMP algorithm is an iterative algorithm based on a filter, and the filter has a
certain effect on the noise, but the effect is not very good;

• The results of TVAL3, NLR-CS and D-AMP at a high measurement rate of 0.25 are not
better than those at a low measurement rate of 0.10. The main reason is that the device
samples more data at high measurement rates and the acquisition time is long, which
will introduce more cumulative errors.

Under the same environment, the average reconstruction time of TVAL3, NLR-CS and
D-AMP for each image is 0.23, 30.11, and 8.25 s, respectively. Since the neural network can
be accelerated by the GPU, the average reconstruction time of the reconstruction network
is 0.02 s. When only the CPU is considered for reconstruction, the average obtained
reconstruction time is 0.11 s.

From Figure 6, we can see that the unfiltered data reconstruction result will have
some vertical noise in the fixed area of the image, which is present in almost all images.
Compared with other unfiltered algorithms, the reconstruction results of D-AMP are a little
better, but there is a serious phenomenon of denoising and smearing, which leads to blurry
images. Our method filters out noise while preserving details.

Original TVAL3 NLR-CS D-AMP Ours

Figure 6. Reconstruction results of the images.

4.2. Evaluation of Filter Network

To evaluate the performance of the filter network, we first pass the measurements
through our filter network, and then reconstruct it with the TVAL3, NLR-CS and D-AMP
algorithms again. The results obtained are shown in Table 2. The reconstruction result is
the average PSNR and SSIM of eight test images. Comparing with the previous results, we
can find the following characteristics:
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• The quality of the reconstruction results of TVAL3, NLR-CS and D-AMP has been
significantly improved. The increase in PSNR of some algorithms is about 7 dB;

• The higher the measurement rate, the greater the improvement in image quality.
The main reason is that the measurement rate is high, the device acquisition time is
long, and the cumulative error introduced will be large, so the effect achieved by the
filter network is better;

• In fact, the reconstruction result of 0.01 is already very poor; the image basically cannot
show the content of the original image. The SSIM of the image is also very low and
the PSNR of D-AMP after filtering is reduced, which is meaningless.

Table 2. PSNR and SSIM of traditional algorithm after filter.

Image Algorithm
MR = 0.25 MR = 0.10 MR = 0.04 MR = 0.01

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Mean

TVAL3 16.29 0.48 15.81 0.37 14.73 0.34 10.82 0.19
NLR-CS 16.19 0.46 15.66 0.39 14.43 0.32 10.61 0.22
D-AMP 17.55 0.50 16.86 0.46 15.25 0.32 10.44 0.17

Ours 21.35 0.63 19.92 0.70 18.05 0.50 15.14 0.34

At the same time, we compare the difference between the sampled signal, the filtered
signal and the original signal. It is obvious that a low-frequency noise signal is added onto
the sampled signal, which actually includes some high-frequency signal noise. After the
process of our filter network, the signal is basically the same as the original signal, so the
reconstruction quality is significantly improved. By comparison, the error between the
filtered signal and the original signal is much smaller, indicating that the filter network has
a significant effect on the noise of the CS imaging device.

The advantage of the compressive sensing imaging system proposed in this work is the
use of dual optical paths for sampling. The system can not only provide the measurements
of compressive sensing imaging, but can also calibrate the measurements so that no matter
which reconstruction method is used, a better reconstruction quality can be obtained.
Experiments have proved that the compressive sensing sampling method based on dual
optical paths can achieve better image quality in a variety of reconstruction methods.
As shown in Figure 7a, there is obviously a low-frequency noise in the sampled signal.
The signal after filtering obviously removes the low-frequency noise signal and is very
similar to the original signal. As shown in Figure 7b, the mean square error of the filtered
signal is greatly reduced for each image.

(a) (b)

Figure 7. The effect of the filter network on the signal. (a) Raw data of sampled signal and filtered
signal; (b) The mean square error of the sampled signal and the filtered signal.
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5. Conclusions and Future Work

Because CS imaging systems have high sensitivity to ambient light and circuit noise,
even if we add a variety of hardware filtering methods, their imaging quality is still very
poor. To this end, we propose a dual optical path CS imaging system. The design of the
dual optical path is based on the bidirectional reflection characteristics of DMD, so that
one optical signal is used for CS measurements sampling, and the other optical signal is
used for CMOS images acquisition. In this way, we labeled the measurements with the
images in the same viewing angle of the scene, and this labeled data are required for neural
network training. We designed and implemented a dual optical path imaging system,
and also proposed a filter and reconstruction network. After training, this reconstruction
network can obtain better imaging results. Through the filter network, the noise in the
measurements is suppressed, and the reconstruction quality is significantly improved
even for the traditional CS reconstruction algorithms. Experiments have verified that this
dual optical path based CS imaging system can effectively improve the imaging quality
and suppress the noise caused by the optical path and the circuit on the measurements.
The filter network can adaptively filter the noise created by the hardware, so that the CS
imaging device can be better applied to image acquisition.

Although the method we proposed can improve the imaging quality of a CS imaging
system, the system will take a large amount of image data during its work. Therefore,
future work will focus on another technique that is required to use these newly generated
image data for training and to continuously update the filter network online.
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