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ABSTRACT: Increasing the rate of penetration (ROP) is an
effective means to improve the drilling efficiency. At present, the
efficiency and accuracy of intelligent prediction methods for the
rate of penetration still need to be improved. To improve the
efficiency and accuracy of rate of penetration prediction, this paper
proposes a ROP prediction model based on Informer optimized by
principal component analysis (PCA). We take the Taipei Basin
block oilfield as an example. First, we use principal component
analysis to extract data features, transforming the original data into
low-dimensional feature data. Second, we use the PCA-optimized
data to build an Informer model for predicting ROP. Finally,
combined with actual data and using the recurrent neural network (RNN) and long short-term memory (LSTM) as baselines, we
perform algorithm performance comparative analysis using root-mean-square error (RMSE), mean absolute error (MAE), and
coefficient of determination (R2). The results show that the average MAE, RMSE, and R2 of the PCA−Informer model are 9.402,
0.172, and 0.858, respectively. Compared with other methods, it has a larger R2 and smaller RMSE and MAPE, indicating that this
method significantly outperforms existing methods and provides a new solution to improve the rate of penetration in actual drilling
operations.

1. INTRODUCTION
The rate of penetration is one of the most effective evaluation
indicators in drilling engineering, directly related to drilling costs
and efficiency.1,2 Currently, rate of penetration (ROP)
prediction mainly relies on the professional knowledge of field
engineers and postdrilling data analysis, and the results are often
quite subjective, lacking reliable analytical basis.3 Accurate
prediction of the rate of penetration can better plan drilling
operations and shorten the drilling cycle. Therefore, it is an
important means for engineers to increase the drilling speed.4,6

The current research on the rate of penetration in drilling can be
divided into the following three stages.5

From the 1950s to the 1990s, themain approach was to obtain
ROP equations by establishing physical models. For example,
the rate of penetration model proposed by Bourgoyne7 laid the
foundation for subsequent research. Walker and Guo et al.8,9

considered rock mechanics and drilling parameters and used
statistical regression methods to derive rate of penetration
equations. Ju et al.10 derived the mathematical relationship
between the rate of penetration and rock drillability through
linear regression analysis of field data. Anemeangely et al.11

utilized evolutionary algorithms to determine the constant
coefficients of the rate of penetration model. Moraveji et al.12

introduced 6 quantities including mechanical parameters,
hydraulic parameters, and rheological parameters to optimize
the rate of penetration equation based on the traditional rate of
penetration equation. Aarsnes et al.13 modified the rate of

penetration prediction model by introducing rock mechanical
parameters, pressure parameters, and hydraulic parameters.
Bilim et al.14 established a mathematical model relating the
uniaxial compressive strength, density, hardness, and porosity of
the rock to the mechanical rate of penetration based on the
drillability of the rock. The aforementioned regression analyses
only covering limited field drilling parameters are restricted to
certain formation types and have low accuracy. At the same time,
reliance on field drilling data severely limits the improvement of
drilling efficiency.
With the development of deep learning, intelligent algorithms

have gradually been applied to the field of ROP prediction. For
example, Yan and Amer et al.15,16 proposed a new method for
predicting the rate of penetration based on artificial neural
network models. Amer et al.17 considered formation changes,
drilling parameters, and bit data and proposed a new method
using an artificial neural network model to predict ROP. Song et
al.18 designed an intelligent ROP prediction based on support
vector machine (SVM) regression. Yu et al.19 used the gradient
boosting decision tree (GBDT) algorithm for predictive
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analysis. Abbas et al.20−22 studied the feasibility of intelligent
algorithm ROP prediction using the support vector regression
(SVR), extreme learning machine (ELM), gradient-boosted
decision tree (GNDT), and other algorithms. Elkatatny et al.23

conducted real-time prediction through an artificial neural
network model. The results showed that the introduced real-
time drilling fluid rheological property prediction model had
high accuracy and can be used for real-time prediction. Elkatatny
and Mahmoud et al.24 utilized multiple measured data points to
train and construct network models. The results showed that
intelligent models not only can be used to predict the rate of
penetration but also have high prediction accuracy.
In addition, Anemeangely and Bajolvand et al.25,26 conducted

rate of penetration prediction using a multilayer perceptron
(MLP) neural network combined with the particle swarm
optimization (PSO) algorithm. Hui et al.27 designed a new
method based on particle swarm optimization of long short-term
memory (LSTM) neural networks to participate in model
prediction. Thesemethods indicate that applying artificial neural
network models for ROP prediction is a feasible and useful
approach. Zhang et al.28 used a principal component analysis-
LSTM (PCA-LSTM) neural network for downhole tool stick−
slip vibration prediction, which effectively suppressed the lag
effect caused by overfitting. Tang et al.29 proposed a new rate of
penetration prediction model based on PCA optimization of the
BP neural network, successfully improving the performance of
drilling operations. These optimization examples illustrate that
parameter optimization is an important means to improve
model performance and also verify the accuracy of PCA in
model parameter optimization. The aforementioned rate of
penetration prediction models mostly only perform simple
correlation analysis on the input parameters, leading to long
model training time, low prediction accuracy, and the problem
of overfitting during the prediction process. In deep
learning,30−34 Informer is a model based on the improved
Transformer for time series prediction. It can handle multitime
scale and irregular time interval data and has good performance
in many prediction domains. It can effectively overcome the
problems of overfitting and long training times in previous
methods.
Previous research has proven the efficiency of PCA in

optimizing intelligent algorithms.35−38 PCA is based on
multivariate statistical analysis and provides powerful data
feature extraction capabilities; therefore, it is often used to solve
various optimization problems. In this paper, we use PCA to
extract the principal components of the dataset, effectively
reducing the dimensionality of the data, saving a significant
amount of computation time, and improving the efficiency of
dataset utilization.
To address the issues with the existing rate of penetration

prediction methods, we combine the prediction advantages of
the PCA and Informer models. In this method, we use PCA to
obtain the relevant feature indicators from the original data,
input them into the Informer model for ROP prediction, and
perform a comparative analysis of the prediction results before
and after optimization. It is verified that the Informermodel after
PCA optimization has higher prediction accuracy and shorter
training time. This method helps drilling engineers achieve
ultralong ROP prediction, providing support for optimizing
drilling operations and shortening the drilling cycle.
The main contribution of this article is that it combines the

advantages of PCA in feature analysis and the strengths of the
Informer model. We propose a ROP prediction method based

on PCA combined with the Informer model. Compared with
other models and the prediction results of the Informer model
before and after optimization, the optimized PCA−Informer
model has advantages in both efficiency and accuracy. This
introduces a new method for predicting oil engineering-related
parameters.
Figure 1 shows the workflow of our proposed method. It

includes four main stages: data processing, model construction,
model training, and result evaluation.

2. DATA PROCESSING
2.1. Data Selection. The factors affecting the rate of

penetration are mainly divided into uncontrollable factors and
controllable factors. Uncontrollable factors are determined by
the natural geological environment, such as rock strength,
drillability, and sanding volume.39−41 Controllable factors
mainly include three categories: mechanical parameters, drilling
fluid parameters, and hydraulic parameters. This paper uses
drilling data from a well section in the Taipei Basin block, with a
total of 2365 datasets. The while-drilling (Figure 2) parameters
include the well depth (Depth), acoustic time difference (DT), γ
(GR), formation density (ZDEN), pore pressure (PP), weight
on bit (WOB), bit speed (BRS), well diameter (CAL), pump
displacement (PD), pump pressure (Pumpp), drilling fluid
density (DFD), and rate of penetration (ROP). Table 1
summarizes the basic information on these parameters,
including the unit, minimum value, maximum value, and average
value of each parameter.
In the process of drilling in deep and complex formations, the

drilling rate exhibits an increasingly sensitive trend due to the
variation in attribute values. Therefore, it is essential to fully
utilize drilling data to construct an efficient drilling rate
prediction model applicable to complex formations. Hence,
we chose to employ PCA to perform dimensionality reduction
on the original data, selecting parameters with strong
correlations for training purposes.
2.2. Dimensionality Reduction and Correlation Anal-

ysis.During the process of deep and complex formation drilling,
due to the variation of property values, the mechanical rotational
speed exhibits an increasingly sensitive trend, so it is necessary to
perform relevant processing of the drilling data. In the previous
methods, the selection of relevant parameters for ROP
prediction was often arbitrary or correlation analysis was simply
conducted to select some parameters to participate in model
training, which affected the integrity of the original information.

Figure 1. Forecasting workflow diagram.
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Based on the advantages of principal component analysis
(PCA) in high-dimensional data processing, it can be used to
perform dimensionality reduction on the original data,
representing the high-dimensional drilling parameters with a
low-dimensional matrix linear expression. While the principal
components that best represent the original data are determined,

the loss of original data information can be minimized as much
as possible.
Using PCA to screen the principal components affecting the

rate of penetration involves four steps.42,43 The first step is
standardization, which can ensure that the difference in the
magnitudes of different property data will not affect the
cumulative variance contribution rate. The standardization
expression is defined as
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Figure 2. Raw collection data.

Table 1. Partial Drilling Data

parameter unit minimum maximum average

depth m 2100 4379 3239.5
DT μs/ft 66.13 90.02 78.07
GR API 61.53 100.48 81.00
ZDEN g/cm3 2.19 2.67 2.43
Pp g/cm3 1.04 1.05 1.05
CAL in 20.87 24.70 22.79
WOB KN 38 45 41.5
BRS r/min 73 120 96.5
PD L/s 36 37 36.5
Pumpp MPa 17 18 17.5
DFD g/cm3 1.2 1.52 1.36
ROP m/h 1.76 9.80 5.78

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.3c10339
ACS Omega 2024, 9, 23822−23831

23824

https://pubs.acs.org/doi/10.1021/acsomega.3c10339?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c10339?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c10339?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c10339?fig=fig2&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.3c10339?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


where Xij′ is the processed data in the ith row and jth column, Xij
is the sample value in the ith row and jth column, X̅j denotes the
mean of the jth column, m represents the number of original
data, and n is the dimensionality of the original data.
The second step is to solve the covariance matrix Rn×n of the

original data matrix and calculate the corresponding eigenvalues
and eigenvectors.44 The calculation process is

= =×
=

R x
n

X X X XCov( )
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The calculation of the eigenvalues λ1 ≥ λ2 ≥ ··· ≥ λn ≥ 0 and the
corresponding eigenvectors of the covariance matrix Rn×n is as
follows
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The third step is to calculate the contribution rate R and
cumulative contribution rate RS using the following formulas.
The calculated results of the eigenvalues, variance contribution
rate, and cumulative variance contribution rate of the original
data are shown in Table 2.
The fourth step is to select the principal components and

analyze their significance. In practical applications, the principle
for selecting the principal components is when the cumulative
variance contribution rate reaches 80%.45 The ith principal
component is

= + + ··· + = ···F a X a X a X i j n( , 1, 2, , )i i i ji j1 1 2 2 (5)

From Table 2, we can see that the cumulative contribution
rate of the first 5 principal components reaches 93.84%. it is
considered reasonable to only take the first 5 principal
components to represent the original data characteristics,
according to formula 5.
The first principal component F1 has moderate positive

loadings on WOB and BRS and a moderate negative loading on
PD, while the loadings on the remaining variables are relatively
small. Therefore, F1 can be termed the mechanical parameter
component. The second principal component F2 has a relatively
large positive loading on Pp, while the loadings on the remaining
variables are relatively small. Therefore, F2 can be termed the
pressure factor component. The third principal component F3

has a relatively large positive loading on PD and a moderate
negative loading on Pp, while the loadings on the remaining
variables are relatively small. Therefore, F3 can be termed the
hydraulic parameter component. The fourth principal compo-
nent F4 has a relatively large positive loading on DFD and a
relatively large negative loading on CAL, and the loadings on the
remaining variables are relatively small. Therefore, F4 can be
termed the drilling fluid parameter component. The fifth
principal component F5 has relatively large positive loadings
on Depth and CAL, a moderate negative loading on GR, and a
large negative loading on the remaining variables, relatively
small. Therefore, F5 can be termed as the formation factor
component.
The calculation results of the original dataset are shown in

Table 3.

3. PREDICTION MODEL
3.1. InformerModel.The Informer model was proposed by

Zhou in 2020.46 Its main feature is the ability to adaptively
capture the long-term dependencies and multiscale patterns in
time series data. The Informer model adopts a multilevel self-
attention mechanism, which allows the model to consider the
input data with weighted attention based on the different
features and contextual information on the data.
The overall architecture of the Informer model (Figure 3)

consists of an encoder and a decoder. The encoder is used to
capture the features of the original input sequence, while the
decoder is used to generate the sequence prediction results.
After the input parameters undergo masked multihead
probabilistic sparse self-attention processing, they undergo
multihead self-attention operations with the feature mapping

Table 2. Correlation Coefficient Matrix eigenvectors

feature vectors λ1 λ2 λ3 λ4 λ5 λ6 ··· λ11
depth(X1) 0.05 0.15 0.07 0.07 0.74 0.65 ··· 0.05
GR(X2) 0.33 −0.44 0.34 −0.13 −0.57 0.23 ··· −0.54
WOB(X3) 0.43 −0.33 0.20 −0.21 −0.34 −0.35 ··· 0.27
BRS(X4) 0.49 0.24 0.15 −0.44 0.18 −0.21 ··· −0.04
Pp(X5) −0.06 0.58 −0.48 −0.21 0.15 0.07 ··· 0.56
DFD(X6) 0.26 −0.03 0.01 0.67 −0.14 −0.42 ··· −0.47
PD(X7) −0.40 0.10 0.84 0.05 −0.28 −0.79 ··· 0.01
CAL(X8) 0.15 0.21 0.41 −0.71 0.71 0.52 ··· 0.36
ZDEN(X9) 0.04 0.14 −0.03 0.27 −0.35 −0.15 ··· −0.51
DT(X10) 0.26 0.24 0.07 0.11 0.14 0.06 ··· 0.07
Pumpp(X11) −0.12 0.14 −0.25 0.16 0.28 −0.24 ··· 0.14
eigenvalues 3.66 1.51 1.12 0.78 0.55 0.31 ··· 0.17
contribution rate/% 50.3 16.38 11.22 7.24 5.11 3.23 ··· 2.21
cumulative contribution rate/% 50.3 66.68 77.9 85.14 90.25 93.48 ··· 100

Table 3. Results after Dimensionality Reduction of the
Original data

principal component

example F1 F3 F2 F4 F5

1 0.297 1.274 3.912 1.354 2.312
2 0.284 1.411 2.902 1.235 2.641
3 0.198 1.340 2.870 1.479 2.511
4 0.354 1.212 2.783 1.315 2.931
5 0.157 1.089 2.744 1.011 2.130
⋮ ⋮ ⋮ ⋮ ⋮ ⋮
2365 2.521 0.534 1.068 0.475 1.301
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output from the encoder and finally obtain the output through a
fully connected layer.
3.1.1. Encoder. The Informer encoder (Figure 4) can process

longer sequential inputs under memory usage constraints. It
consists of multiple levels, and each level includes a multihead
ProbSparse self-attention module and a “Distilling” module.
The ProbSparse self-attention module in the Informer

encoder is used to select more important queries (Q) from the
input, improving the computation efficiency. The calculation
formula is as follows47,48

=
i
k
jjjjj

y
{
zzzzzQ K V

Q K
d

Vattention ( , , ) softmax
T

(6)

Q (query), K (key), and V (value) are matrices of the same
size obtained by linear transformation with weight matrices of
input features; Q is obtained after probabilistic sparsification;
softmax is the activation function; and d represents the
dimension.

The “Distilling” module is a generalization of one-dimen-
sional convolution and max-pooling operations. As a result of
the multihead probabilistic sparse self-attention, the feature
mapping of the encoder contains redundant combinations of the
V values. To reduce the network size, the “distillation” operation
is used to privilege the dominant high-level features.The
“Distilling” operation formula from layer j to layer j + 1 is
shown as formula 749,50

= [ ]+X XMaxPool(ELU(Convld( )))j j
t

1 AB (7)

[•]AB is an attention block containing multiple probabilistic self-
attention and elementary operations; Conv1d(*) represents
one-dimensional convolution along the time dimension; ELU is
the activation function; and MaxPool is the maximum pooling
operation.

3.1.2. Decoder. The Informer model adopts a standard
decoder structure, which is composed of two stacked identical
multihead attention layers internally. At the same time, in order
to alleviate the rapid drop in speed in long sequence prediction

Figure 3. Informer model structure.

Figure 4. Informer’s encoder.
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problems, Informer adopts a generative inference structure with
masking, that is, the input vector contains part of the original
sequence data and placeholder (which can be initially set to 0)
for the target prediction sequence.
3.2. PCA−Informer ROP Prediction Model. Tradition-

ally, most ROP prediction methods have relatively simple data
preprocessing, leading to long training times and low prediction
accuracy. PCA is an effective method for extracting features from
complex data with good performance and has been used to solve
complex optimization problems in various fields.
After research, we set (explanation in Section 4.2) the

Informer to include a 4-layer stack and a 1-layer stack in the
encoder as well as a 2-layer decoder. The Adam optimizer is used
for optimization, with the learning rate starting from 0.001 and
halving every epoch.
3.3. Model Predictive Performance Evaluation. In order

to more reasonably evaluate the model performance, this paper
adopts root-mean-square error (RMSE), mean absolute error
(MAE), and coefficient of determination (R2) as evaluation
metrics. The calculation steps are given by eqs 8−10. RMSE
reflects the precision of the prediction, with a smaller value
indicating that the predicted value is closer to the true value.
MAE reflects the average difference between the predicted and

actual values. R2 is used to measure the goodness of fit of the
model, with a larger value (closer to 1) indicating higher
prediction accuracy.

= *
=n

x xRMSE
1

( )
i

n

i i
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where xi is the predicted value; xi* is the original value; *xi is the
average of the original values; and n is the total number of test
samples.

4. RESULTS AND DISCUSSION
4.1. Result Discussion and Analysis. To verify the

performance of the PCA−Informer model, we take the Taipei
Basin block oilfield as an example and use different models to

Figure 5. Accuracy of the model on the training set before and after PCA optimization.

Figure 6. Prediction results of all methods on the test set.
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predict the ROP of this well. The logged data from the drilled
section are used as the training set to predict the ROP for the
next 200 m depth interval.
In Figure 5, we compare the accuracy of the Informer training

set before and after optimization. It can be observed that the
prediction accuracy of 0.963 for the optimized Informermodel is
greater than 0.932 before optimization, indicating that PCA
achieved good optimization results in model parameter
optimization. Figure 6 shows the prediction results of different
models on the test set. The black curve represents the original
data, and the other colors represent the prediction results of the
test set using different models. It can be seen that the difference
between the predicted values and the true values for the PCA-
optimized Informer model is significantly smaller than that of
othermodels. Figure 7 shows the distribution of predicted values

on the test set. It can be seen that the predicted values of PCA−
Informer are generally closer to the original values, with the
predictions being more concentrated and stable.
Table 4 summarizes the evaluation results of all methods on

the dataset, with the best results shown in boldface. We can
observe the following: (1) the proposed PCA−Informer model
significantly improves the inference performance (number of
accurate predictions) on the dataset, and as the prediction range
continues to increase, the prediction error rises steadily,
indicating that the PCA−Informer model is successful in
predicting the rate of penetration. (2) The performance of the
PCA−Informer model is significantly better than that of RNN
and LSTM, with an average RMSE reduction of 35 and 29.9%,
respectively, compared to these methods. (3) Compared to the
single Informer model, the RMSE of our method is reduced by
11.8%. This indicates that PCA can better optimize the input
parameters and improve the prediction accuracy of the model.
4.2. Parameter Sensitivity Analysis. We propose

analyzing the parameters of the PCA−Informer model. In
Figure 8(a), it can be observed that when the prediction
sequence is 48, increasing the input length of the encoder/

decoder will decrease the model performance, but further
increasing it will lead to a decrease in the RMSE, as it brings
repetitive short-term ROP patterns. However, when the
prediction sequence is 96, the longer the input, the lower the
RMSE because a longer encoder input contains more depend-
ency information, while a longer decoder has richer local
information.
At the same time, we studied the effect of the number of

encoder stacks on the model in Figure 8(b). We found that
longer stacks are more sensitive to the input. We chose to
connect a 4-layer stack and a 1-layer stack as the most robust
strategy.
4.3. Computational Efficiency. In order to select the best

implementation from all models, we performed a strict runtime
comparison in Figure 9. In the training stage, the PCA−Informer
method achieved the best training efficiency. In the testing stage,
our method was much faster than the other methods in
generative decoding. This shows that the Informer model
optimized by PCA has a shorter training time and a higher
runtime efficiency.

5. CONCLUSIONS
This paper proposes a ROP prediction method based on PCA
and the Informer neural network. When constructing the model,
we use the PCA algorithm to optimize the input parameters of
Informer. The following are our conclusions:

1. For the oilfield in the Taipei Sag Basin, by adopting the
principal component analysis method, 5 principal
components were selected, which can cover 90.25% of
the original data characteristics. This can effectively
reduce the dimensionality of the data, save a lot of
computation time, and improve the utilization efficiency
of the dataset.

2. Based on the PCA−Informer neural network, a
mechanical drilling rate prediction model was established,
which compared to RNN, LSTM, and Informer reduced
the root-mean-square error by 34.8, 29.7, and 11.7%,
respectively, reduced the mean absolute percentage error
by 31.8, 22.1, and 6.9%, respectively, and improved the
coefficient of determination by 20, 11.7, and 7.6%,
respectively, indicating that the PCA−Informer model
has higher prediction accuracy and more stable error
changes.

3. The four models compared show that the Informer model
optimized with the PCA algorithm has the shortest
running time in both the training and testing stages,
indicating that the method we proposed is highly efficient
with fast iteration speed.

The PCA−Informer model we proposed can help drilling
engineers improve drilling operations and shorten the drilling
cycle. In future work, the authors will further explore the

Figure 7. Distribution of predicted values for the models.

Table 4. Comparison of Model Evaluation Metrics

methods RNN LSTM informer PCA−informer

metric MAE RMSE R2 MAE RMSE R2 MAE RMSE R2 MAE RMSE R2

24 10.451 0.154 0.785 10.123 0.153 0.812 8.104 0.101 0.898 9.054 0.121 0.813
48 11.301 0.262 0.793 9.524 0.241 0.841 10.121 0.147 0.836 9.326 0.125 0.864
72 16.848 0.263 0.648 14.313 0.231 0.705 10.620 0.254 0.733 9.546 0.213 0.871
96 16.546 0.376 0.634 14.322 0.354 0.712 11.581 0.276 0.721 9.681 0.227 0.885
average 13.787 0.264 0.715 12.071 0.245 0.768 10.107 0.195 0.797 9.402 0.172 0.858
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application of the model in other petroleum-related fields and
attempt to apply other prediction methods to the prediction of
drilling parameters. In addition, the authors will also consider
the combination of themodel with real-time data to achieve real-
time optimization of the drilling process.
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■ NOMENCLATURE
depth drilling depth, m
DT formation acoustic transit time, μs/ft
GR γ, API
ZDEN formation density, g/cm3

Pp formation pore pressure, g/cm3

WOB weight on bit, KN
BRS bit speed, r/min

Figure 8. Parameter Sensitivity of Components in Informer.

Figure 9. Total runtime in the training/testing stage.
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CAL well diameter, in
PD pump displacement, L/s
Pumpp pump pressure, MPa
DFD drilling fluid density, g/cm3

ROP rate of penetration, m/h
ProbSparse method to reduce the number of parameters

while maintaining model performance
self-attention capturing sequence relationships through

relevance analysis
Convld operation that extracts features or performs

filtering on a 1D data sequence
MaxPool operation that extracts the maximum values

from the input feature map
Q (query) model needs to focus on, dimensionless
K (key) model needs to correlate, dimensionless
V (value) model needs to output, dimensionless
Softmax/ELU neural network activation function
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