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Abstract
Striatal projection neurons form a sparsely-connected inhibitory network, and this arrange-

ment may be essential for the appropriate temporal organization of behavior. Here we

show that a simplified, sparse inhibitory network of Leaky-Integrate-and-Fire neurons can

reproduce some key features of striatal population activity, as observed in brain slices. In

particular we develop a new metric to determine the conditions under which sparse inhibi-

tory networks form anti-correlated cell assemblies with time-varying activity of individual

cells. We find that under these conditions the network displays an input-specific sequence

of cell assembly switching, that effectively discriminates similar inputs. Our results support

the proposal that GABAergic connections between striatal projection neurons allow stimu-

lus-selective, temporally-extended sequential activation of cell assemblies. Furthermore,

we help to show how altered intrastriatal GABAergic signaling may produce aberrant net-

work-level information processing in disorders such as Parkinson’s and Huntington’s

diseases.

Author Summary

Neuronal networks that are loosely coupled by inhibitory connections can exhibit poten-
tially useful properties. These include the ability to produce slowly-changing activity pat-
terns, that could be important for organizing actions and thoughts over time. The striatum
is a major brain structure that is critical for appropriately timing behavior to receive
rewards. Striatal projection neurons have loose inhibitory interconnections, and here we
show that even a highly simplified model of this striatal network is capable of producing
slowly-changing activity sequences. We examine some key parameters important for
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producing these dynamics, and help explain how changes in striatal connectivity may con-
tribute to serious human disorders including Parkinson’s and Huntington’s diseases.

Introduction
The basal ganglia are critical brain structures for behavioral control, whose organization has
been highly conserved during vertebrate evolution [1]. Altered activity of the basal ganglia
underlies a wide range of human neurological and psychiatric disorders, but the specific com-
putations normally performed by these circuits remain elusive. The largest component of the
basal ganglia is the striatum, which appears to have a key role in adaptive decision-making
based on reinforcement history [2], and in behavioral timing on scales from tenths of seconds
to tens of seconds [3].

The great majority (> 90%) of striatal neurons are GABAergic medium spiny neurons
(MSNs), which project to other basal ganglia structures but also make local collateral connec-
tions within striatum [4]. These local connections were proposed in early theories to achieve
action selection through strong winner-take-all lateral inhibition [5, 6], but this idea fell out of
favor once it became clear that MSN connections are actually sparse (nearby connection proba-
bilities’ 10–25% [7, 8]), unidirectional and relatively weak [9, 10]. Nonetheless, striatal net-
works are intrinsically capable of generating sequential patterns of cell activation, even in brain
slice preparations without time-varying external inputs [11, 12]. Following previous experi-
mental evidence that collateral inhibition can help organize MSN firing [13], an important
recent set of modeling studies argued that the sparse connections between MSNs, though indi-
vidually weak, can collectively mediate sequential switching between cell assemblies [14, 15]. It
was further hypothesized that these connections may even be optimally configured for this pur-
pose [16]. This proposal is of high potential significance, since sequential dynamics may be
central to the striatum’s functional role in the organization and timing of behavioral output
[17, 18].

In their work [14–16], Ponzi and Wickens used conductance-based model neurons (with
persistent Na+ and K+ currents [19]), in proximity to a bifurcation from a stable fixed point to
a tonic firing regime. We show here that networks based on simpler leaky integrate-and-fire
(LIF) neurons can also exhibit sequences of cell assembly activation. This simpler model,
together with a novel measure of structured bursting, allows us to more clearly identify the crit-
ical parameters needed to observe dynamics resembling that of the striatal MSN network.
Among other results, we show that the duration of GABAergic post-synaptic currents is crucial
for the network’s ability to discriminate different input patterns. GABAergic currents are
abnormally brief in mouse models of Huntington’s Disease (HD) [20], and we demonstrate
how this may produce the altered neural activity dynamics reported for symptomatic HD mice
[21]. Finally, dopamine loss weakens MSN-MSN interactions [22, 23], and our results help illu-
minate the origins of aberrant synchronization patterns in Parkinson’s Disease (PD).

Results

Measuring cell assembly dynamics
The model is composed of N leaky integrate-and-fire (LIF) inhibitory neurons [24, 25], with
each neuron receiving inputs from a randomly selected 5% of the other neurons (i.e. a directed
Erdös-Renyi graph with constant in-degree K = pN, where p = 5%) [26]. The inhibitory post-
synaptic potentials (PSPs) are modeled as α-functions characterized by a decay time τα and a

Cell Assembly Dynamics of Sparsely-Connected Inhibitory Networks

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004778 February 25, 2016 2 / 29

Adminsitrativo de Ciencia Tecnologia e Innovacion -
Colciencias" through the program “Doctorados en el
exterior - 2012" (DAG). The funders had no role in
study design, data collection and analysis, decision to
publish, or preparation of the manuscript.

Competing Interests: The authors have declared
that no competing interests exist.



peak amplitude APSP. In addition, each neuron i is subject to an excitatory input current mim-
icking the cortical and thalamic inputs received by the striatal network. In order to obtain firing
periods of any duration the excitatory drives are tuned to drive the neurons in proximity of the
supercritical bifurcation between the quiescent and the firing state, similarly to [14]. Further-
more, our model is integrated exactly between a spike emission and the successive one by
rewriting the time evolution of the network as an event-driven map [27] (for more details see
Methods).

Since we will compare most of our findings with the results reported in a previous series of
papers by Ponzi and Wickens (PW) [14–16] it is important to stress the similarities and differ-
ences between the two models. The model employed by PW is a two dimensional conduc-
tance-based model with a potassium and a sodium channel [19], our model is simply a current
based LIF model. The parameters of the PWmodel are chosen so that the cell is in proximity of
a saddle-node on invariant circle (SNIC) bifurcation to guarantee a smooth decrease of the fir-
ing period when passing from the quiescent to the supra-threshold regime, without a sudden
jump in the firing rate. Similarly, in our simulations the parameters of the LIF model are cho-
sen to be in proximity of the bifurcation from silent regime to tonic firing. In the PWmodel
the PSPs are assumed to be exponentially decaying, whereas we considered α-functions.

In particular, we are interested in determining model parameters for which uniformly dis-
tributed inputs I = {Ii}, where Ii 2 [Vth, Vth + ΔV], produce cell assembly-like sequential pat-
terns in the network. The main aspects of the desired activity can be summarized as follows: (i)
single neurons should exhibit large variability in firing rates (CV> 1); (ii) the dynamical evolu-
tion of neuronal assemblies should reveal strong correlation within an assembly and anti-corre-
lation with neurons out of the assembly. As suggested by many authors [9, 28] the dynamics of
MSNs cannot be explained in terms of a winners take all (WTA) mechanism, which would
imply a small number of highly firing neurons, while the remaining would be silenced. There-
fore we searched for a regime in which a substantial fraction of neurons are actively involved in
the network dynamics. This represents a third criterion (iii) to be fulfilled to obtain a striatum-
like dynamical evolution.

Fig 1 shows an example of such dynamics for the LIF model, with three pertinent similari-
ties to previously observed dynamics of real MSN networks [11]. Firstly, cells are organized
into correlated groups, and these groups are mutually anticorrelated (as evident from the
cross-correlation matrix of the firing rates reported in Fig 1(c)). Secondly, individual cells
within groups show irregular firing as shown in Fig 1(a). This aspect is reflected in a coefficient
of variation (CV) of the inter-spike-intervals (ISIs) definitely greater than one (as we will exam-
ine in following subsections), consistent with experimental observations for the dynamics of
rat striatum in-vitro[7, 9]. Thirdly, the raster plot reported in Fig 1(b) reveals that a large frac-
tion of neurons (namely,’ 93%) is active.

A novel metric for the structured cell assembly activity
The properties (i), (ii), and (iii), characterizing MSN network activity, can be quantified in
terms of a single scalar metric Q0, as follows:

Q0 � hCViN � sðCðni; njÞÞ � n� ; ð1Þ

where h�iN denotes average over the ensemble of N neurons, n� = Nact/N is the fraction of
active neurons Nact out of the total number, C(νi, νj) is the N × N zero-lag cross-correlation
matrix between all the pairs of single neuron firing rates (νi, νj), and σ(�) is the standard devia-
tion of this matrix (for details see Methods). We expected that suitable parameter values for
our model could be selected by maximizing Q0.
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Our metric is inspired by a metric introduced to identify the level of cluster synchronization
and organization for a more detailed striatal microcircuit model [29]. However, that metric is
based on the similarity among the point-process spike trains emitted by the various neurons,
whereas Q0 uses correlations between firing rate time-courses. Furthermore, Q0 takes also in
account the variability of the firing rates, by including the average CV in Eq (1), an aspect of
the MSN dynamics omitted by the metric employed in [29]. Within biologically meaningful
ranges, we find values of the parameters controlling lateral inhibition (namely, the synaptic
strength g and the the post-synaptic potential duration τα) that maximize Q0. As we show
below, the chosen parameters not only produce MSN-like network dynamics but also optimize
the network’s computational capabilities, in the sense of producing a consistent, temporally-
structured response to a given pattern of inputs while discriminating between very similar
inputs.

The role of lateral inhibition
In this sub-section we examine how network dynamics are affected by the strength of inhibi-
tory connections (Fig 2). When these lateral connections are very weak (parameter g close to
zero), the dominant input to each neuron is the constant excitation. As a result, most individual
neurons are active (fraction of active neurons, n�, is close to 1) and firing regularly (CV close to
zero). As lateral inhibition is made stronger, some neurons begin to slow down or even stop fir-
ing, and n� declines towards a minimum fraction of’ 50% (at g = gmin), as shown in the lower
panel in Fig 2(a). As noted by Ponzi and Wickens [16], this is due to a WTA mechanism:
faster-firing neurons depress or silence the neurons to which they are connected. This is evi-

dent from the distribution PðISIÞ of the average interspike intervals (ISI ), which is peaked at
low firing periods, and from the distribution of the CV exhibiting a single large peak at CV’ 0
(as shown in the insets of S2a, S2b, S2d and S2e Fig).

As soon as g approaches gmin, the neuronal activity is no longer due only to the winners, but
also the losers begin to play a role. The winners are characterized by an effective inputWi

which is on average supra-threshold, while their firing activity is driven by the mean current:
winners aremean-driven[30]. On the other hand, losers are on average below-threshold, and
their firing is due to current fluctuations: losers are fluctuation-driven[30]. For more details see

Fig 1. Cell activity characterization. a) Firing rates νi of 6 selected neurons belonging to two anti-correlated assemblies, the color identifies the assembly
and the colors correspond to the one used in b) for the different clusters; b) raster plot activity, the firing times are colored according to the assembly the
neurons belong to; c) cross-correlation matrixC(νi, νj) of the firing rates. The neurons in panel b) and c) are clustered according to the correlation of their firing
rates by employing the k-means algorithm; the clusters are ordered in terms of their average correlation (inside each cluster) from the highest to the lowest
one (for more details see Methods). The firing rates are calculated over overlapping time windows of duration 1 s, the origins of successive windows are
shifted by 50 ms. The system is evolved during 107 spikes, after discarding an initial transient of 105 spike events. Other parameters used in the simulation:
g = 8, K = 20, N = 400, kmean = Nact/15, ΔV = 5 mV and τα = 20 ms. The number of active neurons is 370, corresponding to n*’ 93%.

doi:10.1371/journal.pcbi.1004778.g001
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S2c and S2f Fig. This is reflected in the corresponding distribution PðISIÞ (Fig 2(b), red curve).
The winners have very short ISIs (i.e. high firing rates), while the losers are responsible for the

long tail of the distribution extending up to ISI ’ 103 s. In the distribution of the coefficients
of variation (Fig 2(b) inset, red curve) the winners generate a peak of very low CV (i.e. highly-
regular firing), suggesting that they are not strongly influenced by the other neurons in the net-
work and therefore have an effective input on average supra-threshold. By contrast the losers
are associated with a smaller peak at CV’ 1, confirming that their firing is due to large fluctua-
tions in the currents.

Counterintuitively however, further increases in lateral inhibition strength result in increased
neuronal participation, with n� progressively returning towards’ 1. The same effect was

Fig 2. Metrics of structured activity vs lateral inhibition strength. a) Metrics entering in the definition ofQ0 versus the synaptic strength g. From top to
bottom: Averaged coefficient of variation hCViN, standard deviation of the cross-correlation matrix σ(C), and the fraction of active neurons n*. The solid
(dashed) line refers to the case ΔV = 1 mV (ΔV = 5 mV). The minimum number of active neurons is achieved at g = gmin, this corresponds to a peak amplitude
of the PSP APSP = 0.064 mV (APSP = 0.184 mV) for ΔV = 1 mV (ΔV = 5 mV) (for more details see Methods). b) Distributions PðISIÞ of the average ISI for a fixed
ΔV = 5 mV and for two different coupling strengths, g = 4 (red triangle-up symbol) and g = 10 (blue triangle-down). Inset, the distribution P(CV) of theCV of the
single neurons for the same two cases. c)Q0 andQd, as defined in Eqs (1) and (20), versus g for ΔV = 1 mV. d) Same as c) for ΔV = 5 mV. Other parameters
as in Fig 1.

doi:10.1371/journal.pcbi.1004778.g002
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previously reported by Ponzi andWickens [16] for a different, more complex, model. When the
number of active neurons returns almost to 100%, i.e. for sufficiently large coupling g> gmin,
most of the neurons appear to be below threshold, as revealed by the distribution of the effective
inputsWi reported in S2c and S2f Fig. Therefore in this case the network firing is essentially

fluctuation-driven, and the PðISIÞ distribution is now characterized by a broader distribution

and by the absence of the peak at short ISI (as shown in Fig 2(b), blue line; see also S2a and S2d
Fig). Furthermore the single neuron dynamics is definitely bursting, as shown by the CV distri-
bution now centered around CV’ 2 (inset of Fig 2(b), blue line; see also S2b and S2e Fig).

The transition between these two dynamical regimes, occurring at g = gmin, is due to a pas-
sage from a state where some winner neurons were mean-driven and able to depress all the
other neurons, to a state at g>>gmin where almost all neurons are fluctuation-driven and con-
tribute to the network activity. The transition occurs because at g< gmin the fluctuations in the
effective input currentsWi are small and insufficient to drive the losers towards the firing
threshold (as shown in the insets of S2c and S2f Fig). At g’ gmin the amplitude of the fluctua-
tions becomes sufficient for some losers to cross the firing threshold and contribute to the num-
ber of active neurons. This will also reduce the winners’ activity. For g>>gmin the fluctuations
ofWi are sufficient to lead almost all losers to fire and no clear distinction between losers and
winners remains.

The reported results explain why the variability σ(C) of the cross-correlation matrix has a
non monotonic behaviour with g (as shown in the middle panel in Fig 2(a)). At low coupling
σ(C) is almost zero, since the single neuron dynamics are essentially independent one from
another, while the increase of the coupling leads to an abrupt rise of σ(C). This growth is clearly
associated with the inhibitory action which splits the neurons into correlated and anti-corre-
lated groups. The variability of the cross-correlation matrix achieves a maximum value for cou-
pling slightly larger than gmin, where fluctuations in the effective currents begin to affect the
network dynamics. At larger coupling σ(C) begins to decay towards a finite non zero value.
These results confirm that the most interesting region to examine is the one with coupling
g> gmin, as already suggested in [16].

The observed behaviour of CV, n� and σ(C) suggests that we should expect a maximum in
Q0 at some intermediate coupling g> gmin, as indeed we have for both studied cases as shown
in Fig 2(c) and 2(d). The initial increase in Q0 is due to the increase in CV and n�, while the
final decrease, following the occurrence of the maximum, is essentially driven by the decrease
of σ(C). For larger ΔV the neurons tend to fire regularly across a wider range of small g values
(see Fig 2(d)), indicating that due to their higher firing rates a larger synaptic inhibition is
required to influence their dynamics. On the other hand, their bursting activity observable at
large g is more irregular (see the upper panel in Fig 2(a); dashed line and empty symbols).

To assess whether parameters that maximize Q0 also allow discrimination between different
inputs, we alternated the network back and forth between two distinct input patterns, each pre-
sented for a period Tsw. During this stimulation protocol, we evaluated the state transition
matrix (STM) and the associated quantity ΔMd. The STMmeasures the similarity among the
firing rates of the neurons in the network taken at two different times. The metric ΔMd, based
on the STM, has been introduced in [16] to quantify the ability of the network to distinguish
between two inputs. In particular, ΔMd is the difference between the average values of the STM
elements associated with the presentation of each of the two stimuli (a detailed description of
the procedure is reported in the sub-section Discriminative and computation capability and in
Methods).

To verify whether the ability of the network to distinguish different stimuli is directly related
to the presence of dynamically correlated and anti-correlated cell assemblies, we generated a
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new metric, Qd. This metric is defined in the same way as Q0, except that in Eq (1) the standard
deviation of the correlation matrix is replaced by ΔMd. As it can be appreciated from Fig 2(c)
and 2(d) the metrics Qd and Q0 behave similarly, indicating that indeed Q0 becomes maximal
in the parameter range in which the network is most effectively distinguishing different stimuli.
We speculate that the emergence of correlated and anti-correlated assemblies contributes to
this discriminative ability.

We note that we observed maximal values of Q0 for realistic lateral inhibition strengths, as
measured from the post-synaptic amplitudes APSP. Specifically, Q0 reaches the maximum at
g = 4 (g = 8) for ΔV = 1 mV (ΔV = 5 mV) corresponding to APSP = 0.368 mV (APSP = 0.736
mV), comparable to previously reported experimental results [7, 9, 28] (for more details see
Methods).

The role of the post-synaptic time scale
In brain slice experiments IPSCs/IPSPs between MSNs last 5–20 ms and are mainly mediated
by the GABAa-receptor [7, 31]. In this sub-section, we will examine the effect of the the post-
synaptic time constant τα. As τα is increased from 2 to 50 ms, the values of both metrics Q0 and
Qd progressively increase (Fig 3(a)), with the largest variation having already occurred by τα =
20 ms. To gain more insights on the role of the PSP in shaping the structured dynamical
regime, we show for the same network the distribution of the single cell CV, for τα = {2, 9, 20}
ms (Fig 3(b)). Narrow pulses (τα’ 2 ms) are associated with a distribution of CV values rang-
ing from 0.5 to 1, with a predominant peak at one. By increasing τα one observes that the CV
distributions shift to larger and larger CV values. Therefore, one can conclude that at small τα
the activity is mainly Poissonian, while increasing the duration of the PSPs leads to bursting
behaviours, as in experimental measurements of the MSN activity [21]. In particular in [21],
the authors showed that bursting activity of MSNs with a distribution P(CV) centered around
CV’ 2 is typical of awake wild-type mice. To confirm this analysis we estimated the distribu-
tion of CV2: A CV2 distribution with a peak around zero denotes very regular firing, while a
peak around one indicates the presence of long silent periods followed by rapid firing events
(i.e. a bursting activity). Finally a flat distribution denotes Poissonian distributed spiking. It is
clear from Fig 3(c) that by increasing τα from 2 to 20 ms this leads the system from an almost
Poissonian behaviour to bursting, where almost regular firing inside the burst (intra-burst) is
followed by a long quiescent period (inter-burst) before starting again.

The distinct natures of the distributions of CV for short and long pulses raises the question
of what mechanism underlies such differences. To answer this question we analyzed the distri-
bution of the ISI of a single cell in the network for two cases: in a cell assembly bursting regime
(corresponding to τα = 20 ms) and for Poissonian unstructured behavior (corresponding to
τα = 2 ms). We expect that even the single neurons should have completely different dynamics
in these two regimes, since the distributions P(CV) at τα = 2 ms and 20 ms are essentially not
overlapping, as shown in Fig 3(b). In order to focus the analysis on the effects due to the synap-
tic inhibition, we have chosen, in both cases, neurons receiving exactly the same external excit-
atory drive Is. Therefore, in absence of any synapses, these two neurons will fire with the same
period ISI0 = τm log[(Is−Vr)/(Is−Vth)] = 12 ms, corresponding to a firing rate of 8.33 Hz not far
from the average firing rate of the networks (namely, hνiN ’ 7–8 Hz). Thus these neurons can
be considered as displaying typical activity in both regimes. As expected, the dynamics of the
two neurons is quite different, as evident from the P(ISI) presented in Fig 4(a) and 4(b). In
both cases one observes a long tailed exponential decay (with decay rate νD) of P(ISI) corre-
sponding to a Poissonian like behaviour. However the decay rate νD is slower for τα = 20 ms
with respect to τα = 2 ms, namely νD ’ 2.74 Hz versus νD ’ 20.67 Hz. Interestingly, the main
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macroscopic differences between the two distributions arises at short time intervals. For τα = 2
ms, (see Fig 4(b)) an isolated and extremely narrow peak appears at ISI0. This first peak corre-
sponds to the supra-threshold tonic-firing of the isolated neuron, as reported above. After this
first peak, a gap is clearly visible in the P(ISI) followed by an exponential tail. The origin of the
gap resides in the fact that ISI0 >>τα, because if the neuron is firing tonically with its period
ISI0 and receives a single PSP, the membrane potential has time to decay almost to the reset
value Vr before the next spike emission. Thus a single PSP will delay the next firing event by a
fixed amount corresponding to the gap in Fig 4(b). Indeed one can estimate analytically this
delay due to the arrival of a single α-pulse, in the present case this gives ISI1 = 15.45 ms, in very
good agreement with the results in Fig 4(b). No further gaps are discernible in the distribution,
because it is highly improbable that the neuron will receive two (or more) PSPs exactly at the
same moment at reset, as required to observe further gaps. The reception of more PSPs during
the ramp up phase will give rise to the exponential tail in the P(ISI). In this case the contribu-
tion to the CV comes essentially from this exponential tail, while the isolated peak at ISI0 has a
negligible contribution.

On the other hand, if τα > ISI0, as in the case reported in Fig 4(a), P(ISI) does not show any-
more a gap, but instead a continuous distribution of values. This because now the inhibitory
effects of the received PSPs sum up, leading to a continuous range of delayed firing times of the
neuron. The presence of this peak of finite width at short ISI in the P(ISI) plus the exponen-
tially decaying tail are at the origin of the observed CV> 1. In Fig 4(e) and 4(f) the distribu-

tions of the coefficient CV ðiÞ
2 are also displayed for the considered neurons as black lines with

symbols. These distributions clearly confirm that the dynamics are bursting for the longer syn-
aptic time scale and essentially Poissonian for the shorter one.

We would like to understand whether it is possible to reproduce similar distributions of the
ISIs by considering an isolated cell receiving Poissonian distributed inhibitory inputs. In order
to verify this, we simulate a single cell receiving K uncorrelated spike trains at a rate hνiN, or
equivalently, a single Poissonian spike train with rate KhνiN. Here, hνiN is the average firing
rate of a single neuron in the original network. The corresponding P(ISI) are plotted in Fig 4(c)
and 4(d), for τα = 20 ms and 2 ms, respectively. There is a remarkable similarity between the
reconstructed ISI distributions and the real ones (shown in Fig 4(a) and 4(b)), in particular at

short ISIs. Also the distributions of the CV ðiÞ
2 for the reconstructed dynamics are similar to the

original ones, as shown in Fig 4(e) and 4(f). Altogether, these results demonstrate that the

Fig 3. Metrics of structured activity vs post-synaptic time duration. a) MetricsQ0 (in solid line) andQd (dashed) as a function of the pulse time scale for
the parameter values {ΔV,g} = {5 mV,8} corresponding to the maximumQ0 value in Fig 2(d). Probability distribution functions P(CV) (P(CV2)) for the
coefficient of variationCV (local coefficient of variationCV2) are shown in b) (in c)) for three representative τα = {2, 9, 20} ms, indicated in the three panels with
red squares, blue triangles-up and black circles respectively. For these three cases the average firing rate in the network is hνi = {8.81,7.65,7.35} Hz ordered
for increasing τα-values. Other parameters as in Fig 1.

doi:10.1371/journal.pcbi.1004778.g003
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Fig 4. Single neuron statistics. a) Distribution P(ISI) at short values of ISIs for one representative cell in the network, by setting τα = 20 ms. Inset: same as
main figure for the whole range of ISIs. b) Same as a) for τα = 2 ms. c-d) Corresponding Poissonian reconstruction of the P(ISI) for the same cases depicted in
a) and b). e-f) Single neuron distribution of theCV ðiÞ

2 for the same considered cases as in a) and b) calculated from the simulation (black solid lines with
circles) and the Poissonian reconstruction (red dashed line with squares). The network parameters are ΔV = 5 mV and g = 8, remaining parameters as in Fig
1. Both the examined neurons have Is = −45.64 mV. For the Poissonian reconstruction the frequencies of the incoming uncorrelated spike trains are set to
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bursting activity of coupled inhibitory cells is not a consequence of complex correlations
among the incoming spike trains, but rather a characteristic related to intrinsic properties of
the single neuron: namely, its tonic firing period, the synaptic strength, and the post-synaptic
time decay. The fundamental role played by long synaptic time in inducing bursting activity
has been reported also in a study of a single LIF neuron below threshold subject to Poissonian
trains of exponentially decaying PSPs [32].

Obviously this analysis cannot explain collective effects, like the non trivial dependence of
the number of active cells n� on the synaptic strength, discussed in the previous sub-section, or
the emergence of correlations and anti-correlations among neural assemblies (measured by
σ(C)) due to the covarying of the firing rates in the network, as seen in striatal slices and shown
in Fig 1(c) for our model. To better investigate the influence of τα on the collective properties
of the network we report in S4a and S4b Fig the averaged CV, σ(C), n� and ΔMd for τα 2 [2, 50]
ms. As already noticed, the network performs better in mimicking the MSN dynamics and in
discriminating between different inputs at larger τα (e.g. at 20 ms). However, what is the mini-
mal value of τα for which the network still reveals cell assembly dynamics and discriminative
capabilities? From the data shown in S4a Fig one can observe that σ(C) and ΔMd attain their
maximal values in the range 10 ms� τα � 20 ms. This indicates that clear cell assembly
dynamics with associated good input pattern discrimination can be observed in this range.
However, the bursting activity is not particularly pronounced at τα = 10 ms, where hCViN ’ 1.
Therefore only the choice τα = 20 ms fulfills all the requirements.

Interestingly, genetic mouse models of HD revealed that spontaneuous IPSCs in MSNs has
a reduced decay time and half-amplitude duration compared to wild-types [20]. Our analysis
clearly indicate that a reduction of τα results in more stochastic single-neuron dynamics, as
indicated by hCViN ’ 1, as well as in a less pronounced structured assembly dynamics (S4a
Fig). This resembles what observed for the striatum dynamics of freely behaving mice with
symptomatic HD [21]. In particular, the authors have shown in [21] that at the single unit level
HD mice reveals a CV’ 1 in contrast to CV’ 2 for wild-type mice, furthermore the level of
correlation among the neural firings was definitely reduced in HD mice.

Origin of the cell assemblies
A question that we have not addressed so far is: how do cell assemblies arise? Since the network
is purely inhibitory it is reasonable to guess that correlation (anti-correlation) among groups of
neurons will be related to the absence (presence) of synaptic connections between the consid-
ered groups. In order to analyze the link between the correlation and the network connectivity
we compare the clustered cross-correlation matrix of the firing rates C(νi, νj) (shown in Fig 5
(a)) with the associated connectivity matrix Cij (reported in Fig 5(b)). The cross-correlation

matrix is organized in k = 15 clusters via the k-means algorithm, therefore we obtain a matrix
organized in a k × k block structure, where each block (m, l) contains all the cross-correlation
values of the elements in clusterm with the elements in cluster l. The connectivity matrix is
arranged in exactly the same way, however it should be noticed that while C(νi, νj) is symmet-
ric, the matrix Cij is not symmetric due to the unidirectional nature of the synaptic connections.

From a visual comparison of the two figures it is clear that the most correlated blocks are along
the diagonal and that the number of connections present in these diagonal blocks is definitely
low, with respect to the expected value from the whole matrix. An exception is represented by

hνiN � 7.4 Hz (hνiN � 8.3 Hz) for τα = 20ms (τα = 2ms), as measured from the corresponding network dynamics. The distributions are obtained by considering
a sequence of 109 spikes in the original network, and 107 events for the Poissonian reconstruction.

doi:10.1371/journal.pcbi.1004778.g004
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the largest diagonal block which reveals, however, an almost zero level of correlation among its
members. We have highlighted in blue some blocks with high level of anti-correlations among
the elements, the same blocks in the connectivity matrix reveal a high number of links. A simi-
lar analysis, leading to the same conclusions was previously reported in [14].

To make this comparison more quantitative, we have estimated for each block the average
cross-correlation, denoted as hCiml, and the average probability pml of unidirectional connec-
tions from the cluster l to the clusterm. These quantities are shown in Fig 5(c) for all possible

Fig 5. Cell assemblies and connectivity. a) Cross-correlation matrixC(νi, νj) of the firing rates organized according to the clusters generated via the k-means
algorithm with k = 15, the clusters are ordered as in Fig 1(c) from the highest to the lowest correlated one. b) Connectivity matrix C ij with the indices ordered as
in panel a). Here, a black (copper) dot denotes a 1 (0) in C ij, i.e. the presence(absence) of a synaptic connection from j to i. c) Average cross-correlation hCiml

among the elements of the matrix block (m, l), versus the probability pml to have synaptic connections from neurons in the cluster l to neurons in the clusterm.
d) hCiml versus the block averaged similarity metrics eml. Black squares indicate the blocks along the diagonal delimited by black borders in panel a) and b);
blue triangles denote the ten blocks with the lowest hCiml values, which are also delimited by blue edges in a) and b). The vertical red dashed line in panel c)
denotes the average probability to have a connection p = 5% and in panel d) the value of the metrics eml averaged over all the blocks. The black solid line in
panel c) is the linear regression to the data (hCiml� 0.15–3.02pml, correlation coefficient R = −0.72). Other parameters as in Fig 1.

doi:10.1371/journal.pcbi.1004778.g005
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blocks. The correlation hCiml decreases with the probability pml, and a linear fit to the data is
reported in the figure as a solid black line. However, there are blocks that are outliers with
respect to this fit. The blocks along the main diagonal (black squares) all have high correlation
values hCimm and low probabilities pmm, smaller than the average probability p = 0.05, shown
as a dashed vertical red line in Fig 5(c). An exception is represented by a single black square
located exactly on the linear fit in proximity of p = 0.05 this is the large block with almost zero
level of correlation among its elements previously identified. Furthermore, the blocks with
higher anticorrelation, denoted as blue triangles in the figure, have probabilities pml definitely
larger than 5%. The exceptions are two triangles lying exactly on the vertical dashed line corre-
sponding to 5%. This is due to the fact that the pml are not symmetric, and it is sufficient to
have a large probability of connections in only one of the two possible directions between
blocksm and l to observe anti-correlated activities between the two assemblies.

Having clarified that the origin of the assemblies identified from the correlations of the fir-
ing rates is directly related to structural properties of the networks, we would like to understand
if the neurons belonging to the assemblies also share other properties. In particular, we can
measure the similarity of the neurons within each block (m, l) by estimating the block averaged
similarity metrics eml introduced in Eq (14) in Methods. This quantity measures how similar
are the effective synaptic inputsWi of two neurons in the network. In Fig 5(d) we report hCiml

versus eml for all the blocks. It is evident that the diagonal blocks (black squares in the figure)
have a higher similarity value emm with respect to the average (the vertical red dashed line in
Fig 5(d)). Thus suggesting that correlated assemblies are formed by neurons with similar effec-
tive inputs and with few structural connections among them. However, the observed anticorre-
lations are only due to structural effects since the most anticorrelated blocks (blue triangles in
Fig 5(d)) do not reveal any peculiar similarity value eml. Similar results have been obtained by
considering the neural excitability Ii instead of the effective synaptic inputWi.

Discriminative and computational capability
In this sub-section we examine the ability of the network to perform different tasks: namely, to
respond in a reproducible manner to stimuli and to discriminate between similar inputs via
distinct dynamical evolution. For this analysis we have always compared the responses of the
network obtained for a set of parameters corresponding to the maximum Q0 value shown in
Fig 2(d), where τα = 20 ms, and for the same parameters but with a shorter PSP decay time,
namely τα = 2 ms.

To check for the capability of the network to respond to cortical inputs with a reproducible
sequence of states, we perform a simple experiment, following the protocol described in [15,
16], where two different inputs I(1) and I(2) are presented sequentially to the system. Each input
persists for a time duration Tsw and then the stimulus is switched to the other one and this pro-
cess is repeated for the whole simulation time. The raster plot measured during such an experi-
ment is shown in Fig 6(a) for τα = 20 ms. Whenever one of the stimuli is presented, a specific
sequence of activations can be observed. Furthermore, the sequence of emerging activity pat-
terns is reproducible when the same stimulus is again presented to the system, as can be appre-
ciated by observing the patterns encircled with black lines in Fig 6(a).

Furthermore, we can quantitatively compare the firing activity in the network at different
times by estimating the STM. Similarity is quantified by computing the normalized scalar
product of the instantaneous firing rates of the N neurons measured at time ti and tj. We
observe that the similarity of the activity at a given time t0 and at successive times t0 + 2mTsw is
high (with values between 0.5 and 0.75), while it is essentially uncorrelated with the response at
times corresponding to the presentation of a different stimulus, i.e. at t0 + (2m−1)Tsw (since the
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similarity is always smaller than 0.4) (here,m = 1, 2, 3. . .). This results in a STM with a periodic
structure of period Tsw with alternating high correlated blocks followed by low correlated
blocks (see S5b Fig). An averaged version of the STM calculated over a sequence of 5 presenta-
tions of I(1) and I(2) is shown in Fig 6(b) (for details of the calculation see Methods). These
results show not only the capability of the network to distinguish between stimuli, but also the
reproducible nature of the system response. In particular, from Fig 6(b) it is evident how the
patterns associated with the response to the stimulus I(1) or I(2) are clearly different and easily
identifiable. We also repeated the numerical experiment for another different realization of the
inputs, noticing essentially the same features previously reported (as shown in S5a–S5c Fig).
Furthermore, to test for the presence of memory effects influencing the network response, we
performed a further test where the system dynamics was completely reset after each stimula-
tion and before the presentation of the next stimulus. This had no apparent effect in the net-
work response.

Next, we examined the influence of the PSP time scale on the observed results. In particular,
we considered the case τα = 2 ms, in this case the network (as shown in S5d Fig) responds in a
quite uniform manner during the presentation of each stimulus. Furthermore, the correspond-
ing STM reported in S5e Fig shows highly correlated blocks alternating with low correlated
ones, but these blocks do not reveal any internal structure characteristic of cell assembly
encoding.

We proceeded to check the ability of the network to discriminate among similar inputs and
how this ability depends on the temporal scale of the synaptic response. In particular, we tried
to answer to the following question: if we present two inputs that differ only for a fraction f of
the stimulation currents, which is the minimal difference between the inputs that the network
can discriminate? In particular, we considered a control stimulation I(c) = Ii 2 [Vth, Vth + ΔV]
and a perturbed stimulation I(p), where the stimulation currents differ only over a fraction f of
currents Ii (which are randomly chosen from the same distribution as the control stimuli). We
measure the differences of the responses to the control and to the perturbed stimulations by

Fig 6. Sequential switching. a) Raster plot associated to the two input protocols I(1) and I(2). The circles denote the clusters of active neurons appearing
repetitively after the presentation of the stimulus I(1). Vertical lines denote the switching times between stimuli. The clustering algorithm employed to identify
the different groups is applied only during the presentation of the stimulus I(1), therefore the sequential dynamics is most evident for that particular stimulus. b)
Averaged State Transition Matrix D, obtained by considering a 4Tsw × 4Tsw sub-matrix averaged over r = 5 subsequent time windows of duration 4Tsw (see
the section Methods for details). The inputs I(1) and I(2) are different realization of the same random process, they are obtained by selectingN current values Ii
from the flat interval [Vth, Vth + ΔV]. The input stimuli are switched every Tsw = 2 s. Number of clusters k = 35 in a). Other parameters as in Fig 1.

doi:10.1371/journal.pcbi.1004778.g006
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measuring, over an observation window TE, the dissimilarity metric df(t), defined in Methods.

The time averaged dissimilarity metric df is reported as a function of f in Fig 7 for two different
values τα. It is clear that for any f-value the network with longer synaptic response always dis-
criminates better between the two different stimuli than the one with shorter PSP decay. We
have also verified that the metric is robust to the modification of the observation times TE,
because the dissimilarity df(t) rapidly reaches a steady value (as shown in S6a and S6b Fig).

To better characterize the computational capability of the network and the contribution of
the PSP duration, we measured the complexity of the output signals as recently suggested in
[33]. In particular, we have examined the response of the network to a sequence of three sti-
muli, each being a constant vector of randomly chosen currents. The three different stimuli are
consecutively presented to the network for a time period Tsw, and the stimulation sequence is
repeated for the whole experiment duration TE. The output of the network can be represented
by the instantaneous firing rates of the N neurons measured over a time window ΔT = 100 ms,
this is a high dimensional signal, where each dimension is represented by the activity of a single
neuron. The complexity of the output signals can be estimated by measuring how many dimen-
sions are explored in the phase space. With greater stationarity of firing rates, fewer variables
are required to reconstruct the whole output signal [33].

A principal component analysis (PCA) performed over TE/ΔT observations of the N firing
rates reveals that for τα = 2 ms 80% of the variance is recovered already with a projection over a
two dimensional sub-space (red bars in Fig 8(a)). On the other hand, for τα = 20 ms a higher
number of principal components is required to reconstruct the dynamical evolution (red bars
in Fig 8(a)), thus suggesting higher computational capability of the system with longer PSPs
[33].

Fig 7. Pattern separation. Average dissimilarity as a function of the fraction f of inputs differing from the control input, for the values of τα = 20ms (black
circles) and τα = 2ms (red squares) with two different observation windows TE = 2s (solid line) and TE = 10s (dashed line). Other parameters used: ΔT = 50ms,
ΔV = 5 mV. Remaining parameters as in Fig 1.

doi:10.1371/journal.pcbi.1004778.g007

Cell Assembly Dynamics of Sparsely-Connected Inhibitory Networks

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004778 February 25, 2016 14 / 29



These results are confirmed by analyzing the projections of the firing rates in the subspace
spanned by the first three principal components (C1, C2, C3) shown in Fig 8(b) and 8(c) for
τα = 20 ms and τα = 2 ms, respectively. The responses to the three different stimuli can be effec-
tively discriminated by both networks, since they lie in different parts of the phase space. How-
ever, the response to the three stimuli correspond essentially to three fixed points for τα = 2 ms,
while trajectories evolving in a higher dimension are associated to each constant stimulus for
τα = 20 ms.

These analyses confirm that the network parameters selected by employing the maximal Q0

criterion also result in a reproducible response to different stimuli, as well as in an effective dis-
crimination between different inputs.

In recent work Ponzi and Wickens [16] noticed that in their model the striatally relevant
regimes correspond to marginally stable dynamical evolution. In the Supporting Information
S1 Text we devote the sub-section Linear stability analysis to the investigation of this specific
point. Our conclusion is that for our model the striatally relevant regimes are definitely chaotic,
but located in proximity of a transition to linearly stable dynamic (see also S3 Fig). However
for inhibitory networks it is known that even linearly stable networks can display erratic
dynamics (resembling chaos) due to finite amplitude perturbations [34–37]. This suggests that
the usual linear stability analysis, corresponding to the estimation of the maximal Lyapunov
exponent [38], is unable to distinguish between regular and irregular evolution, at least for the
studied inhibitory networks [37].

Physiological relevance for biological networks under different
experimental conditions
Carrillo et al.[11] considered a striatal network in vitro, which displays sporadic and asynchro-
nous activity under control conditions. To induce spatio-temporal patterned activity they per-
fused the slice preparation with N-methyl-D-aspartate (NMDA) providing tonic excitatory
drive and generating bursting activity [39, 40]. The crucial role of the synaptic inhibition in
shaping the patterned activity in striatal dynamics was demonstrated by applying the GABAa

receptor antagonist bicuculline to effectively decrease the inhibitory synaptic effect [11].
In our simple model, ionic channels and NMDA-receptors are not modeled; nevertheless it is

possible to partly simulate the effect of NMDA administration by increasing the excitability of the

Fig 8. Computational capability of the network. Characterization of the firing activity of the network, obtained as response to three consecutive inputs
presented in succession. a) Percentage of the variance of the neuronal firing activity reproduced by each of the first 10 principal components. The inset
displays the corresponding cumulative percentage as a function of the considered component. Filled black and shaded red (bar or symbols) correspond to τα
= 20 ms and τα = 2 ms, respectively. Projection of the neuronal response along the first three principal components for b) τα = 20 ms and c) τα = 2 ms. Each
point in the graph correspond to a different time of observation. The three colors denote the response to the three different inputs, which are quenched
stimulation currents randomly taken as I(j) 2 [Vth, Vth + ΔV] for j = 1, 2, 3, the experiment is then performed as explained in the text.

doi:10.1371/journal.pcbi.1004778.g008
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cells in the network, and the effect of bicuculline by an effective decrease in the synaptic strength.
We examined whether these assumptions lead to results similar to those reported in [11].

In our model the single cell excitability is controlled by the parameter Ii. The computational
experiment consists in setting the system in a low firing regime corresponding to the control

conditions with IðcÞ ¼ fIðcÞi g 2 ½�53; � 49:5	mV and in enhancing, after 20 seconds, the sys-

tem excitability to the range of values IðeÞ ¼ fIðeÞi g 2 ½�60; � 45	mV, for another 20 seconds.
This latter stage of the numerical experiment corresponds to NMDA perfusion in the brain
slice experiment. The process is repeated several times and the resulting raster plot is coarse
grained as explained in Methods (sub-section Synchronized Event Transition Matrix).

From the coarse grained version of the raster plot, we calculate the Network Bursting Rate
(NBR) as the fraction of neurons participating in a burst event in a certain time window.
Whenever the instantaneous NBR is larger than the average NBR plus two standard deviations,
this is identified as a synchronized bursting event (as shown in Fig 9(a) and 9(f)). In Fig 9(b) we
plot all the neurons participating in a series of Ss = 20 synchronized bursting events. Here the
switching times between control conditions and the regimes of increased excitability are
marked by vertical dashed lines. Due to the choice of the parameters, the synchronized events
occur only during the time intervals during which the network is in the enhanced excitability
regime. Each synchronized event is encoded in a binary N dimensional vectorWs(t) with 1 (0)
entries indicating that the corresponding neuron was active (inactive) during such event. We
then measure the similarity among all the events in terms of the Synchronized Event Transition
Matrix (SETM) shown in Fig 9(c). The SETM is the normalized scalar product of all pairs of
vectorsWs registered in a given time interval (for more details see Methods). Furthermore,
using the SETM we divide the synchronized events into clusters according to an optimal clus-
tering algorithm [41] (see Methods). In the present case we identified 3 distinct states (clusters):
if we project the vectorsWs, characterizing each single synchronized event on the two dimen-
sional space spanned by the first two principal components (C1, C2), we observe a clear divi-
sion among the 3 states (see Fig 9(d)). It is now important to understand whether the cells
firing during the events classified as a state are the same or not. We observe that the groups of
neurons recruited for each synchronized event corresponding to a certain state largely overlap,
while the number of neurons participating to different states is limited. As shown in Fig 9(e),
the number of neurons participating in a certain state is of the order of 40–50, while the coac-
tive neurons (those participating in more than one state) ranges from 12 to 25. Furthermore,
we have a core of 9 neurons which are firing in all states. Thus we can safely identify a distinct
assembly of neurons active for each state.

As shown in Fig 9(c), we observe that the system alternates its activity among the previously
identified cell assemblies. In particular, we have estimated the transition probabilities from one
state to any of the three identified states. We observe that the probability to remain in state 2 or
to arrive to this state from state 1 or 3 is quite high, ranging between 38 and 50%, therefore this
is the most visited state. The probability that two successive events are states of type 1 or 2 is also
reasonably high ranging from’ 29–38% as well as the probability that from state 1 one goes to
2 or viceversa (’ 38–43%). Therefore the synchronized events are mostly of type 1 and 2, while
the state 3 is the less attractive, since the probability of arrving to this state from the other ones
or to remain on it once reached, is between 25–29%. If we repeat the same experiment after a
long simulation interval t’ 200 s we find that the dynamics can be always described in terms of
small number of states (3–4), however the cells contributing to these states are different from the
ones previously identified. This is due to the fact that the dynamics is in our case chaotic, as we
have verified in S1 Text (Linear Stability Analysis). Therefore even small differences in the initial
state of the network, can have macroscopic effects on sufficiently long time scales.
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Fig 9. Response of the network to an increase in the excitability. a,f) Network Bursting Rate, and the
threshold defined for considering a synchronized event. b,g) Neurons involved in the synchronized events,
vertical lines denoted the switching times between the excited I(e) and control I(c) inputs. Colors in the raster
indicates the group assigned to the synchronous event using an optimal community partition algorithm. c,h)
Synchronized Event Transition Matrix, calculated with a window TW = 50 ms and number of events Ss = 20. d,
i) Projection of the synchronized events in the 2D space spanned by the first two principal components
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To check for the effect of bicuculline, the same experiment is performed again with a much
smaller synaptic coupling, namely g = 1, the results are shown in Fig 9(f)–9(j). The first impor-
tant difference can be identified in higher NBR values with respect to the previous analyzed
case (g = 8) Fig 9(f). This is due to the decreased inhibitory effect, which allows most of the neu-
rons to fire almost tonically, and therefore a higher number of neurons participate in the burst-
ing events. In Fig 9(g) a highly repetitive pattern of synchronized activity (identified as state 2,
blue symbols) emerges immediately after the excitability is enhanced. After this event we
observe a series of bursting events, involving a large number of neurons (namely, 149), which
have been identified as an unique cluster (state 1, red symbols). The system, analogously to
what shown in [11], is now locked in an unique state which is recurrently visited until the
return to control conditions. Interestingly, synchronized events corresponding to state 1 and
state 2 are highly correlated when compared with the g = 8 case, as seen by the SETM in Fig 9
(h). Despite this, it is still possible to identify both states when projected on the two dimen-
sional space spanned by the first two principal components (see Fig 9(i)). This high correlation
can be easily explained by the fact that the neurons participating in state 2 are a subset of the
neurons participating in state 1, as shown in Fig 9(j). Furthermore, the analysis of the transition
probabilities between states 1 and 2 reveals that starting from state 2 the system never remains
in state 2, but always jumps to state 1. The probability of remaining in state 1 is high’ 64%.
Thus we can affirm that in this case the dynamics are dominated by the state 1.

To determine the statistical relevance of the results presented so far, we repeated the same
experiment for ten different random realizations of the network. The detailed analysis of two of
these realizations is reported in S7a–S7h Fig (see also S1 Text). We found that, while the number
of identified states may vary from one realization to another, the consistent characteristics that
distinguish the NMDA perfused scenario and the decreased inhibition one, are the variability in
the SETM and the fraction of coactive cells. More precisely, on one hand the average value of
the elements of the SETM is smaller for g = 8 with respect to the g = 1 case, namely 0.54 versus
0.84, on the other hand their standard deviation is larger, namely 0.15 versus 0.07. This indicates
that the states observed with g = 1 are much more correlated with respect to the states observable
for g = 8, which show a larger variability. The analysis of the neurons participating to the differ-
ent states revealed that the percentage of neurons coactive in the different states passes from
51% at g = 8 to 91% at g = 1. Once more the reduction of inhibition leads to the emergence of
states which are composed by almost the same group of active neurons, representing a domi-
nant state. These results confirm that inhibition is fundamental to cell assembly dynamics.

Altered intrastriatal signaling has been implicated in several human disorders, and in partic-
ular there is evidence for reduced GABAergic transmission following dopamine depletion [42],
as occurs in Parkinson’s disease. Our simulations thus provide a possible explanation for obser-
vations of excessive entrainment into a dominant network state in this disorder [23, 43].

Discussion
In summary, we have shown that lateral inhibition is fundamental for shifting the network
dynamics from a situation where a few neurons, tonically firing at a high rate, depress a large
part of the network, to a situation where all neurons are active and fire with similar slow rates.
In particular, if inhibition is too low, or too transient, a winner takes allmechanism is at work

associated to the covariance matrix of the vectorsWs. e,j) Number of coactive cells in each state. The
diagonal elements of the bar graph represents the total number of neurons contributing to one state. Panels
(a-e) correspond to g = 8, while panels (f-j) depict the case g = 1. In both cases the system is recorded during
the time span required to identify Ss = 20. Remaining parameters as in Fig 1.

doi:10.1371/journal.pcbi.1004778.g009
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and the activity of the network is mainly mean-driven. By contrast, if inhibition has realistic
strength and duration, almost all the neurons are on average sub-threshold and the dynamical
activity is fluctuation-driven [30].

Therefore we can reaffirm that the MSN network is likely capable of producing slow, selec-
tive, and reproducible activity sequences as a result of lateral inhibition. The mechanism at
work is akin to the winerless competition reported to explain the function of olfactory networks
for the discrimination of different odors [44]. Winnerless competition refers to a dynamical
mechanism, initially revealed in asymmetrically coupled inhibitory rate models [45], displaying
a transient slow switching evolution along a series of metastable saddles (for a recent review on
the subject see [46]). In our case, the sequence of metastable states can be represented by the
firing activity of the cell assembly, switching over time. In particular, slow synapses have been
recognized as a fundamental ingredient, along with asymmetric inhibitory connections, for
observing the emergence of winnerless competition in realistic neuronal models [47, 48].

We have introduced a new metric to encompass in a single indicator key aspects of this pat-
terned sequential firing, and with the help of this metric we have identified the parameter
ranges for best obtaining these dynamics. Furthermore, for these parameters the network is
able to respond in a reproducible manner to the same stimulus, presented at different times,
while presenting complex computational capability by responding to constant stimuli with an
evolution in a high dimensional space [33].

Our analysis confirms that the IPSP/IPSC duration is crucial in order to observe bursting
dynamics at the single cell level as well as structured assembly dynamics at the population
level. A reduction of the synaptic time has been observed in symptomatic HD mice [20]. In our
model this reduction leads single neurons towards a Poissonian behaviour and to a reduced
level of correlation/anticorrelation among neural assemblies, in agreement with experimental
results reported for mouse models of HD [21].

In summary, we have been able to reproduce general experimental features of MSN net-
works in brain slices [11]. In particular, we observed a structured activity alternating among a
small number of distinct cell assemblies. Furthermore, we have reproduced the dynamical
effects induced by decreasing the inhibitory coupling: the drastic reduction of the inhibition
leads to the emergence of a dominant highly correlated neuronal assembly. This may help
account for the dynamics of Parkinsonian striatal microcircuits, where dopamine deprivation
impairs the inhibitory feedback transmission among MSNs [23, 42]. Network models such as
the one presented here offer a path towards understanding just how pathologies that affect sin-
gle neurons lead to aberrant network activity patterns, as seen in Parkinson’s and Huntington’s
diseases, and this is an exciting direction for future research.

Methods

The model
We considered a network of N LIF inhibitory neurons coupled via α pulses, which can be rep-
resented via the following set of 3N equations.

_v iðtÞ ¼ ai � vðtÞ � gEiðtÞ ð2Þ

_EiðtÞ ¼ PiðtÞ � aEiðtÞ i ¼ 1; � � � ;N ð3Þ

_PiðtÞ ¼ �aPiðtÞ þ
a2

K

X
njtn<t

Ci;jdðt � tnÞ : ð4Þ
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In this model vi is the membrane potential of neuron i, K denotes the number of pre-synaptic
connections, g> 0 is the strength of the synapses, the variable Ei accounts for the past history
of previous recurrent post-synaptic potentials (PSP) that arrived to the neuron i at times tn,
and Pi is an auxiliary variable. ai is the external excitation and α is inversely proportional to the
decaying time of the PSP. The inhibition is introduced via the minus sign in front of the synap-
tic strength in Eq (2). The matrix Ci;j is the connectivity matrix where entry i, j is equal to 1 if

there exists a synaptic connection from neuron j to neuron i. When the membrane potential of
the q-th neuron arrives to the threshold vth = 1, it is reset to the value vr = 0 and the cell emits
an α-pulse pα(t) = α2 t exp(−αt) which is instantaneously transmitted to all its post-synaptic
neurons. The α-pulses are normalized to one, therefore the area of the transmitted PSPs is con-
served by varying the parameter α.

The Eqs (2) to (4) can be exactly integrated from the time t = tn, just after the delivery of the
n-th pulse, to time t = tn + 1 corresponding to the emission of the (n+1)-th spike, thus obtaining
an event driven map[27, 49] which reads as

Eiðnþ 1Þ ¼ EiðnÞe�atðnÞ þ PiðnÞtðnÞe�atðnÞ ð5Þ

Piðnþ 1Þ ¼ PiðnÞe�atðnÞ þ Ciq

a2

K
ð6Þ

viðnþ 1Þ ¼ viðnÞe�tðnÞ þ að1� e�tðnÞÞ � gHiðnÞ ; ð7Þ

where τ(n) = tn+1−tn is the inter-spike interval associated with two successive neuronal firing in
the network, which can be determined by solving the transcendental equation

tðnÞ ¼ ln
a� vqðnÞ

a� gHqðnÞ � 1

" #
; ð8Þ

here q identifies the neuron which will fire at time tn+1 by reaching the threshold value vq(n+1) =
1.

The explicit expression for Hi(n) appearing in Eqs (7) and (8) is

HiðnÞ ¼ e�tðnÞ � e�atðnÞ

a� 1
EiðnÞ þ

PiðnÞ
a� 1

� �

� tðnÞe�atðnÞ

a� 1
PiðnÞ :

ð9Þ

The model is now rewritten as a discrete-time map with 3N−1 degrees of freedom, since one
degree of freedom vq(n + 1) = 1, is lost due to the event driven procedure, which corresponds
to performing a Poincaré section at any time a neuron fires [49].

The model so far introduced contains only adimensional units, however, the evolution
equation for the membrane potential Eq (2) can be easily re-expressed in terms of dimensional
variables as follows

tm _V ið~tÞ ¼ Ii � Vjð~tÞ � tmG~Eið~tÞ i ¼ 1; � � � ;N ; ð10Þ

where we have chosen τm = 10 ms as the membrane time constant in agreement with the values
reported in literature for MSNs in the up state in rodents [50–52], Ii represents the neural
excitability and the external stimulations, which takes in account the cortical and thalamic

inputs received by the striatal network. Furthermore, ~t ¼ t � tm, the field ~Ei ¼ Ei=tm has the
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dimensionality of frequency and G of voltage. The currents {Ii} have also the dimensionality of
a voltage, since they include the membrane resistance.

For the other parameters/variables the transformation to physical units is simply given by

Vi ¼ Vr þ ðVth � VrÞvi ð11Þ

Ii ¼ Vr þ ðVth � VrÞai ð12Þ

G ¼ ðVth � VrÞg ð13Þ

where Vr = −60 mV, Vth = −50 mV. The isolated i-th LIF neuron is supra-threshold whenever

Ii> Vth, however due to the inhibitory coupling the effective input isWi ¼ Ii � tmG~Ei. There-

fore, the neuron is able to deliver a spike ifWi > Vth, in this case the firing of the neuron can

be considered as mean-driven. However, even ifWi < Vth, the neuron can be lead to fire from
fluctuations in the effective input and the firing is in this case fluctuation-driven. It is clear that
the fluctuations σ(Wi) are directly proportional to the strength of the inhibitory coupling for
constant external currents Ii. The dynamics of two neurons will be equivalent whenever they

have equal time averaged effective inputsWi. In order to measure the similarity of their
dynamics we introduce the following metrics

eij ¼ 1� jWi �Wjj
maxijjWi �Wjj

; ð14Þ

this quantity will be bounded between one and zero: the one (zero) denoting maximal (mini-
mal) similarity.

For the PSPs the associated time constant is τα = τm/α, and the peak amplitude is given by

APSP ¼
a
K
Ge�1 ¼ g � 92 mV ; ð15Þ

where the last equality allows for a direct transformation from adimensional units to dimen-
sional ones, for the connectivity considered in this paper, namely K = 20, and for α = 0.5,
which is the value mainly employed in our analysis. The experimentally measured peak ampli-
tudes of the inhibitory PSPs for spiny projection neurons ranges from’ 0.16–0.32 mV [7] to
’ 1–2 mV [28]. These values depend strongly on the measurement conditions a renormaliza-
tion of all the reported measurements nearby the firing threshold gives for the PSP peak
’ 0.17–0.34 mV [9]. Therefore from Eq (15) one can see that realistic values for APSP can be
obtained in the range g 2 [2: 10]. For α = 0.5 one gets τα = 20 ms, which is consistent with the
PSP duration and decay values reported in the literature for inhibitory transmission among
spiny neurons [7, 31]

Our model does not take in account the depolarizing effects of inhibitory PSPs for V� Ecl
[28]. The GABA neurotransmitter has a depolarizing effect in mature projection spiny neu-
rons, however this depolarization does not lead to a direct excitation of the spiny neurons.
Therefore our model can be considered as encompassing only the polarizing effects of the PSPs
for V> Ecl. This is the reason we have assumed that the membrane potential varies in the
range [−60: −50] mV, since Ecl ’ −60 mV and the threshold is’ −50 mV [28].

In the paper we have always employed dimensional variables (for simplicity we neglect the
tilde on the time variable), apart from the amplitude of the synaptic coupling, for which we
have found more convenient to use the adimensional quantity g.

Cell Assembly Dynamics of Sparsely-Connected Inhibitory Networks

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004778 February 25, 2016 21 / 29



Characterization of the network activity
We define active neurons, as opposed to silent neurons, as cells that deliver a number of spikes
larger than a certain threshold SΘ = 3 during the considered numerical experiments. In particu-
lar, we show in S1 Fig that the value of the chosen threshold does not affect the reported results
for 0� SΘ� 100.

Characterization of the dynamics of the active neurons is performed via the coefficient of
variation CV, the local coefficient of variation CV2 and the zero lag cross-correlation matrix of
the firing rates C(νi, νj). The coefficient of variation associated to the i-th neuron is then defined
as the ratio:

CV ðiÞ ¼ sðISIðiÞÞ
ISIðiÞ

;

where σ(A) and A denotes the standard deviation and mean value of the quantity A. The distri-
bution of the coefficient of variation P(CV) reported in the article refers to the values of the CV
associated with all the active cells in the network.

Another useful measure of spike statistics is the local coefficient of variation. For each neu-
ron i and each spike emitted at time tðiÞn from the considered cell the local coefficient of varia-
tion is measured as

CV ðiÞ
2 ðnÞ ¼ jISIðiÞn � ISIðiÞn�1j

ISIðiÞn þ ISIðiÞn�1

where the n-th inter-spike interval is defined as ISIðiÞn ¼ tðiÞn � tðiÞn�1. The above quantity ranges
between zero and one: a zero value corresponds to a perfectly periodic firing, while the value

one is attained in the limit ISIðiÞn =ISIðiÞn�1 ! 0 (or ISIðiÞn =ISIðiÞn�1 ! 1). The probability distribu-

tion function P(CV2) is then computed by employing the values of the CV ðiÞ
2 ðnÞ for all the active

cells of the network estimated at each firing event.
The level of correlated activity between firing rates is measured via the cross-correlation

matrix C(νi, νj). The firing rate νi(t) of each neuron i is calculated at regular intervals ΔT = 50
ms by counting the number of spikes emitted in a time window of 10ΔT = 500 ms, starting
from the considered time t. For each pair of neuron i and j the corresponding element of the
N × N symmetric cross-correlation matrix C(i, j) is simply the Pearson correlation coefficient
measured as follows

Cði; jÞ ¼ covðni; njÞ
sðniÞsðnjÞ

;

where cov(νi, νj) is the covariance between signals νi(t) and νj(t). For statistical consistency this
is always calculated for spike trains containing 107 events. This corresponds to time intervals
TE ranging from 50 s to 350 s (from 90 s to 390 s) for ΔV = 5 mV (ΔV = 1 mV) and g 2
[0.1,12]. We have also verified that the indicators entering in the definition of the metrics Q0,
namely n�, the average coefficient of variation hCViN and σ(C), do not depend on the duration
of the considered time windows, provided these are sufficiently long. Namely, we observe that
asymptotic values are already obtained for spike trains containing more than 50,000 events.
This amounts to TE ranging between 250 ms and 2 s for the considered parameter values.
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State Transition Matrix (STM) and measure of dissimilarity
The STM is constructed by calculating the firing rates νi(t) of the N neurons at regular time
intervals ΔT = 50 ms. At each time t the rates are measured by counting the number of spikes
emitted in a window 2ΔT, starting at the considered time. Note that the time resolution here
used is higher than the one employed for the cross-correlation matrix, since we are interested
in the response of the network to a stimulus presentation evaluated on a limited time window.
The firing rates can be represented as a state vector R(t) = {νi(t)} with i = 1,. . ., N. For an exper-
iment of duration TE, we have S = bTE/ΔTc state vectors R(t) representing the network evolu-
tion (b�c denotes the integer part). In order to measure the similarity of two states at different
times tm =m × ΔT and tn = n × ΔT, we have calculated the normalized scalar product

Dðm; nÞ ¼ RðtmÞ � RðtnÞ
jRðtmÞjjRðtnÞj

ð16Þ

for all possible pairsm, n = 1,. . ., S during the time experiment TE. This gives rise to a S × S
matrix called the state transition matrix [53].

In the case of the numerical experiment with two inputs reported in the section Results, the
obtained STM has a periodic structure of period Tsw with high correlated blocks followed by
low correlated ones (see S5b and S5e Fig for the complete STM). In Fig 6(b) we report a coarse
grained version of the entire STM obtained by taking a 4Tsw × 4Tsw block from the STM, where
the time origin corresponds to the onset of one of the two stimuli. The block is then averaged
over r subsequent windows of duration 4Tw, whose origin is shifted each time by 2Tsw. More

precisely the averaged STM Dðm; nÞ is obtained as follows:

Dðm; nÞ ¼ 1

r2
Xr

i;j¼1

Dð4iþm; 4jþ nÞ

8m; n � bTsw=DTc :

ð17Þ

In a similar manner, we can define a dissimilarity metric to distinguish between the response

of the network to two different inputs. We define a control input IðcÞ ¼ fIðcÞi g 2 ½Vth; Vth þ DV 	,
and we register the network state vectors Rc(t) at S regular time intervals for a time span TE. We
repeat the numerical experiment by considering the same network realization and the same ini-

tial conditions, but with a new input Iðf Þ ¼ fIðf Þi g. The external inputs Iðf Þi coincide with the con-
trol ones, apart from a fraction f which is randomly taken from the interval [Vth, Vth+ΔV]. For
the modified input we register another sequence Rf(t) of state vectors on the same time interval,
with the same resolution. The instantaneous dissimilarity df(t) between the response to the con-
trol and perturbed stimuli is defined as:

df ðtmÞ ¼ 1� RcðtmÞ � Rf ðtmÞ
jRcðtmÞjjRf ðtmÞj

ð18Þ

its average in time is simply given by df ¼ 1
S

PS
i¼1 d

f ðtiÞ. We have verified that the average df is

essentially not modified if the instantaneous dissimilarities df(t) are evaluated by considering the
state vectors Rc(ti) and R

f(tk) taken at different times within the interval [0, tS] and not at the
same time as done in Eq (18).

Distinguishability metricQd

Following [16] a metric of the ability of the network to distinguish between two different inputs
ΔMd can be defined in terms of the STM. In particular, let us consider the STM obtained for
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two inputs I(1) to I(2), each presented for a time duration Tsw. In order to define ΔMd the
authors in [16] considered the correlations of the state vector R taken at a generic time tm0

with all the other configurations, with reference to Eq (16) this amounts to examine the ele-
ments D(m0, n) of the STM 8tn. By definingM1 (M2) as the average of D(m0, n) over all the
times tn associated to the presentation of the stimulus I(1) (I(2)), a distinguishablity metric
between the two inputs can be finally defined as

DMd ¼ jM1 �M2j : ð19Þ

In order to take in account the single neuron variability and the number of active neurons
involved in the network dynamics we have modified ΔMd by multiplying this quantity by the
fraction of active neurons and the average coefficient of variation, as follows

Qd ¼ DMd � n� � hCViN : ð20Þ

Synchronized Event Transition Matrix (SETM)
In order to obtain a Synchronized Event Transition Matrix (SETM), we first coarse grain the
raster plot of the network. This is done by considering a series of windows of duration TW = 50
ms covering the entire raster plot. A bursting event is identified whenever a neuron i fires 3 or
more spikes within the considered window. To signal the burst occurrence a dot is drawn at
the beginning of the window. From this coarse grained raster plot we obtain the Network
Bursting Rate (NBR) by measuring the fraction of neurons that are bursting within the consid-
ered window. When this fraction is larger or equal to the average NBR plus two standard
deviations, a synchronized event is identified. Each synchronized event is encoded in the syn-
chronous event vectorWs(t), a N dimensional binary vector where the i-th entry is 1 if the i-th
neuron participated in the synchronized event and zero otherwise. To measure the similarity
between two synchronous events, we make use of the normalized scalar product between all
the pairs of vectorsWs obtained at the different times ti and tj in which a synchronized event
occurred. This represents the element i, j of the SETM.

Principal Components Analysis (PCA)
In the sub-section Discriminative and computational capability, a Principal Component Analy-
sis (PCA) is performed by collecting S state vectors R(t), measured at regular intervals ΔT for a
time interval TE, then by estimating the covariance matrix cov(νi, νj) associated to these state
vectors. Similarly, in the sub-section Physiological relevance for biological networks under differ-
ent experimental conditions the PCA is computed by collecting the Ss synchronous event vec-
torsWs, and the covariance matrix calculated from this set of vectors.

The principal components are the eigenvectors of theses matrices, ordered from the largest
to the smallest eigenvalue. Each eigenvalue represents the variance of the original data along
the corresponding eigendirection. A reconstruction of the original data set can be obtained by
projecting the state vectors along a limited number of principal eigenvectors.

Clustering algorithms
The k-means algorithm is a commonly-used clustering technique in which N data points of
dimensionM are organized in clusters as follows. As a first step a number k of clusters is
defined a-priori, then from a sub-set of the data k samples are chosen randomly. From each
sub-set a centroid is defined in theM-dimensional space. at a second step, the remaining data
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are assigned to the closest centroid according to a distance measure. After the process is com-
pleted, a new set of k centroids can be defined by employing the data assigned to each cluster.
The procedure is repeated until the position of the centroids converge to their asymptotic
value.

An unbiased way to define a partition of the data can be obtained by finding the optimal
cluster division [41]. The optimal number of clusters can be found by maximizing the following
cost function, termedmodularity:

M ¼ 1

Atot

X
ij

Aij �N ij

� �
dðci; cjÞ; ð21Þ

where, A� {Ai, j} is the matrix to be clusterized, the normalization factor is Atot = ∑ij Aij;N ij

accounts for the matrix element associated to the null model; ci denotes the cluster to which the
i-th element of the matrix belongs to, and δ(i, j) is the Kronecker delta. In other terms, the sum
appearing in Eq (21) is restricted to elements belonging to the same cluster. In our specific
study, A is the similarity matrix corresponding to the SETM previously introduced. Further-
more, the elements of the matrixN are given byN ij ¼ ZiZj=Atot , where ηi = ∑j Aij, these corre-

spond to the expected value of the similarity for two randomly chosen elements [54, 55]. If two
elements are similar than expected by chance, this implies that Aij > N ij, and more similar

they are larger is their contribution to the modularityM. Hence they are likely to belong to the
same cluster. The problem of modularity optimization is NP-hard [56], nevertheless some heu-
ristic algorithms have been developed for finding local solutions based on greedy algorithms
[57–60]. In particular, we make use of the algorithm introduced for connectivity matrices in
[54, 61], which can be straightforwardly extended to similarity matrices by considering the
similarity between two elements, as the weight of the link between them [62]. The optimal par-
tition technique is used in the sub-section Physiological relevance for biological networks under
different experimental conditions, where it is applied to the similarity matrix S ij ¼ 1� E ij

where the distance matrix E ij ¼
kxpi �x

p
j k2

max ðEÞ. Here xpi is the vector defining the i
th synchronized

event projected in the first p principal components, which accounts for the 80% of the
variance.

Supporting Information
S1 Text. Silent neurons, mechanisms for the resurgence of silent neurons, linear stability
analysis, State Transition Matrices for different regimes, Synchronized Event Transition
Matrices and number of coactive cells for different network realizations.
(PDF)

S1 Fig. Dependence of the value n� on the chosen threshold SΘ. Fraction of active neurons n�

vs the synaptic strength, for several threshold definitions. A neuron is considered silent when-
ever it does not spike at least SΘ-times during the observation time. Panel a) for ΔV = 1 mV
and b) for ΔV = 5 mV. The system is left to evolve during 107 spikes, after discarding 105 spike
events of transient. Other parameters used in the simulation: K = 20, N = 400 and τα = 20ms.
(PDF)

S2 Fig. Neuronal statistics.Neuronal distributions of the average ISI (a,d), of the coefficient of
variation CV (b,e) and of the average effective synaptic inputWi (c,f). The data in the first row
are for ΔV = 1 mV and in the second one for ΔV = 5 mV. For ΔV = 1 mV (ΔV = 5 mV) black
solid line with filled circles correspond to g = 1 (g = 4) and red dashed lines with open squares to
g = 4 (g = 10). Insets of (a,d) and (c,f), same as the main figure in a lower g regime: g = 0.4 (g = 1)

Cell Assembly Dynamics of Sparsely-Connected Inhibitory Networks

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004778 February 25, 2016 25 / 29

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pcbi.1004778.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pcbi.1004778.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pcbi.1004778.s003


for ΔV = 1 mV (ΔV = 5 mV). The system is left to evolve during 107 spikes, after discarding 105

spike events. Other parameters used in the simulation: K = 20,N = 400 and τα = 20 ms.
(PDF)

S3 Fig. Linear stability analysis. a) Maximal Lyapunov exponent λ at a fixed τα = 20, as a func-
tion of the synaptic strength for ΔV = 1 mV (continuous line, filled circles) and ΔV = 5 mV
(dashed line, empty squares). b) Maximal Lyapunov exponent λ as a function of the pulse dura-
tion τα for the parameters {ΔV,g} = {1 mV,4} (continuous line with filled circles) and {5 mV,8}
(dashed line with empty squares). In both panels, the blue filled square indicates the triad
{ΔV,g,τα} = {5 mV,8,20 ms}, and the red filled circle to {ΔV,g,τα} = {1 mV,4,20 ms}; these values
are associated to the maximum values of Q0 obtained for excitability distributions with fixed
width ΔV. The tangent space Eq (S17) is evolved during a period corresponding to 106 spikes,
after discarding a transient of 105 spikes. Other parameters used in the simulation: K = 20,
N = 400.
(PDF)

S4 Fig. Metrics of the structured activity vs synaptic time decay. a) Metrics entering in the
definition of Q0 and their dependence from τα. From top to bottom: Averaged coefficient of
variation hCViN, standard deviation of the cross-correlation matrix σ(C), and the fraction of
active neurons n�. b) ΔMd as a function of τα. The system is left to evolve during 107 spikes,
after discarding 105 transient spike events. Parameters here used ΔV = 5 mV, g = 8, K = 20,
N = 400.
(PDF)

S5 Fig. Two stimuli presentation.Upper panel, another realization of the network with the
same parameters as chosen in the main text and τα = 20ms. Lower panel, network with τα = 2ms.
From left to right it is depicted the raster plot colored according to the k-means algorithm with
k = 25, vertical lines indicates the change of the presented stimulus. In the middle column is
reported the state transition matrix calculated over a time span of 20 seconds (the stimulation
protocol is repeated 5 times). Rightmost column reports the state transition matrix for a block 4
s × 4 s averaged over r = 5 successive presentations of the inputs.
(PDF)

S6 Fig. Pattern Separation. Dissimilarity measure in time for an observation window of length
a) TE = 2 s and b) TE = 10 s, for two values of τα = 20 ms (black circles) and τα = 2 ms (red
squares) at a fixed value of f = 0.2. It is clearly observed that τα = 20 ms more effectively differ-
entiates the similar inputs in both observation windows, as seen by the larger values of dissimi-
larity respect to the τα = 2ms. The initial increase of df(t) observable for τα = 20 ms in panel (a)
is probably due to the fact that the dynamics for this choice of parameters is chaotic as shown
in the Linear stability analysis sub-section. Therefore the increase can be associated to a tran-
sient evolution towards the final attractor. Other parameters used: ΔT = 50 ms, g = 8, N = 400,
K = 20.
(PDF)

S7 Fig. Response of the network to an increase in the excitability. Two different realizations
of the numerical experiment reported in the subsection Physiological relevance for biological
networks under different experimental conditions of the main text. First (third) column reports
two realizations of the SETM estimated for g = 8 (g = 1). Second (fourth) column displays the
number of coactive cells in the corresponding cases for g = 8 (g = 1). The other parameters for
the reported simulations are ΔV = 5 mV, K = 20, N = 400.
(PDF)
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