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The development of various dynamic ansatz-constructing techniques has ushered in a new era, making the
practical exploitation of Noisy Intermediate-Scale Quantum (NISQ) hardware for molecular simulations
increasingly viable. However, such ansatz construction protocols incur substantial measurement costs
during their execution. This work involves the development of a novel protocol that capitalizes on
regenerative machine learning methodologies and many-body perturbation theoretical measures to
construct a highly expressive and shallow ansatz within the variational quantum eigensolver (VQE)
framework with limited measurement costs. The regenerative machine learning model used in our work
is trained with the basis vectors of a low-rank expansion of the N-electron Hilbert space to identify the
dominant high-rank excited determinants without requiring a large number of quantum measurements.
These selected excited determinants are iteratively incorporated within the ansatz through their low-rank
decomposition. The reduction in the number of quantum measurements and ansatz depth manifests in
the robustness of our method towards hardware noise, as demonstrated through numerical applications.
Furthermore, the proposed method is highly compatible with state-of-the-art neural error mitigation
techniques. This resource-efficient approach is quintessential for determining spectroscopic and other
molecular properties, thereby facilitating the study of emerging chemical phenomena in the near-term
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1 Introduction

Quantum computing platforms provide an elegant solution to the
formidable task posed by the exponential growth of the Hilbert
space encountered in the realms of many-body physics and
chemistry.’ In recent years, a plethora of state-of-the-art methods
have been developed that aim to produce accurate energies and
wavefunctions for molecular systems utilizing quantum hard-
ware. Leading the pack are the variational algorithms,**” which
rely on the dynamic construction and deployment of shallow
depth parameterized ansatzes to generate the molecular wave-
functions. They are highly suitable for Noisy Intermediate-Scale
Quantum (NISQ)* devices that suffer from limited coherence
time, state preparation and measurement (SPAM) errors, and poor
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gate fidelity. However, most of these methods typically demand
extensive pre-circuit measurements, significantly contributing to
the computational overhead. Additionally, noise from NISQ
architecture can fundamentally alter the design of dynamic
circuits. The selection of operators from the pool and the resulting
unitary operation may deviate significantly from the optimal
outcome as its construction is highly dependent on measure-
ments (which have errors when utilizing NISQ hardware). There-
fore, it is crucial to reduce the utilization of quantum resources
when constructing dynamic ansatzes. In this regard, we should
prioritize using approaches grounded in first principles or aided
by machine learning. These methods have the potential to navi-
gate around any challenges posed by the NISQ architecture,
avoiding potential pitfalls. In this work, we have introduced
a novel approach that combines unsupervised machine learning
(ML) techniques with a first-principles-based strategy rooted in
many-body perturbation theory. The outcome is a dynamically
constructed ansatz that strikes an exceptional balance between
compactness and expressiveness, all achieved without the burden
of extensive pre-circuit measurements. This compact ansatz
provides us with access to molecular energies and wavefunctions,
which are fundamental for accurately assessing various molecular
properties. It enables the exploration of new chemical compounds
and phenomena that are currently beyond the reach of classical
computers.
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The use of neural network-based ML models to represent
quantum states has been widespread in the realm of classical
many-body theories and error mitigation protocols.”*** The
ability of these models to proactively learn the intricate inter-
relation between different basis functions that span the N-
electron Hilbert space corresponding to a quantum state can be
leveraged to generate its low complexity representation in
quantum computers. The learned state, often called the neural
quantum state (NQS), forms the backbone of neural quantum
state tomography (NQST)** and neural error mitigation®® (NEM).
This manuscript entails the utilization of a Restricted Boltz-
mann Machine (RBM),*** a powerful regenerative ML model,
to construct an expanded wavefunction in terms of the domi-
nant many-body basis after learning the correlation from what
may be ascribed as the “primary excitation subspace”. Simple
many-body perturbative measures intimately guide this process.
The generated ansatz corresponding to this expanded wave-
function further involves the inclusion of a suite of two-body
operators with an effective one hole-one particle excitation —
the so-called scatterers - resulting in an extremely low-depth yet
highly expressive ansatz. Additionally, our method can be effi-
ciently integrated with NEM, enhancing its efficacy for NISQ
implementation.

In section 2.1, we briefly introduce the RBM's functioning
and the generative process deployed to produce the dominant
contributors (many-body basis) for the wavefunction expansion.
In section 2.2, we set the background for the disentangled
Unitary Coupled Cluster (dUCC) ansatz** and Variational
Quantum Eigensolver (VQE),* which will be used to generate
and optimize the wavefunction. In section 2.3, we introduce an
innovative protocol that combines RBM and second-order
Moller-Plesset perturbation theory (MP2) to craft a compact
ansatz, leveraging the use of scatterer operators.

2 Theory

2.1 Restricted Boltzmann machine (RBM): a brief overview

Characterizing a correlated wavefunction as a neural network
model has been widely embraced as an effective strategy to miti-
gate its inherent complexity. Within this framework, the neural
network's weights and biases, distributed across distinct layers,
effectively encode the diverse contributions of various bases to the
given wavefunction. In light of this, a regenerative neural network
can effectively generate the dominant contributors to a wave-
function by training on an initial approximate state of the given
system. To implement this approach, we utilize the Restricted
Boltzmann Machines (RBMs). They are probabilistic graphical
models that can be interpreted as stochastic neural networks.
RBM comprises two layers, a visible and a hidden layer. This
topology is depicted in Fig. 1. The visible layer (v; € {0, 1}) corre-
sponds to observations from the training data, which comprises
the binary vector representation of the basis expansion of an
initial approximate wavefunction. A more detailed description of
the form and source of the training dataset can be found in
sections 2.2 and 2.3. The hidden layer (; € {0, 1}) captures the
hidden patterns underlying in-between the components of the
visible layer.
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Fig. 1 Framework of a restricted Boltzmann machine with n hidden
and m visible units. The biases of the visible and hidden layers are
described by {b} and {c} respectively. W,,, represents the weight
matrix for the model. {v;} and {h;} denote the visible and hidden layer
nodes respectively.

To model a probability distribution of m-dimensional
training data in the form of computational basis measure-
ments, an n-dimensional hidden representation of the state is
constructed. A bias is assigned to each visible and hidden unit.
A weight matrix is set to establish a connection between the
visible and the hidden layers, which are of dimensions n x m.
Connections only exist between the visible and hidden units,
not between the units of the same layer. This restriction in the
network topology makes RBMs different from conventional
Boltzmann machines. RBM aims to find the optimal values of
the biases and the weight matrix so that the probability distri-
bution modeled explains the observed data well. RBM
constructs a joint probability distribution for the configuration

W, hy

1 g
p(v,h) = e E0 (1)

V4

where E(v, h) is the energy function and z is the partition
function.

7= Ze—E(\r.h) (2)
vh

E(v, h) is parameterized by the biases and weights. The
parameterized form of E(v, &) is written as

n m

E(v,h) ==Y

=1 j=

m
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The model is trained to minimize E(v, /). To do that, the log
of likelihood function (%) is constructed

_ _ l —E(v,h)
In 2(Qv) = In p(v[Q) = lnzzh:e (4)

where Q represents the model's parameters. The parameters are
optimized by vanishing the gradient of the log-likelihood
function
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where p(h|v) is given as

)

E et
h

(6)

which is nothing but the conditional probability of % given v.

It must be noted that obtaining the derivative of a log-
likelihood function can become intractable. Contrastive Diver-
gence (CD), Persistent Contrastive Divergence (PCD) and
Parallel Tempering (PT) are some of the approximations that are
commonly employed to overcome this.

The model is trained on a collection of binary vectors (rep-
resenting a many-body basis), with their probability distribu-
tion ascertained by measuring an initially prepared
approximate wavefunction. The hidden layers of the model
decipher the correlation existing within this wavefunction.
Once the training is complete, the model generates new binary
vectors, preserving the correlation it learned before. The
generation is accomplished through Gibbs sampling. Starting
from a given binary input vector (v,), a hidden layer represen-
tation () is calculated based on p(%|v,). This, in turn, generates
a new representation of the visible layer based on p(v|A,). This
recursive process generates new binary vectors V. They corre-
spond to the most dominant contributors to the wavefunction
of a given many-fermion system. The exact parametric repre-
sentation of this state is built up using the dUCC ansatz, which
is further variationally optimized. This leads to section 2.2,
where we briefly discuss the composition of the dUCC ansatz
and the variational principle employed to optimize the ansatz
parameters.

2.2 Disentangled unitary coupled cluster ansatz (dUCC) and
variational quantum eigensolver

A trial wavefunction can be generated in a quantum computer
by the action of a parameterized unitary on a reference state

29
() = UO)|2o). 7)

For the dUCC ansatz, this unitary is characterized by a pool
of ordered, non-commuting, anti-hermitian particle-hole
operators ({k}) with the reference state taken to be the single
Hartree-Fock (HF) determinant |®,) = |x;x;...), with xs being
the spin-orbitals. The ansatz can be written as

0(6) = [Je"* 8)

=Ty — %:rt )
(10)

In the above equations, u represents a multi-index particle-
hole excitation structure as defined by the string of creation (&)
and annihilation (&) operators with the indices {i, j, ...}
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denoting the occupied spin-orbitals in the Hartree-Fock state
and {a, b, ...} denoting the unoccupied spin-orbitals. , acts on
the reference state to generate a many-body basis,

&l Po) = [9,) (1)

In a quantum computing framework, the operators
described in eqn (7)-(11) are realized in terms of quantum gates
and computational basis. Required transformations are carried
out using standard mapping techniques. As such, these many-
body bases ({|{®,)}) can also be represented as binary vectors
(or bit strings). In this work, these vectors are often referred to
as configurations.

For all practical applications, the dUCC ansatz is constructed
using only a subset of the total possible excitation operators
(k4). The corresponding parameters are optimized by invoking
variational minimization of the electronic energy.

min(@,| 0" () AU (0)|0.) (12)

In adherence to the Rayleigh-Ritz principle, the variationally
obtained minimum energy gives the upper bound to the exact
ground state energy (E,) for the given molecular Hamiltonian.

(@|T OHTW@)IP) _ (13)
(@,|U"(0)T(0)®,)

The inherent expressibility*® of the chosen ansatz assumes
a pivotal role in generating a trial state that recovers
a substantial amount of correlation energy. It can be achieved
through the incorporation of higher-order excitations («,) in the
ansatz. However, implementing such an ansatz on quantum
hardware requires very deep quantum circuits. In light of the
limitations posed by current quantum devices, the execution of
such circuits becomes unfeasible. Developing novel techniques
to generate a compact and expressive ansatz becomes essential
for practically utilizing quantum computing platforms for
accurate molecular energy calculations.

2.3 Utilization of RBM and many-body perturbation theory
towards the construction of RBM-dUCC

The construction of the dUCC ansatz, utilizing either true hole-
particle or general excitations, gives rise to quantum circuits
with substantial depth. Several sophisticated methodologies
have been developed to incorporate dominant operators exclu-
sively, effectively capturing a significant portion of the many-
fermion correlation effects within a given molecular system.
These protocols rely on quantum measurements at each stage
to dynamically interlace the ansatz. This leads to a considerable
measurement overhead that significantly prolongs the overall
runtime of the procedure on quantum hardware. In this section,
we present a comprehensive method involving judicious utili-
zation of RBM guided by MP2 measures to achieve a compact
and highly expressive ansatz. It encompasses the following
steps:
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2.3.1 Step-1. A low-level wavefunction is constructed on
a quantum device using the shallow disentangled Unitary
Coupled Cluster with Singles and Doubles (dUCCSD) ansatz
(Usp(#)). The parameters are optimized through variational
optimization, resulting in the state |¥sp). To reduce the ansatz
depth, only double excitation operators with associated MP2
values above a threshold (set to be 107° in this work) are
considered while retaining all single excitation operators.

|IIISD> = USD(aopt)‘QDo) (14)

Here, =™ denotes the set of bit strings of length m. Eqn (15)
denotes the expansion of |Wgp) in the computational basis
({Ix)}). During the variational optimization of parameters
associated with Ugp(6), one may choose to do a partial optimi-
zation. As will be evident in the subsequent steps, it is the
relative |Cx|* (egn (21)) that are important and not their exact
values.

2.3.2 Step-2. A new ansatz, denoted as Uipu, is derived
from the probability distribution of |¥sp) (eqn (15)). This ansatz
organizes the excitation operators present in Usp, based on their
associated probabilities (#,), sorted in descending order.
Operators with corresponding probabilities below a selected
threshold of 107> are excluded from the ansatz. The arrange-
ment of excitation operators follows the order of rank two
excitations (denoted by superscript D) first, followed by rank
one (superscript S).

Ut (6) = [..,eﬂgfz e”ﬁs] {..,e"zD?ZD PR (16)
where
{5} — single excitations (17)
and
{k®} — double excitations (18)

The probability order for the singles and doubles operator
blocks independently follows

P> P> (19)
and
P> PP > (20)
where
7 p 2
Pu = '/(’Xu>)“ |CM| (21)

The ground and various excited determinants are mapped
from the many-body basis to the computational basis:

X.) = |&o,)

mapped from

(22)

where
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|®,) = ku|®o) Vi, € Usp (23)

The wavefunction generated using Ugper(6) at this stage
spans what can be called as the primary excitation subspace. An
approximate wavefunction, which only occupies the primary
excitation subspace, captures limited correlation.

2.3.3 Step-3. RBM is trained using the computational basis
bit-strings of the primary subspace ({|X,)} in eqn (22)) and their
probabilities (#°,) incorporated in |¥gp). The HF state is never
taken during training since it has a high associated probability
and may result in improper training.*® Since we are taking only
a subset of the computational basis, these probabilities are
further normalized. This constitutes the training phase where
the ML model deciphers the correlation folded within the
wavefunction. At this point, one may use powerful NEM tech-
niques to learn a better representation of |¥p) if it has errors
folded within it.

2.3.4 Step-4. The trained model produces a set of new
binary vectors in the computational basis. This may include
vectors already present in the training set. We specifically filter
out the bit-strings representing high-rank excitations ({|Y,)})
such as triples, quadruples, etc. These high-rank excited
configurations, such as triples, quadruples, etc., form what we
call the secondary excitation subspace. RBM learns the correla-
tion that exists within the primary excitation subspace and,
accordingly, expands the wavefunction into the secondary one
through the generation of the most significant higher-order
configurations. This is akin to saying that through RBM, we
restrict ourselves to a very small secondary excitation subspace,
which consists of determinants that have the most dominant
contribution to the molecular wavefunction.

RBM: (X)) (|} X.ves ()

{|Y,}) represents the dominant contributors to the secondary
excitation space.

2.3.5 Step-5. The obtained high-rank excitations are
incorporated into Ugpy; using an indirect approach. Instead of
explicitly utilizing the high-rank excitation operators that
directly act on the HF state to span the secondary excitation
subspace, they are induced through the action of scatterers (¢) on
the primary excitation subspace functions generated previously.
This implies that a given high-rank excitation is factorized into
two low-rank operators. The scatterer here needs some more
clarification: the inherent structural characteristics of the scat-
terer enable it to act upon a set of low-rank excited determinants
and generate an excitation manifold of one rank higher. Thus,
the scatterers may be perceived as two-body operators with an
effective hole-particle excitation rank of one. Mathematically,
these operators can be represented as:

EZ. = dldlaa; — a,taja,aﬁz, = d'dja.a, — dldaya, (25)
Here, {i, k, I} € occupied orbitals and {b, c, e} € unoccupied
orbitals. Unlike true excitation operators, they contain occupied
to occupied or unoccupied to unoccupied transition. This
implies that the scatterers have one quasi-hole or quasi-particle
destruction operator. These destruction operators, in turn, act as

© 2024 The Author(s). Published by the Royal Society of Chemistry
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a contractible set of orbitals that results in a non-vanishing
commutator structure with the cluster operators with the
same set of orbitals, giving rise to an effective connected exci-
tation with rank one order higher than that of the cluster
operator. In particular, if ° represents a rank two excitation
operator, its commutator with a suitable scatterer results in the
generation of a rank three excitation operator (k7):
[6, 8] — &" (26)
The scatterers can be configured in a nested commutator
form to generate even higher-order excitations such as
quadruples.

[G1,R°] = &| [62,R°] =&, [02, [31,8°]] =&Y (27)
Here, i°, i¥, and i? represent connected double, triple, and
quadruple excitations, respectively.

Such implicit generation of the high-rank excitations is only
possible when the scatterers possess specific destruction orbital
labels that are common to one of the indices of the cluster
operators such that they satisfy non-commutativity. Let us say
we only account for dominant triples generated by RBM. In that
case, we take suitable non-commuting scatterers that combine
with rank two excitation operators already present in
UShst leading to the desired triples. The appearance of the
high-rank excitations through the nested commutators is
a direct consequence of the disentangled structure of the
unitary (see S2 in the ESIT). Thus, the chosen scatterer and the
excitation operator (with which the scatterer is non-
commutative) are paired up in a factorized manner. After
such incorporation, U8UCC can be written as:

S

Sey oSn 030y g 00Re 0T [oroy PR
ek elifn (e373 e292 g5k |2k (171 @' (28)

The overall depth of Uspsr is greatly reduced due to the

introduction of scatterers and will be evident in the Results and
discussion section.

The interwoven structure of the ansatz that includes high

rank correlation through its decomposition into lower rank
operators is reminiscent of a double exponential (factorized)
coupled cluster ansatz*' and its unitarized variant.” Such
double exponential structure of the waveoperator in terms of
two-body operators is crucial for the exactness of the wave-
function for which the variational minimum analytically
satisfies the contracted Schrodinger equation (CSE)**
a necessary and sufficient condition for the wavefunction to
satisfy the Schrodinger equation. Contrarily, the wave-
functions generated from a single exponential with general-
ized two-body operators**** do not satisfy the CSE.** The CSE
and its anti-hermitian variant (ACSE) leads to the direct
determination of energy and two-electron reduced density
matrices of many-electron molecules*>*® and is shown to be
more expressive and efficient than the UCC ansatz. The ACSE
has been implemented for quantum simulations, both on
simulators and devices**' at the cost of shallow quantum
circuits.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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2.3.6 Step-6. In step-5, the combination of distinct low rank
operators with distinct scatterers may lead to the same high rank
excitation. For example, &} and & may combine with 6; and 4;
to generate the same triple excitation operator k"

6,77 =& (5,77 > %" (29)

The most dominant combination is ascertained by the
largest value of the product of the MP2 measures of the asso-
ciated scatterers, given it exceeds a predefined threshold (set to
10~° here). The higher-order excitation (k" in eqn (29)) is
excluded from the ansatz when no combination meets this
criterion. This approach is based on the rationale that a more
substantial MP2 value of the scatterer enhances its ability to
facilitate connections between the low-rank and high-rank
excitations, which should be from a many-body perturbation
theory viewpoint. Subsequently, the included high-rank excita-
tions are reintroduced to the model (in the form of binary
vectors) for further training. The probabilities for these high-
rank excitations are determined by the product of two factors:
the probability of the double excitation from |¥sp) and the
squared modulus of the MP2 values of the scatterers involved in
creating the desired high-rank excitation. Steps 4 to 6 are iter-
ated with the improved training set until the RBM ceases to
generate new high-rank configurations. This marks the termi-
nation of our protocol. The resultant ansatz (Ungf,[C), which we
will call the RBM-dUCC ansatz, represents the final output of
this protocol.

The expansion of the initial wavefunction to incorporate the
contribution from high-order excitations occurs in steps. First,
we run the sequence of the abovementioned steps, starting from
|Wsp) to target all dominant triply excited configurations. When
RBM does not produce any new such configurations, we stop
the generation procedure. The ansatz, (Ugpu), at this stage, can
be denoted as RBM-dUCCSDTs, where the subscript S on T
signifies that this ansatz generates triply excited configurations
through the utilization of scatterers. It may be noted that while
we focus on generating the secondary subspace through triply
excited configurations at the leading order, a scatterer that is
present later in Ugsse may combine with it to form a quadruply
excited configuration. Although we call our ansatz RBM-
dUCCSDTs, it may still implicitly produce some higher excited
configurations, such as quadruples. This event is fortuitous and
results in higher-than-desired expressibility.

The optimization of the RBM-dUCCSDTy parameters is per-
formed in the VQE framework. The resultant state, which now
expands the secondary subspace, contains dominant triply
excited configurations and may contain higher order excitations
due to fortuitous combinations. This state can be fed to the
protocol described in steps 2 to 6 to further produce explicit
quadruples by constructing RBM-dUCCSDTsQs. This would
require explicit cascades of scatterers as described in eqn (27).
Such a procedure can be continued to make the ansatz even
more expressive. It is to be noted that as the single excitation
operators appear at the end, no scatterer can act on them to
produce redundant configurations. A real quantum device has
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inherent noise, potentially introducing errors in obtaining
|Wsp). However, once a regenerative ML model (such as RBM)
learns the probability distribution, it can mitigate the errors by
employing powerful NEM. As the remaining steps do not involve
any quantum measurement, no additional error accumulates.
The ease of integrating NEM into our method adds to its
elegance.

Before proceeding further, it is important to discuss the
feasibility and costs associated with learning a quantum state
using a neural network, specifically in the context of Step-3 in
our protocol. This process draws parallels with Neural Quantum
State Tomography (NQST),* an efficient machine learning-
based Quantum State Tomography (QST) technique that side-
steps the substantial computational costs of traditional brute-
force QST methods. In their work, Torlai et al.** showcased
the effectiveness of optimal Restricted Boltzmann Machine
(RBM) models in efficiently performing QST for highly entan-
gled states described by over a hundred qubits. Consequently,
our approach, similarly employing RBM to learn the initial
quantum state, holds promise for application in large-scale
systems. Once the machine learning (ML) model is trained, it
deciphers correlations within the learned state and symbolically
generates dominant excited determinants. This generative
process utilizes Gibbs sampling®” to directly generate dominant
determinants based on the weights and biases of visible and
hidden nodes set during training. Importantly, we avoid
exhaustive searches through the entire space of possible
determinants to identify dominance. The symbolic knowledge of
dominant determinants is then used to construct an appro-
priate shallow depth ansatz. Hence, using an optimal RBM
structure in terms of the number of hidden nodes, learning rate,
etc.,” one can efficiently learn an approximate state and accu-
rately generate dominant determinants. Enhancing the effi-
ciency of the generation process involves configuring the model
or its components to preserve the spatial and spin symmetry of
the generated determinants. In our study, as detailed in the
Results and discussion section, we implement tower sampling
to retain spin symmetry. Generating dominant determinants
using RBM is conceptually a variant of selected configuration
interaction. As elucidated by Herzog et al.,** the main challenge
in this RBM-based approach arises from verifying whether the
RBM-generated excited determinants are already incorporated
within the ansatz at a given step. For every proposed determi-
nant, this scales as O(Nge¢®),** with Nge¢ being the number of
determinants already incorporated “within” the ansatz. With
the increase in system size, this does not requisitely approach
the complexity of Full Configuration Interaction (FCI) as Nget
represents the set of dominant configurations, which practically
increases sub-exponentially with the system size, even for highly
correlated systems.

To summarize our procedure, we first obtain a low-level
approximation to the wavefunction (using a low-rank ansatz
such as dUCCSD) from a quantum device and learn the proba-
bility distribution using RBM. The learned wavefunction is now
expanded iteratively with the help of many body perturbative
measures. We end up with a highly compact ansatz capable of
inducing high-order configurations required to describe the
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correlation effects properly. The overview of our procedure is
depicted in Fig. 2. In section 3, we showcase the efficacy of this
method by generating dominant triply excited configurations
starting from a dUCCSD ansatz. Moreover, we describe the
significantly low gate depth of the constructed ansatz. We
consider a variety of molecules at various geometries to carry out
this study, highlighting our method's general applicability.

3 Results and discussion
3.1 Accuracy and cost efficiency of RBM-dUCC

As a demonstration of the remarkable capabilities of Restricted
Boltzmann Machines (RBM) in acquiring the knowledge of
a wavefunction and generating dominant configurations, we
compare the energy accuracy obtained using RBM-dUCCSDTg
with that of conventional dUCCSDT in Fig. 3. The latter consists
of all triples excitations (which is of the order of n,*n,?, where n,
represents the number of occupied orbitals and n, the number
of unoccupied orbitals). We also plot the converged energies
using the conventional dUCCSD ansatz for reference. The
comparison is depicted in Fig. 3 for three molecules viz. H,O,
BH and CH, with their core orbitals frozen. For all calculations,
we have used the orbitals obtained from the restricted Hartree-
Fock method provided by PySCF** using the STO-3G basis set.
The required Jordan-Wigner transformation for the hamilto-
nian and the ansatz is obtained from the qiskit-nature®*
modules. All simulations have been performed on the state-
vector simulator (which mimics a noiseless quantum device)
provided by qiskit. The conventional dUCCSD and dUCCSDT
ansatzes and required MP2 values of the scatterers are also ob-
tained from qiskit modules. All variational optimizations have
been done using a conjugate gradient (CG) optimizer with an
initial point set to zero for all parameters. Of course, one may
choose an initial point of zero only for the parameters associ-
ated with scatterers and set the values of singles and doubles
from the Usp(fope) (eqn (14)). The construction of the RBM has
been carried out using the sklearn modules.®® A detailed
description of this construction, along with its various hyper-
parameters, has been included in the ESI (point S1+).

Apart from the energy accuracy, we also provide the circuit
depth for conventional dUCCSD, dUCCSDT, and RBM-
dUCCSDTs. As can be discerned from Fig. 3, the energy ob-
tained after variationally optimizing RBM-dUCCSDTs is very
close to that obtained using conventional dUCCSDT with
a difference of ¢(107°) Hartree, all while using far fewer CNOT
gates (a measure of circuit depth). The former even has fewer
CNOT gates than conventional dUCCSD. This tremendous
reduction in the number of CNOT gates reflects the high suit-
ability of the RBM-generated ansatz for the NISQ hardware. As
the energy for RBM-dUCCSDT;y is not below the conventional
dUCCSDT for any of the tested systems, the fortuitous genera-
tion of higher-than-desired configurations (that is, beyond
triples) has not occurred here. As we explicitly target triply
excited configurations, another important assessment would be
to check the overlap between the optimized wavefunctions
generated using conventional dUCCSDT and RBM-dUCCSDTg
ansatzes. Thus, we provide the overlap between these two

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 An illustrative flowchart of the protocol used to obtain the shallow and highly expressive RBM-dUCC ansatz.

wavefunctions in Fig. 4. It can be discerned from this plot that
the overlap difference from unity is ¢(107) or less. This indi-
cates the ability of RBM to recognize the dominant triply excited
configurations properly. Additionally, it highlights the efficacy
of MP2 theory in guiding ML predictions.

A comparison of our protocol with the popular ADAPT-VQE®
is presented in Fig. S1 of the ESIL.{ Under the noiseless case, the
ADAPT protocol does produce an exceptionally compact ansatz
capable of capturing large correlation energy (with minutely less
accuracy than RBM-dUCCSDTs). However, the noise present in
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Fig. 3 Energy error from full configuration interaction ((E — Eg¢))) for conventional dUCCSD, conventional dUCCSDT, and RBM-dUCCSDTs at
different geometries of (a) BH, (b) H,O, and (c) CH,. Corresponding CNOT gate counts are provided in (d), (e), and (f), respectively.
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depicted in Fig. 3.

NISQ hardware can impair ADAPT's ability to generate an
optimum ansatz with sufficient expressibility.* This point is
further elaborated in section 3.2. RBM-dUCC construction only
requires measurements during the initial state preparation and,
thereby, is substantially resilient to noise (corroborated by Fig. 5
and Table S1 of the ESIT).

Another challenge that requires scrutiny is the capacity of our
devised method to effectively handle systems characterized by
pronounced multireference traits in their ground states against
other known to be parameter-efficient methods. For this purpose,
we test our protocol on a linear chain Hg (STO-3G) with the nearest
neighbor bond distance set to 2 A. We compare our results with
the k-uCJ ansatz,* which is known for exceptional performance
within multireference systems. As can be discerned from Table 1,
the results produced by RBM-dUCCSDTs are comparable in terms
of variational parameters (an indirect indication of circuit depth)
and accuracy. However, our dynamic methodology possesses the
advantage of tailoring the ansatz based on the specific

correlations inherent in a molecular system. This flexibility is in
contrast to fixed-size ansatzes like k-uCJ, which only consider the
molecular size while building the ansatz. This adaptive nature is
crucial for constructing a shallow depth ansatz while dealing with
low to moderately correlated systems.

3.2 Implementation of RBM-dUCC under noise

The remarkable efficiency of the RBM-dUCC ansatz to produce
highly correlated wavefunctions while employing only a fraction
of CNOT gates has been demonstrated in section 3.1. In this
section, we implement RBM-dUCCSDT; to calculate the ground
state energy using VQE in a noisy backend. To construct this
backend, we incorporate the shot-based estimator* with noise
model imported from IBM's FakeMelbourne. This includes:

1. Single qubit gate errors composed of a depolarizing error
channel followed by the thermal relaxation error channel on the
respective qubit.

— dUCCSD ~——— RBM-dUCCSDTs-2 —— dUCCSDT —— RBM-dUCCSDTs-1
—23.40 +
V i H“'m" Lt T b W i
- i W~1 -'ﬂ[m ?l‘ '»'“ ﬂ wm h. hw

Energy Function Evaluations

Fig.5 Comparison of energy vs. function evaluations for RBM-dUCCSDTs - 1, RBM-dUCCSDTs — 2, dUCCSD, and dUCCSDT for BH (rg_y =2.25
A). The corresponding CNOT gate counts are 1912, 1848, 3896, and 19 640, respectively. Each curve represents the average of data from 20 runs.
For RBM-dUCCSDTs — 1, the initial state was optimized using an SPSA optimizer under noise conditions, as described in section 3.2. The
optimized parameters were obtained by averaging 20 runs of the VQE procedure. The initial noisy state was prepared using these parameters and
fed to RBM to generate the RBM-dUCCSDTs — 1 ansatz.
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Table1 A comparison of variational parameters and accuracy for different methods for He (linear, ryy_y =2 A). Correlation energy error is defined

o B — B
EFCI
corr

, Where E.o,, represents the correlation energy obtained using the ansatz or method described in the superscript

Ansatz used for ground

Number of variational

Error in correlation

state energy evaluation parameters energy (in percentage)
1-uCJ 77 1.40
2-uCJ 154 0.05
RBM-dUCCSDTg 127 0.48

2. Two qubit gate errors composed of a two-qubit depolariz-
ing error channel followed by single qubit thermal relaxation
error on the involved qubits.

3. Single qubit readout-errors on measurement.

Under the same noisy backend, we also provide a compara-
tive performance of conventional dUCCSD and dUCCSDT
ansatzes. For variational optimization of the ansatz parameters,
we use the Simultaneous Perturbation Stochastic Approxima-
tion (SPSA)*” with the maximum iteration set to 500 and the
initial point taken to be zero for all parameters. In general, SPSA
is considered to be a good optimizer under noise as it requires
fewer measurements during the optimization as compared to
CG. The number of shots used to obtain the requisite expecta-
tion values was set to 10 000. To reduce the time of measure-
ment simulations, we levied the normal distribution
approximation on the expectation values.** The resultant
outcomes are portrayed through the graphical representation in
Fig. 5. For this study, we used linear BH (r5_y = 2.25 A). The
large number of CNOT gates in the dUCCSDT ansatz (=19 000)
results in a substantial accumulation of error. This renders the
VQE optimization scheme completely useless. Even in the case
of conventional dUCCSD, the trajectory is not well-behaved and
leads to higher energy. RBM-dUCCSDTs provides the best
results in terms of accuracy and stability. This is a direct effect
of exceptionally few gates in this ansatz. We performed analysis
on two variations of RBM-dUCCSDTs.

1. RBM-dUCCSDT;g - 1: the initial state (|%'sp)) was prepared
under the noise and was used to train RBM. The final ansatz
obtained after the sequence of steps outlined in section 2.3 was
also variationally optimized under the same noise.

2. RBM-dUCCSDTjg - 2: the initial state (|%'sp)) was prepared
with noiseless simulation. However, the final ansatz generated
through RBM was optimized under noise.

For both variations, the accuracy is superior to conventional
dUCCSD. Although we cannot produce a noiseless initial state
in real quantum hardware, our study aims to show the deteri-
orating effect of using a noisy initial wavefunction during the
generation of the RBM-dUCC ansatz. However, in this case, one
can seamlessly use NEM to mitigate the errors and obtain a well-
trained RBM. This would make the red curve (Fig. 5) move down
towards the orange one. One can easily extend NEM to the final
generated ansatz, too. This would further enhance the accuracy.
It must be noted that in the study depicted in Fig. 5, we are not
focussing on the absolute accuracy of the various ansatzes but
their relative behavior on average. One must apply layers of
error mitigation protocols (including NEM) to bring the results

© 2024 The Author(s). Published by the Royal Society of Chemistry

within the chemical accuracies. As the depth of the RBM-dUCC
ansatz is substantially low, the cost overhead when applying
such error-mitigating protocols would, in general, also
decrease.

A standout feature of our methodology lies in its ability to
operate without expectation-value evaluations once an approx-
imate initial state is established. This provides two significant
advantages: it reduces the measurement overhead and becomes
particularly beneficial when considering the inherent errors
associated with measurements on NISQ hardware. Any ansatz
constructing methodology that heavily relies on such expecta-
tion terms to tailor the ansatz would inevitably grapple with
these errors, resulting in a final ansatz that significantly devi-
ates from the ideal one. Hence, an optimal protocol must
generate an ansatz well-suited to the coherence time of NISQ
hardware and achieve this in a manner that minimizes
susceptibility to noise. The protocol expounded in this article
adeptly incorporates both of these essential features as exem-
plified in Fig. 3 and 5. Methods such as ADAPT-VQE,® which
depend on expectation value measurements during ansatz
construction, are highly likely to show some complications
under hardware noise. In the ESI,{ we present a comparison of
the performance between the ADAPT ansatz and RBM-
dUCCSDTs. It is noted that the ADAPT ansatz exhibits some
sensitivity to noise despite generating an impressively shallow
depth ansatz in noiseless simulations. In contrast, RBM-
dUCCSDT; performs consistently well both with and without
noise. For this comparison, we do not use additional error
mitigation techniques.?>%%

4 Conclusions and future outlook

In this study, we have demonstrated the application of
Restricted Boltzmann Machines (RBMs) to acquire a concise
and expressive ansatz specifically tailored to individual mole-
cules at their various nuclear-nuclear separations. Our
approach involves generating dominant configurations starting
from an initial wavefunction derived from a lower-level
approximation. To refine the output obtained from the RBM,
we have employed MP2 measures as filtering criteria. The
resultant configurations are fed back into the RBM, enabling
iterative learning and facilitating the generation of an increas-
ingly accurate expansion of the wavefunction. Furthermore, we
have leveraged the utilization of scatterer operators to incorpo-
rate high-rank excitations, resulting in an ansatz with exceed-
ingly shallow depth. Notably, our methodology circumvents the
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necessity for quantum measurements in all steps beyond the
initial wavefunction approximation. These characteristics
contribute to the exceptional potency of our approach for
implementation within the realm of NISQ devices. A compar-
ison of our method with the well-known ADAPT-VQE and k-uC]J
presented in this work corroborates these advantages. Addi-
tionally, the RBM can be combined with NEM techniques to
effectively mitigate the detrimental impacts of noise inherent in
present-day quantum hardware. Thus, utilizing our protocol,
one can determine accurate molecular wavefunctions and
energies using noisy quantum hardware, which is essential for
understanding the behavior of molecules and materials. A
meticulous examination of the various hyperparameters asso-
ciated with the RBM and their influence on the final ansatz
represents a promising avenue for future investigation.
Furthermore, exploring alternative regenerative models beyond
RBMs holds significant potential in advancing this field of
study.
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