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Abstract

Copy number variation (CNV) is a major driving factor for genetic variation and phenotypic

diversity in animals. To detect CNVs and understand genetic components underlying stress

related traits, we performed whole genome re-sequencing of pooled DNA samples of 20

birds each from High Stress (HS) and Low Stress (LS) Japanese quail lines using Illumina

HiSeq 2×150 bp paired end method. Sequencing data were aligned to the quail genome and

CNVnator was used to detect CNVs in the aligned data sets. The depth of coverage for the

data reached to 41.4x and 42.6x for HS and LS birds, respectively. We identified 262 and

168 CNV regions affecting 1.6 and 1.9% of the reference genome that completely over-

lapped 454 and 493 unique genes in HS and LS birds, respectively. Ingenuity pathway anal-

ysis showed that the CNV genes were significantly enriched to phospholipase C signaling,

neuregulin signaling, reelin signaling in neurons, endocrine and nervous development,

humoral immune response, and carbohydrate and amino acid metabolisms in HS birds,

whereas CNV genes in LS birds were enriched in cell-mediated immune response, and pro-

tein and lipid metabolisms. These findings suggest CNV genes identified in HS and LS birds

could be candidate markers responsible for stress responses in birds.

Introduction

Understanding the evolutionary process that leads to divergence in animals requires study of

their genetic variation. Genomic variation is a principal factor responsible for phenotypic

diversity in animals [1]. Basically, genomic variation can encompass a wide range of alterations

from small indels to sometimes deletion or duplication of the entire genome. The deletion or

duplication of a certain fragment of DNA causes change in copy number variation (CNV) of

genome [2]. CNV is arbitrarily defined as DNA segment that is 1 kb or larger and present at

variable copy number in comparison to a reference genome [3]. It is estimated that DNA

region that have CNV can account for 4.8–9.5% of human genome and surpass the diversity

caused by single nucleotide polymorphisms [4, 5].
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Due to their larger sizes and abundances, CNVs are likely to impact functions of many

genes and consequently fitness in animals [6]. So far four different mechanisms have been pro-

posed for the formation of CNVs i.e. non-allelic homologous recombination (NAHR), non-

homologous end joining (NHEJ), Fork Stalling and Template Switching (FoSTeS) and Retro-

transposition [7]. CNVs potentially exert phenotypic diversity in animals through changes in

gene structure, gene dosage, and gene expression by exposing recessive alleles [8] or indirectly

through the perturbation of regulatory region of genes [9]. Their impacts on individuals can

be adaptive or maladaptive in different environmental conditions [10].

Several studies have identified CNVs associated with phenotypic variations and complex

disorders in human, such as schizophrenia, developmental delay, mental retardation, autism,

systemic lupus erythematosus, diabetes, obesity, psoriasis, neuroblastoma and susceptibility to

HIV infection [11–13]. Phenotypic diversity associated with CNV has also been characterized

in various domestic animals. The pea-comb phenotype characterized by decrease in comb size

in male and female chickens is due to duplication of the first intron of sex determining region

Y (SRY)-box5 (Sox5) gene [14]. Late feathering phenotype in chicken is due to partial duplica-

tion of prolactin receptor (PRLR) and sperm flagellar 2 (SPEF2) genes [15]. Similarly excessive

black pigmentation phenotype in chickens is due to duplication of 130 kb locus containing

endothelin 3 (EDN3) gene [16]. White coat phenotypes in sheep and pigs are due to duplica-

tions of agouti signaling protien (ASIP) and KIT proto-oncogene receptor tyrosine kinase

(KIT) genes respectively [17, 18]. Dorsal hair ridge in Rhodesian and Thai dogs and their sus-

ceptibility to dermoid sinus is caused by duplication of fibroblast growth factors (FGF3, FGF4,

and FGF19) and oral cancer overexpressed 1 (ORAOV1) genes [19]. CNVs have also been

reported to be associated with disease resistance and developmental disorders in animals. Loss

of MHC class I antigen-presenting proteins are associated with Marek’s disease resistance in

chicken [20]. Gain of class II major histocompatibility complex transactivator (CIITA), a

trans-activator of MHC II is associated with nematode resistance in cattle [21]. Likewise, cone-

rod dystrophy 3 [22], startle diseases in dogs [23], and osteopetrosis, abortion and stillbirths in

cattle have been linked to CNV [24, 25]. From these findings we hypothesize that CNVs can be

important biomarkers for phenotypic traits or disease resistance in animals.

In this study we have performed CNV analysis in whole genome re-sequenced data of high

and low stress lines of Japanese quail with a specific focus to identify full length genes within

CNV regions (CNVRs). These genes could be relevant for divergence and adaptation of the

two lines of quail. Two genetically distinct line of Japanese quail named as high stress (HS) and

low stress (LS) were selected for divergent plasma corticosterone response to restraint stress in

the 1980s [26]. Since then these two lines have been used as stress responding animal models

in poultry. In LS line, the mean corticosterone level is approximately one-third lower com-

pared to HS line. As compared to HS line, LS line is less fearful and more social. It has higher

body weight and egg production ability, and reduced heterophil/lymphocyte ratio. It shows

lower stress-induced osteoporosis, accelerated onset of puberty, and heightened male sexual

activity and efficiency compared to HS line [26, 27].

Currently four basic strategies such as read pair, read-depth, split-read and sequence assem-

bly are being used for CNV detection in next generation sequencing data. We used the soft-

ware tool CNVnator [28] that works under read-depth approach as the most suitable method

to detect CNVs in our data and address our hypothesis. CNVnator is suggested to have many

advantages over other methods with respect to accurate CNV detection, precise break point

resolution, and detection of different sizes of CNVs, from a few hundred bases to several mega-

bases in the whole genome. In addition, CNVnator has high sensitivity (86–96%), low false dis-

covery rate (3–20%) and high genotyping accuracy (93–95%) [28, 29]. In this this study we
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have detected major differences in CNV among genes that might potentially contribute to

genetic differences and phenotypic divergence in HS and LS lines of Japanese quail.

Materials and methods

Ethics statement

This study was conducted following the recommended guidelines for the care and use of labo-

ratory animals for the National Institutes of Health. All procedures for animal care were per-

formed according to the animal use protocols that were reviewed and approved by the

University of Arkansas Institutional Animal Care and Use Committee (IACUC Protocol

#14012).

Birds and DNA sequencing

The early process of development and selection of HS and LS lines of Japanese quail for their

plasma corticosterone response to immobilization for up to 12 generations was explained by

Satterlee and Johnson (1988) [26]. Since then, an independent random mating condition has

been used for their maintenance [30–32]. These research lines were shipped to University of

Arkansas at generation 44 from Louisiana State University and maintained at Arkansas Agri-

cultural Experimentation Station, Fayetteville, AR [27].

We used adult male HS and LS birds for this study because of their stable physiology. We

collected blood samples (3ml) from 20 birds each from HS and LS lines. Genomic DNA was

purified from each sample using QiaAmp DNA mini kit (Qiagen, Hilden, Germany) following

manufacturer’s method. DNA quality was assessed using NanoDrop 1000 (Thermo Scientific,

Waltham, MA) and agarose gel electrophoresis. Twelve samples showing highest quality per

line were pooled to represent each line. Library preparation and Illumina sequencing for the

pooled DNA samples were performed by the Research Technology Support Facility at Michi-

gan State University (East Lansing, MI) using Illumina HiSeq 2×150 bp paired end read

technology.

Data quality assessment and sequence assembly

We used the FastQC tool (v0.11.6) to assess the quality of raw reads obtained after sequencing

in form of FASTQ files (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). After

quality assessment, the low quality reads were trimmed out using Trimmomatic tool (v0.32)

[33]. The clean reads were then mapped onto the Japanese quail reference genome obtained

from NCBI (https://www.ncbi.nlm.nih.gov/genome/113) using Bowtie2 (v2.3.3.1) with the

default settings for the parameters [34]. We removed PCR duplicates using rmdup command

line of SAMtools (v0.1.19) and SAMtools was further used to convert SAM to BAM files and

then to sorted BAM files to save run time in subsequent analysis [35].

CNV detection and copy number estimation

We used CNVnator software (v0.3.3) to predict CNV in sorted BAM files relative to reference

quail genome [28]. Optimal bin sizes of 1200 and 1500 were chosen for HS and LS respectively

according to author’s recommendations, in which the ratio of average read-depth signal to its

standard deviation was between 4 and 5 [1, 28, 36]. All the CNV calls in both HS and LS sam-

ples were greater than 1 kb. CNV calls were filtered according to criteria recommended by

Abyzov et al. [28] CNV showing P-value <0.01 (e-val1 calculated using t-test statistics), size

>1 kb, and q0< 0.5 (q0: fraction of mapped reads with zero quality) were filtered and used for

downstream analysis.
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We estimated gene copy number (CN) in HS and LS birds across genome length using the

“-genotype” option of CNVnator. We wrote a custom bash script and retrieved CNV genes from

CNVRs of HS and LS lines using RefSeq genes from NCBI and BEDOPS tool (v2.4.30) [37].

Real time quantitative PCR validation of CN

Real time quantitative PCR (qPCR) was used to validate CNVs detected by CNVnator in 16

birds each from HS and LS lines. A total of 9 genes showing CNV were randomly chosen and

primers were designed using Primer3 software and listed in Table 1.

Primers specificities were checked using Primer-BLAST tool of NCBI. A segment of the β-

actin gene, which is present in two copies per diploid and showed no CNV in either line of

quail, was chosen as control in all reactions. Five nanogram of genomic DNA was subjected to

qPCR (total volume of 25 μL) in triplicate reactions using ABI prism 7500HT system (Thermo-

Fisher Scientific) with PowerUp SYBER Green Master Mix (ThermoFisher Scientific). The

conditions of real-time qPCR amplification were as follows: 1 cycle at 95˚C (10 min), 40 cycles

at 95˚C (15 s each), followed by 60˚C for 1 min. We used ΔΔCt method for calculating relative

copy number of each gene. First, the cycle threshold (Ct) value of each gene was normalized

against the control gene, and then ΔCt value was determined between test gene and reference

gene predicted as normal copy number by CNVnator. Finally values around 3 or above were

considered as duplications or gain and around 1 or less as deletion or loss.

Functional annotation of CNV genes and network identification

We analyzed genes retrieved from CNVRs in terms of gene ontology and molecular networks

using Ingenuity Pathway Analysis (IPA; http://www.ingenuity.com). We imported lists of

unique genes identified in CNVRs of HS and LS lines of quail into IPA separately and subse-

quently mapped to their corresponding annotations in the Ingenuity Pathway Knowledge

Base. IPA identifies networks accommodating these unique genes in comparison with compre-

hensive global network. IPA illustrates each molecular network with an assigned relevance

score, the number of focus molecules, and top functions of the network. During analysis, we

set each network to the limit of 35 molecules by default and only human was chosen for the

species option. We used experimentally observed evidence for the confidence level. Finally the

identified networks were presented as network graphs that show biological relationship

among molecules. Molecules in network graphs are represented by nodes, distinguished by

their shapes based on their functional category, and are connected by distinct edges based on

interaction among molecules.

Table 1. Primers used for validation of CNV by qPCR. β-actin was used as internal control for qPCR.

Gene Forward Reverse size

NPTN TGTCTGCACTGCCTATCAAG ACGTTGTGTTTCCCATGGTA 158 bp

UBA7 TTGAACTCATCACGAGCCCA TTTGGTGTCCCATCCCATCT 140 bp

RPHA AACAGCAGGAAGCTGGGAAT TCTGCAGGTGCAGCAATGCT 140 bp

CACNG2 TAGAGGAGGATCCACTCAGA ACAGGATGTGCCAGACCTGA 140 bp

LRRC16B TCTGCTTGGGATTCCACTGA AGACTGGGCAACCATCTCTA 160 bp

PCF11 ACAGACCTCTTCCAGTCTAG ATACATCCACCACTGCCCTT 124 bp

CBFA2T2 AGAGGATATCTGCTGGTAAC GAGCACGTACTTCAGGTAGA 142 bp

PIH1D3 TGCTGCTGTGACGTGGAATT GAGACTTGCCAACGTTCTGA 140 bp

FAM219A ACAGCAGAGATACAGCAGAG TTGTTGGAGCCCTGCTATTA 140 bp

β-Actin CTCCTCCTCCCACCCATTTC GCAGGGACTTCCTTTGTCCC 121 bp

https://doi.org/10.1371/journal.pone.0214543.t001
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Results and discussion

Genome re-sequencing and distribution of CNVs

We performed whole genome resequencing of pooled DNA samples from 12 birds each from

HS and LS lines of the quail and produced ~250 and ~257 million reads of 150 bp respectively.

Of those, ~85 and ~84 million reads were mapped to the reference genome (NCBI/Coturnix
japonicia) and their respective depth of coverage reached to ~41x and ~42x for HS and LS

(Table 2).

We used CNVnator tool to call CNVs from the mapped data and considered calls (deletions

or duplications)�1 kb length in our analysis which makes more reliable to detect CNVs when

used CNVnator [28]. We chose CNVnator tool because it works based on read-depth

approach with a concept that the depth of coverage of a genome is positively correlated with

copy number of that region [38]. Furthermore, CNVnator can detect large CNVRs with maxi-

mum sensitivity even at low coverage, and the reliability of a CNV call actually increases with

the size of event [28, 38, 39].

A total of 262 and 168 CNVRs were identified in HS and LS lines, respectively. Among

these, 235 were deleted and 27 duplicated CNVRs in HS, and 148 deleted and 20 duplicated

CNVRs in LS lines (Table 3).

The distribution of deletions and duplications over different chromosomes of the quail

genome is shown in Fig 1. Interestingly, there were no CNVRs in chromosome 6 and 16 of LS

line but were present in HS line. The number of CNVRs in each chromosome was propor-

tional to its length. Replication and recombination based mechanisms have been suggested as

possible events for the CNVs formation across genome of an organism. The recombination

rate is higher in longer DNA; therefore it can be the reason for more CNVRs present in large

chromosomes in our study [8, 40]. The chromosome 16 in chickens has the major histocom-

patibility complex (MHC) genes that encode key proteins regulating aspects of immune

response [41]. A study by Huff et al. reported HS birds more susceptible to Salmonella species

as compared to LS birds [27]. Therefore, the deletion event detected in chromosome of 16 of

HS birds might be the cause for more susceptibility of HS birds to diseases.

We found fewer copy numbers with zero state deletions i.e. the genes are completely

deleted, compared to one state deletion in both HS and LS lines of quail (S1 Table), which was

similar to that observed in chickens [42]. The deletions outnumber duplications by a ratio of

8.70:1 in HS and 7.4:1 in LS (Table 3), which is consistent with previous studies where more

deletion events were discovered as compared to duplications [43]. The length of CNVRs ran-

ged from 6.0–1341.6 kb in HS and 7.5–1101 kb in LS lines (Fig 2). The total length of deleted

CNVRs accounted for 13.8 Mb in HS and 17.02 Mb in LS lines. Similarly, the total lengths of

duplicated CNVRs were 1.32 Mb in HS and 1.15 Mb in LS lines. The average lengths of

CNVRs were ~50 kb in HS and ~100 kb in LS lines (Table 3). The CNVRs covered 1.6 and

1.9% of quail genome in HS and LS, respectively. We found the amount of quail genome

affected by CNVs similar to that reported for chickens (1.42%, 2.61%) [40, 44], dogs (1.08%)

[45], and Holstein cattle (1.61%) [46] but lower than in swine (4.23%) [47], mice (6.87% or

8.15%) [42] and human (5.9%, 12%) [2, 48]. However, these values could be affected by sample

Table 2. Sequencing and mapping data of high and low stress lines of Japanese quail.

Line # of raw reads # of mapped reads Coverage

HS 250,617,546 85,577,152 41.45x

LS 257,535,422 84,195,797 42.59x

https://doi.org/10.1371/journal.pone.0214543.t002
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size, diversity of samples, sequencing technology and CNV calling methods used in the studies

[42].

CNV validation using qPCR

In this study, we used pooled DNA samples from each line for whole genome re-sequencing

(Explained in methods above). However, we validated individual genes associated with CNV

Table 3. Summary of CNV in high and low stress lines of Japanese quail.

Line CNVnator bin

size

Average RD per

bin ± StDev

# of

CNVRs

# of

deletions

# of

duplications

Deletion

(Mb)

Duplication

(Mb)

Total CNV

(Mb)

Average CNV size

(Mb)

HS 1200 78.1745±
17.0184

262 235 27 13.80 1.32 15.20 0.05

LS 1500 55.9714 ± 13.2859 168 148 20 17.02 1.15 18.17 1.08

https://doi.org/10.1371/journal.pone.0214543.t003

Fig 1. Genome-wide distribution of CNVRs in quail. CNVRs are represented in individual tracks as bars, where the outer track depicts

CNVRs in HS and inner in LS line of quail. In the tracks, CNVRs indicated by blue bars are deletions and red bar are duplications with respect

to the reference assembly.

https://doi.org/10.1371/journal.pone.0214543.g001
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in 16 birds each from HS and LS lines using qPCR. We randomly selected 9 different genes

each from 9 different CNVRs predicted by CNVnator for their validation. We used ΔΔCt

method for determining relative CN of the genes. We found ~80% of our qPCR results agreed

with the CN state predicted by CNVnator (Table 4).

The result clearly showed that there is difference in CNV in 9 genes between HS and LS

lines of quail. Thus, difference in CNV observed in genes in between HS and LS lines can be

the reason for their phenotypic variations.

Gene content of CNVRs and bioinformatics analysis

We wrote a custom bash script, used BEDOPS tool and reference genome annotation file (in

GFF format) of Japanese quail from NCBI to extract genes from CNVRs of both the lines. We

Fig 2. Size and frequency distribution of CNVRs in HS and LS lines of quail.

https://doi.org/10.1371/journal.pone.0214543.g002

Table 4. Experimental validation of 9 CN genes using qPCR in larger number of HS (16) and LS (16) birds.

CNV Type Coordinates Gene Copy Number (CNVnator) Copy Number (qPCR)

Deletion chr10:1573201–2205600 NPTN 1.53 1.27

Deletion chr12:1348801–1467600 UBA7 1.42 0.72

Deletion chr15:5568001–5653200 RPHA 1.38 1.19

Deletion chr1:47198401–47250000 CACNG2 1.35 1.39

Deletion chr1:6001–28800 LRRC16B 1.00 1.43

Duplication chr1:169119601–169160400 PCF11 33.60 1.33�

Duplication chr20:1994401–2090400 CBFA2T2 25.90 20.57

Deletion chr4:1858801–2012400 PIH1D3 1.45 1.46

Duplication chrZ:7086001–7182000 FAM219A 7.80 1.03�

�Indicate inconsistency between CNVnator output and qPCR result

https://doi.org/10.1371/journal.pone.0214543.t004
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retrieved a total of 948 genes overlapped within CNVRs in HS and 982 in LS lines. The total

number of deleted genes was 895 in HS and 922 in LS lines and the number of their respective

duplicated genes was 53 and 60. Among the deleted genes, 436 were uniquely deleted in HS

and 471 in LS lines (Table 5).

Similarly, we found 18 uniquely duplicated genes in HS and 22 in LS lines (Table 5). Lists of

uniquely deleted and duplicated genes in HS and LS lines are shown in S2 Table. Structural

genetic variations have been known to accumulate during inbreeding process in animals [49].

However, effect of the inbreeding process in accumulation of genetic variation in quail popula-

tions was not known to date. We have identified several hundred genes that were fully deleted

in HS and LS lines of quail, which supports a phenomenon of perpetual gene turnover in the

two quail populations and their genetic differences. Duplication of whole genes has been

known to impact gene expression by altering gene dosage [50, 51]. If a duplication of a gene is

adaptive, it is usually favored and retained more frequently in a population [1]. We found 23

genes in HS and 32 in LS lines that have, on average, 10 or more copies and are considered as

high copy number genes. These gene lists included both annotated and unannotated genes

with 11 genes having compatible copy number between HS and LS lines (S3 Table). The high

copy number annotated genes in HS included PCR11 cleavage and polyadenhylation factor

(PCF11), ankyrin repeat domain 42 (ANKRD42), obscurin, cytoskeletal calmodulin and titin-

interacting RhoGEF (OBSCN), chromosome 2 H6orf52 homolog (C2H6orf52), nucleoporin

153 (NUP153), core-binding factor alpha subunit 2 (CBFA2T2), syntrophin alpha 1 (SNTA1),

and dynein axonemal intermediate chain 1 (DNAI1) and in LS lines were PCF11, ANKRD42,

and hydroxysteroid dehydrogenase like 2 (HSDL2). The high copy number genes were

Table 5. Number of genes associated with CNVRs in high and low stress lines of Japanese quail.

Quail Lines Total # of CNV Genes # of Deleted Genes # of Duplicated Genes # of Unique Deleted Genes # of Unique Duplicated Genes

HS 948 895 53 436 18

LS 982 922 60 471 22

https://doi.org/10.1371/journal.pone.0214543.t005

Table 6. Uniquely deleted genes in HS and LS lines of Japanese quail associated with canonical pathways.

Canonical Pathways Molecules

HS line:

Phospholipase C Signaling ARHGEF11, ARKGEF12, BTK, HDAC5, ITGA3, ITPR1, MEF2B,

MEF2D, MPRIP, PLA2G3, PLD6

Neuregulin Signaling CDK5R1, ERBB2, GRB7, ITGA3, PIK3R2

Reelin Signaling in Neurons ARHGEF11, ARKGEF12, CDK5R1, ITGA3, MAPT, PIK3R2

ERK Signaling MAP2K5, MEF2B, MEF2D, NTRK1, SH2D2A

CD27 Signaling in Lymphocytes CASP9, MAP2K5, MAP3K13, MAP3K14

LS line:

Type II Diabetes Mellitus Signaling ACSBG2, ADIPOR2, CACNA1G, CACNA2D4, CACNG3, PIK3C2B,

PRKCB, SLC27A3

GP6 Signaling Pathway COL16A1, COL18A1, COL5A1, COL6A1, COL6A2, COL9A2,

PIK3C2B, PRKCB

nNOS Signaling in Skeletal Muslce cells CACNA1G, CACNA2D4, CACNG3, NOS1

Hepatic Fibrosis / Hepatic Stellate Cell

Activation

COL16A1, COL18A1, COL5A1, COL6A1, COL6A2, COL9A2, ECE1,

SMAD7

Role in CHK Proteins in Cell Cycle

Checkpoint Control

CDKN1A, RAD9A, RFC5, SLC19A1

https://doi.org/10.1371/journal.pone.0214543.t006
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associated with cellular assembly and organization, cellular morphology, nervous system

development and function (S4 Table).

We used IPA to characterize the biological functions, describe molecular interaction net-

works and canonical pathways implicated by uniquely deleted genes in HS and LS lines. We

identified five canonical pathways significantly (p-value < 0.01) enriched by deleted genes in

HS lines (Table 6).

The pathways include: Phospholipase C Signaling, Reelin Signaling in Neurons, ERK5 Sig-

naling, CD27 Signaling in Lymphocytes and Neuregulin Signaling. Similarly six canonical

pathways were significantly (p-value <0.01) enriched by deleted genes in LS lines which

includes: Type II Diabetes Mellitus Signaling, GP6 Signaling, nNOS Signaling in Skeletal Mus-

cle Cells, Hepatic Fibrosis/Hepatic Stellate Cell Activation, and role of CHK Proteins in Cell

Cycle Checkpoint Control (Table 6). We found the top diseases and bio functions of the

deleted genes in HS line related to endocrine system disorders, organismal injury and

Table 7. Uniquely deleted genes in HS and LS lines of Japanese quail associated with top disease and bio

functions.

Name p-value # of Molecules

HS line:

Neurological Disease 1.46E-02–2.11E-04 21

Endocrine System Disorder 1.46E-02–2.84E-05 7

Organismal injury and Abnormalities 1.46E-02–2.84E-05 76

Gastrointestinal Disease 1.46E-02–2.84E-05 12

LS line:

Endocrine System Disorder 2.80E-02–5.63E-05 14

Organismal Injury and Abnormalities 2.80E-02–1.66E-05 130

Connective Tissue Disorder 2.80E-02–1.66E-05 14

Reproductive System Disease 2.09E-02–1.66E-05 32

https://doi.org/10.1371/journal.pone.0214543.t007

Table 8. Uniquely deleted genes in HS and LS lines of Japanese quail associated with endocrine system disorder.

HS line:

Symbol Entrez Gene Name Location Type(s)

CDK5R1 cyclin dependent kinase 5 regulatory subunit 1 Nucleus kinase

CSF3R colony stimulating factor 3 receptor Plasma Membrane transmembrane receptor

ERBB2 erb-b2 receptor tyrosine kinase 2 Plasma Membrane kinase

HSD11B2 hydroxysteroid 11-beta dehydrogenase 2 Cytoplasm enzyme

POLE DNA polymerase epsilon, catalytic subunit Nucleus enzyme

POLE3 DNA polymerase epsilon 3, accessory subunit Nucleus enzyme

TRIM29 tripartite motif containing 29 Cytoplasm transcription regulator

LS line:

AMH anti-Mullerian hormone Extracellular Space growth factor

CACNA2D4 calcium voltage-gated channel auxiliary subunit alpha2delta 4 Plasma Membrane ion channel

CDKN1A cyclin dependent kinase inhibitor 1A Nucleus kinase

COL16A1 collagen type XVI alpha 1 chain Extracellular Space other

COL18A1 collagen type XVIII alpha 1 chain Extracellular Space other

COL5A1 collagen type V alpha 1 chain Extracellular Space other

COL6A1 collagen type VI alpha 1 chain Extracellular Space other

COL6A2 collagen type VI alpha 2 chain Extracellular Space other

https://doi.org/10.1371/journal.pone.0214543.t008
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abnormalities, neurological disease, and gastrointestinal disease. Similarly, the top diseases

and bio functions of deleted genes in LS line were related to endocrine system disorder, organ-

ismal injury and abnormalities, connective tissue disorders, and reproductive system disease

(Table 7).

The uniquely deleted genes in HS involved in endocrine system disorder are listed in

Table 8.

Also, LS line has a network associated with lipid metabolism in deletion. Thus, in contrast

to LS line, canonical signaling pathways in HS are related to regulation of immune response,

stress and neurological diseases. Therefore, a higher level of mean corticosterone level seen in

HS compared to LS lines may be associated with the genes with CNVs. These differences

might implicate CNV as an adaptive change in response to restraint stress between HS and LS

lines of Japanese quail. This type of adaptive variation at DNA level can improve the fitness of

organisms to new and challenging environments [52].

Table 9. Significant interaction networks of uniquely deleted genes involved in nervous system and endocrine development in HS and LS lines of quail.

HS line:

SN Molecules in Network Score Focus

Molecules

Top Diseases and Functions

1 14-3-3, APH1A, ATP6V0D1, ATP6V1A, ATP6V1G1, atypical protein kinase

C, BSN, CAMK2N2, CaMKII, ERK1/2, Glycogen synthase, GPATCH8,

Growth hormone, IBA57,IL1RAPL1,INSRR,LLGL1, LSG1, MIOX, MLXIPL,

NECTIN1, PEBP4, PP1 protein complex group, PPP1R9B, Proinsulin,

pyruvate kinase, RAB3A, RASD1, RPH3A, Secretase gamma, STX1A,

STXBP1, TNFRSF13B, Vacuolar H+ ATPase, VWA5B2

37 24 Cell-To-Cell Signaling and Interaction, Cellular Assembly

and Organization, Nervous System Development and

Function

2 AGMAT, AMPK, BHLHE40, CDC25A, Cg, Ck2, Creb, DUSP23, FAM3D,

FSH, GABPB2, Gsk3, HDL, Lh, NCAN, NCL, Nr1h, NUDT15, NUP153,

OSBPL2, p70 S6k, PDGF BB, PEPCK, phosphatase, PI3K (family), Pkc(s),

POLE, POLE3, PRUNE1, RNA polymerase II, Rnr, SLC36A4, SREBF1,

SUGP1, UBTF

24 18 Cancer, Endocrine System Disorders, Gastrointestinal

Disease

3 1700030F18Rik, AKNA, APP, ARMC9, ATAT1, ATXN7L3, C16orf78,

C4orf46, CARMIL3, CBFA2T2, CD40, CSAG1, DBF4B, DNAJB7, EPB41L4A,

FAM212A, GLRA4, GPR6, GPR12, GPR15, GPR61, GPR78, GPR85, JTB,

LMF2, MARCH10, MED9, NUP62CL, OCEL1, RXFP3, SLC13A3, SPEN,

SRPK2, TMEM41A, VIPR2

17 14 Cell-To-Cell Signaling and Interaction, Inflammatory

Response, Nervous System Development and Function

4 ADH7, B3GNT7, BAG6, CADM3, CTRC, Epsin, ESR2, FAM84B, FGD2,

HEBP1, KAZALD1, KLHL12, LSM12, Macf1, MRPL55, NAA38, NBPF10

(includes others), OTP, PABPC5, PCMTD2, POU5F1, RALBP1, Rplp1

(includes others), RUNDC3A, SDK1, SLC5A7, SLC6A1, SMAD4, SNRNP25,

TBRG1, TCTA, Ubb, UBC, UBL7, ZFHX3

11 10 Nervous System Development and Function, Neurological

Disease, Organ Morphology

LS line:

SN Molecules in Network Score Focus

Molecules

Top Diseases and Functions

1 ACSBG2, ADAMTS9, ADAMTS15, ARHGEF9, ASB18, ATRN, CACFD1,

COPS5, CREB3, GCFC2, HSD11B1L, LSM12, MGST2, NUDT1, PGAM5,

PHRF1, PPP1CA, PPP1R15B, PRPF6, PRPF39, RELL2, RHEB, RIMS3,

RNPC3, RRP7A, SF3A2, SNRNP35, SNRPE, TFIP11, TMEM222, U4 snRNP,

U5 snRNP, U6 snRNP, VCAN, ZMAT5

19 15 Developmental Disorder, Hereditary Disorder,

Neurological Disease

2 20s proteasome, 26s Proteasome, Alpha tubulin, AMPK, Calcineurin protein

(s), CDT1, CPEB1, Cyclin A, Cyclin D, cytochrome C, cytochrome-c oxidase,

DFFB, EIF4G3, ELP3, ERK, HISTONE, Histone H1, MEAF6, Mitochondrial

complex 1, MRPL48, MTORC2, NFE2L1, Nos, NOS1, OAZ1, PARP, PCDH1,

PDE3A, PP2A, PPME1, Ppp2c, PRKAA, Rb, SURF1, TIP60

17 14 Hereditary Disorder, Metabolic Disease, Neurological

Disease

3 AKT1, AMIGO2, ARHGAP33, C1orf174, CCL5, CIART, CREB1, CSRNP1,

ETNK2, GPR65, GPR83, IGSF9B, JPT1, MMP14, MMP23B, NGF, NR3C1,

NRBP2, NTSR1, P2RX3, PCOLCE, RAP1GAP2, SLC17A6, SORCS3,

SPATA20, SPOCK3, SRPK2, SRXN1, STON1, TIPARP, VPS26B, VSTM2L,

YPEL4, ZDHHC5, ZNF395

11 10 Cell Morphology, Cellular Function and Maintenance,

Nervous System Development and Function

https://doi.org/10.1371/journal.pone.0214543.t009
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We identified a total of 17 gene networks in HS and 18 in LS lines with score not less than

10 (S4 Table) among which 4 different networks in HS and 5 in LS lines were significant inter-

action networks involved in nervous and endocrine systems development (Table 9).

Here a score of 10 implies that there will be less than a 10−10 probability that the genes in

the network are associated with each other by chance. The topmost network involving deleted

genes in HS line was specifically associated with cell to cell signaling and interaction, cellular

assembly and organization, nervous system development and function (Fig 3). The genes asso-

ciated with loss in this network are involved in signaling pathways of ERK1/2 connected to

CaMKII (Ca2+/calmodulin-dependent protein kinase II), PPP1R9B (Protein phosphatase 1

regulatory subunit 9B), APH1A (Aph-1 homolog A), proinsulin and growth hormone. CaM-

KII, PPP1R96, and APH1A are involved in nervous system development and functions. CaM-

KII functions in various cells by phosphorylating proteins involved in synaptic plasticity,

electrical excitability and neurotransmitter synthesis [53]. PPP1R9B gene is expressed in den-

dritic spines and plays a role in receiving signals form the central nervous system [54]. APH1A

gene encodes a component of gamma secretase complex that is involved in proteolysis of amy-

loid precursor protein [55]. The connection in this network therefore suggests loss of CaMKII,

PPP1R9B, APH1A and other genes in this pathway may impair functional interactions of

ERK1/2 signaling pathway with growth hormones, proinsulin and secretase gamma. This may

Fig 3. Top-scoring multi-gene network associated with Cell-To-Cell Signaling and Interaction, Cellular Assembly and Organization, Nervous System

Development and Function in HS line of quail. The deleted genes are molecules in gray.

https://doi.org/10.1371/journal.pone.0214543.g003
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be a reason for reduced growth rate and low basal weight observed in HS compared to LS

birds.

Reduced heterophil/lymphocyte ratio is observed in LS compared to HS line of Japanese

quail [27]. Interestingly, we found humoral immune response in HS and cell-mediated

immune response in LS lines associated with deleted genes (S4 Table). The gene network asso-

ciated with cell-mediated response in LS lines is shown in Fig 4. In this network, the deleted

genes are associated with signaling pathway of P38 MAPK connected to CDKN1A (cyclin

dependent kinase inhibitor 1A), PRKCE (protein kinase C epsilon) and CSF3 (colony stimu-

lating factor 3). The protein encoded by CDKN1A inhibits cyclin-cyclin-dependent kinase2

and function in regulation of cell cycle progression at the G1 phase [56]. PRKCE is involved in

lipopolysaccharide (LPS)-mediated signaling in activating macrophages and also functions in

controlling anxiety-like behavior [57]. The protein product of CSF3 is cytokine that controls

production, differentiation and functions of granulocytes [58]. Therefore, molecular interac-

tions of P38 MAPK with T-cell receptor (TCR), B-Cell Receptor (BCR) complex, and inter-

feron gamma may be impaired due to deletion of CDKN1A, PRKCE, CSF3 and other CNV

related genes. It might indicate for suppression of cellular response leading to reduced hetero-

phil counts in LS birds of quail.

Fig 4. Top-scoring multi-gene network associated with Cell-mediated Immune Response, Cellular Development, Cellular Function and Maintenance in

LS line of quail. The deleted genes are molecules in gray.

https://doi.org/10.1371/journal.pone.0214543.g004
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We identified different sets of genes affected by CNVs in HS and LS lines of quail, most

importantly involved in nervous and endocrine systems development, humoral and cell-medi-

ated immune response and different metabolisms. This result supports our hypothesis that

CNVs have impact in increasing genotypic diversity and thereby phenotypic traits observed in

quail. In the future we will perform a functional validation study such as expression of candi-

date CNV genes at protein level using different tissues from the two quail lines. The quail will

continue to evolve as an important research animal model for understanding well-being and

production performances in avian species and other animals.
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