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This review describes the complex interplay between inflammation, vasculopathy and
fibrosis that involve the heart and peripheral small vessels, leading to endothelial
stiffness, vascular damage, and early aging in patients with systemic lupus
erythematosus and systemic sclerosis, which represents two different models of
vascular dysfunction among systemic autoimmune diseases. In fact, despite the fact
that diagnostic methods and therapies have been significantly improved in the last
years, affected patients show an excess of cardiovascular mortality if compared with the
general population. In addition, we provide a complete overview on the new techniques
which are used for the evaluation of endothelial dysfunction in a preclinical phase,
which could represent a new approach in the assessment of cardiovascular risk in
these patients.

Keywords: endothelial dysfunction, systemic lupus erythematosus, systemic sclerosis, microvascular disease,
techniques of assessment

INTRODUCTION

Systemic autoimmune diseases are disorders characterized by humoral and cell-mediated immune
responses against various self-antigens. A higher cardiovascular (CV) morbidity and mortality
rates were described in affected patients (1). Persistent low-grade inflammation in the vascular
wall is considered the crucial trigger for CV events through endothelial dysfunction (ED)
and proliferation of vascular smooth muscle cells, with subsequent vascular remodeling (2).
Furthermore, the infiltration of different immune cells promotes a milieu of molecules that
contributes to the perpetuation of inflammation itself. ED is currently considered the main
mechanism explaining the microangiopathy in different clinical autoimmune conditions. An
insufficient endothelium-dependent vasodilation in reply to vasoactive stimuli, principally due
to the failing production of nitric oxide (NO) and/or an impaired NO function, defines ED. ED
has been detected in different types of arterial vessels, and actually it is considered a systemic
process (3, 4). Among systemic autoimmune diseases, ED has been extensively studied in systemic
lupus erythematosus (SLE) and systemic sclerosis (SSc), which represent two different models
of ED dysfunction. In SLE patients, ED is the main actor of vascular aging and pre-clinical
atherosclerosis during the course of the disease, contributing to the early onset of CV disease (CVD)
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and CV mortality. On the other hand, in SSc, ED and
microangiopathy are key factors sustaining the development
of the disease itself. The aim of this review is to analyze
the factors which has a role in the pathophysiology of ED
in SLE and SSc and to explore the new techniques which
could be used in its evaluation in a pre-clinical phase. In
fact, traditional Framingham risk factors do not fully explain
the increased CV risk in rheumatic diseases (5) and, although
CV risk assessment should be part of routine assessment in
patients, no disease-specific models are currently available for this
purpose (6, 7). Recently, the European Alliance of Associations
for Rheumatology (EULAR) published some recommendations
for CV risk management in these patients, suggesting the need of
a precocious diagnosis without the endorsement of the use of any
particular assessment tool (8).

SYSTEMIC LUPUS ERYTHEMATOSUS
AND ENDOTHELIAL DYSFUNCTION

Systemic lupus erythematosus is a chronic systemic autoimmune
disease characterized by a dysregulation of immune system,
leading to autoantibody production, tissue inflammation, and
organ damage. Since approximately 40 years, SLE is known to
display a raised mortality, due to premature CVD (4). Compared
to the general population, the prevalence of CVD is known
to be at least double in SLE patients (9, 10), especially in
young premenopausal women (11). Accelerated atherosclerosis,
estimated to develop or progress in 10% of SLE patients each
year (12) and that is globally sixfold more frequent in SLE
compared with the general population (13), is associated to this
premature CVD. Although a high cardiometabolic risk has been
described in SLE (14), CVD in SLE displays atypical features,
such as presentation in young women and a lack of a clear
protective effect by statins (15, 16). Early CVD in SLE is known
to be associated with ED and stiffness of vascular tree, that
lead to atherosclerosis and clot formation, involving different
pathogenetic mechanisms (17).

Pathogenesis of Endothelial Dysfunction
in Systemic Lupus Erythematosus
Several mechanisms have been proposed to explain ED and
atherosclerosis in SLE (18, 19), resulting in a clear predominance
of injury stimuli versus protection factors on the layer of
endothelial cells (ECs).

Oxidative Stress
Mitochondrial dysfunction and abnormal telomere/telomerase
balance lead to a persistent oxidative stress in SLE, mainly
involving circulating leukocytes and ECs (20). The oxidative
process induces cell adhesion molecules (CAMs) expression (21),
with consequent higher leucocyte-endothelial cell interactions
and leucocytes’ transmigration to sites of inflammation (22).
In addition, a significant association between higher anti-
double stranded-DNA (anti-dsDNA) antibodies levels and
higher levels of oxidative products was reported (23, 24).
The excessive production of reactive oxygen and nitrogen

species (ROS and RNS) leads to modifications of different
cellular molecules, such as proteins, lipids, deoxyribonucleic
acid (DNA) or ribonucleic acid (RNA), generating neo-
antigens with a consequent production of autoantibodies, and
uncontrolled lymphocytes’ activation (23, 25). In SLE, three main
targets of oxidative stress have been identified: oxidized lipids,
oxidized low-density lipoprotein (LDL) and proinflammatory
high-density lipoprotein (HDL), all playing a crucial role in
pathogenesis of SLE-related ED and atherosclerosis (26, 27).

Cytokine Cascade
Proinflammatory cytokines play a direct role in accelerating
SLE atherosclerosis. In particular, all three classes of interferons
(IFNs), namely IFN-I (IFN-α, IFN-β, IFN-δ, IFN-ε, IFN-κ, IFN-τ,
IFN-ω, and IFN-ζ), IFN-II (IFN-γ), IFN-III (IFN-λ1, IFN-λ2,
and IFN-λ3), participated in the process of atherosclerosis (19).
IFN-α and IFN-γ promote lipoproteins’ oxidation (28, 29) and
ED by accelerating ECs apoptosis and damaging endothelial
progenitor cells (EPCs) (28, 30), one of the vascular repair
mechanisms. On the other hand, IFN-γ increases vascular
smooth muscle cells’ (VSMC) proliferation and migration (31),
VSMC and macrophages apoptosis in atherosclerotic plaques,
inducing plaque instability (32). The long-term activation of IFN-
I system induces the expression of different chemokine pathways
that recruit leukocytes into inflammatory sites promoting the
dysfunction of ECs and EPCs (19).

Neutrophil Extracellular Traps
Neutrophil Extracellular Traps (NETs), a unique type of
neutrophils communication characterized by the extrusion of
chromatin and other molecules, are considered a key factor in
SLE atherosclerosis (33). NETs can enhance vascular leakage,
endothelial-to-mesenchymal transition (34) and ECs death (35).
Moreover, NETs enhance oxidation processes (36), secretion of
IFN-α (37), interleukin (IL)-1β (38), and activate coagulation
cascade (39).

B Cells and Autoantibodies
Many autoantibodies can affect endothelial function, by
promoting pathogenic molecules and inhibiting potential
protective factors (40). Antiphospholipid antibodies (aPL), that
are anticardiolipin antibodies (aCL) and anti-β2-glycoprotein
I antibodies (anti-β2GPI), can contribute to accelerated
atherosclerosis by inducing a proinflammatory endothelial
phenotype through a direct interaction with ECs (41). Different
authors described ECs activation by aPL via EC-derived
extracellular vesicles through a toll like receptor (TLR) 4
and 7-dependent pathway, resulting in paracrine stimulation
of neighboring unstimulated ECs (42–44). In addition, aPL
can upregulate the tissue factor expression on ECs and
monocytes, and promote endothelial leukocyte adhesion
and pro-inflammatory cytokine secretion (41). Finally, aPL
are considered an independent predictor of atherosclerotic
plaque progression in SLE (45). Other autoantibodies have
been described as contributors of accelerated atherosclerosis
in SLE: anti-HDL-IgG that induce LDL to enter the ECs;
anti-apolipoprotein A1 (ApoA1)-IgG that activating the
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transcriptional nuclear factor kappaB (NF-kB) favor the
expression of inflammatory factors at endothelial level (46);
anti-FXa-IgG can inhibit FX enzyme (47), modifying the of
hemostasis/thrombosis equilibrium and promoting ED (48).
Moreover, anti-C1q antibodies play a role in atherosclerosis by
reducing C1q’s level and lowering their protective effects on
endothelium (49, 50).

T Cell Subpopulations
In general, the subset of CD28- (CD28null) T cells is char-
acterized by pro-inflammatory properties and plays an active
role in destabilization of the plaque itself, increasing endothelial
oxidative markers, and arterial stiffness (51). In humans, high
levels of CD4+CD28null T cells, responsible of an aberrant T-B
lymphocytes’ interaction, have been described during instable
angina, and could be involved in the atherosclerotic plaque
instability (52). The prevalence of these cells is increased in
systemic autoimmune diseases because of the repeated antigenic
stimulation that induces a downregulation of CD28 from the
lymphocytes’ membrane (53). The so-called angiogenic T cells
(Tang) are characterized by the expression of CD3, the platelet-
endothelial cell adhesion molecule-1 (CD31) and the receptor
for stromal cell factor-1 CXCR4 (54). Due to their ability to
enhance endothelial repair function (55) and promote new vessel
formation (54), Tang could be used as a novel putative biological
marker for CVD. A higher number of circulating Tang may
be involved in ED among several autoimmune diseases, such
as rheumatoid arthritis (RA), SLE and SSc, as a consequence
of endothelial damage or an inefficient angiogenesis (56–58).
Accordingly, in a recent study of our group, we demonstrated
that the nail video-capillaroscopy (NVC) alterations in a cohort
of patients with SLE and without traditional CV risk factors
were associated with ED and with the increase of circulating
Tang (59). A subtype of Tang called “aging” Tang (CD28null-
Tang) seems to be not protective but cytotoxic, due to their
ability to secrete inflammatory mediators and release cytolytic
molecules from intracellular particles, inducing EC damage and
accelerated atherosclerosis in most SLE patients (60). Moreover,
CD28null-Tang increased in SLE patients with traditional CV
risk factors and active disease (60). In our recent experience,
we observed that the rate of circulating pro-angiogenic Tang
decreased very early in disease course, with an increase of
the rate of the “aging” CD28null subset. Our preliminary data
suggest that Tang might exert their effects on the endothelium
via the pro-angiogenic mediators IL-8 and metalloproteinase-9
(61). Another T lymphocyte subtype, regulatory T cells (Treg),
are believed to play a protective role in autoimmune diseases.
Anyway, atherosclerosis’s severity does not seem to be strictly
related to their numbers, but rather to their dysfunction (62,
63). In SLE, Treg cells are significantly reduced in both, number
and function (64). In human studies and mouse models, Treg
have been associated with a protective role in atherosclerosis
(65) and their decrease is significantly associated with acute
coronary events (18). Recently, the invariant natural killer T cells
showed an anti-atherosclerotic phenotype in SLE patients and
can induces macrophages to polarize into anti-inflammatory and
anti-atherosclerotic M2 phenotype (66).

Endothelial Progenitor Cells
Endothelial progenitor cells are a group of bone marrow-derived
cells, acting in vascular homeostasis control and endothelial
repair (67). Some authors reported a reduced number of EPCs
in patients with CV risk factors (68) and CVD (69). Therefore,
EPCs could be considered a new marker of CV risk, especially
in SLE patients in which traditional CV prediction models
fail to estimate the risk of clinical CVD. Physiologically, after
endothelial injury, vascular repair occurs by accelerating the
replacement of ECs: a process that involves proliferation and
migration of adjacent ECs and resident EPCs and recruitment
of new EPCs. Although data in SLE are controversial, EPCs
are reduced in number and are functionally impaired (19). This
impairment seems to be the result of the balance between risk
factors (including IFN-I) and protective factors (including Tang
cells). In particular, IFN-I accelerates SLE atherosclerosis, by
interfering with EPCs (19), as suggested by studies in adult-
or childhood-onset SLE (67, 70). The results among studies
are difficult to be compared because EPCs could be identified
using different and not yet standardized methods, such as flow
cytometry or through different cell isolation techniques (67).
Type I IFN, overexpressed during a SLE flare and involved in SLE
pathogenesis, was described as a contributor of EPCs dysfunction
in the disease (67). Furthermore, some data demonstrated that
recombinant IFN-α displays a toxic effect on CD133/CD34 + cells
(e.g., putative EPCs) in culture. The use of monoclonal antibody
blocking IFN pathways in SLE leads to a normalization of EPCs
function (71).

Cardiovascular Disease Risk
Assessment in Systemic Lupus
Erythematosus
Systemic lupus erythematosus represents a good example of
autoimmune disease associated to an inflammatory-related early
atherosclerosis. It is widely known that SLE patients have a
significant risk of CVD, presenting a higher rate of atherosclerotic
large arterial vessels, as well as in RA and diabetes mellitus
(72). Furthermore, as compared to the general population, SLE
patients have a twofold increased rate of ischemic myocardial
infarction (73, 74). The presence of lupus nephritis and aPL
represents further risk factors for CVD in SLE (75). According
with guidelines (8), the assessment of traditional but also the
disease-related risk factors is recommended in SLE patients.
A modified version of the Framingham risk score that used 2
as multiplicative factor was showed to increase the sensitivity
in identifying patients with an increased risk of coronary
artery disease (76). It became necessary to develop a SLE-
specific CV risk score that combines traditional CV risk
factors and SLE-specific variables: only disease activity score,
C3 level, and lupus anticoagulant titer were predictive of CV
outcomes (77). Petri et al., determined that patients with
higher SLE disease activity index (SLEDAI) score had their 10-
year risk underestimated by as much as a factor of 10 (78).
Inaccurate CVD risk assessment is evident especially in young
SLE patients, that are not likely to experience adverse CV
events within 10 years: for these patients a more complex and
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multidisciplinary risk assessment appears of utmost relevance
(78). In SLE patients, levels of blood pressure lower than
130/80 mmHg are recommended because are associated with
lower incidence of CV manifestations (8). For the other risk
factors, treatment suggestions should follow recommendations
that are used among general population. The impact of most used
immunosuppressant agents in SLE on accelerated atherosclerosis
has been understudied and, actually, any drugs could be
recommended with the purpose of lowering CV risk (77). The
maintenance of a low disease activity was demonstrated to
be a good strategy to reduce CV risk among these patients,
such as the limitation of the use of glucocorticoids to the
lowest effective dose considering their well-known deleterious
cardiometabolic effects (8, 79). Selective B cell activating factor
(BAFF) inhibition, belimumab, seems to display a double effect
in animal models: in low-lipid conditions, BAFF inhibition is
predictably athero-protective, but in high lipid environments
it is atherogenic, due to a counter function in macrophages
(80). Hydroxychloroquine shows multiple protective effects
(77), reducing IFN-α production, aortic stiffness, correcting
lipoprotein profile, improving glycemic control, as well as
reducing the risk of all thrombo-vascular events in SLE
patients. Finally, mycophenolate treatment seems to improve
HDL function in SLE patients, and reduces atherosclerosis
mouse models, limiting the recruitment of CD4 + T cells to
atherosclerotic lesions (81). Preventive strategies, such as the
introduction of low-dose aspirin, is based on individual CV risk
profile which should include the assessment of aPL which are
more frequent in SLE than in general population (8).

SYSTEMIC SCLEROSIS AND
ENDOTHELIAL DYSFUNCTION

Systemic sclerosis is a rare, acquired, systemic disease of
unknown origin and uncertain pathophysiology characterized
by multi organ involvement. Vascular alterations, extensive
fibrosis and specific autoantibodies are the principal actors
of its pathogenesis (82). While in SLE ED and accelerated
atherosclerosis are a consequence of the chronic and sustained
inflammation (83), in SSc microvascular dysfunction is one of
the hallmarks of the disease along with immune dysregulation
and widespread fibrosis, and represents a primary pathogenetic
process (84). Indeed, vasculopathy is of fundamental importance
in SSc, from the very early onset of the disease, manifesting with
Raynaud’s phenomenon that usually precede the other disease
manifestations, through the late clinical complications whose
prototype is the pulmonary arterial hypertension (PAH). These
widespread vascular abnormalities can also present as ischemic
digital ulcers (DU), mucocutaneous telangiectasias, gastric antral
vascular ectasia and scleroderma renal crisis (85).

Pathogenesis of Microangiopathy in
Systemic Sclerosis
Oxidative Stress
Repetitive ischemia and reperfusion processes causes oxidative
stress with subsequent tissue damage in SSc, mediated by

proinflammatory cytokines and activated leukocytes. These
activated leukocytes also show increased expression of inducible
nitric oxide synthase (iNOS), leading to the production of a
huge amount of NO that reacts with oxygen in the re-perfused
blood to form ROS. This causes a direct endothelial injury
that leads to vasoconstriction and conversion to a procoagulant
phenotype (86).

Endotheliitis
The dysregulation of EC within the vascular wall has a major
role in the above-mentioned fibroproliferative vasculopathy (87).
This contribute to the unbalanced production of vasoactive
mediators resulting in vasoconstriction (88, 89). The alterations
of mediators involved in this process were described as
both quantitative and qualitative. A particular mention has
to be done with regards to the alterations of the vascular
endothelial growth factor (VEGF). In fact, despite the fact
that higher circulating levels of this vasodilator agent were
described in SSc patients in comparison with healthy controls,
anti-angiogenic VEGF isoform was strongly expressed in
the skin of SSc patients (90). In addition, the increased
expression of adhesion molecules by damaged endothelial surface
promotes leukocyte trans-endothelial migration, activation, and
accumulation (91, 92). ECs transdifferentiate into myofibroblasts
gaining mesenchymal cell markers (93, 94). These events
culminate in the intima-media proliferation and vessel occlusion
leading to tissue hypoxia, which further promotes cell injury and
fibroblasts activation (87). Viral infections, coagulation cascade
activation, complement system impairment and antibodies
against ECs have been proposed as the initial trigger in
SSc pathogenesis (95, 96). Some viral infections have been
linked to activation/injury of ECs through a mechanism
of molecular mimicry. For instance, human cytomegalovirus
infection induces antibodies that recognize an amino acid
sequence on a viral protein, which is homologous to a surface
molecule highly expressed on ECs, inducing apoptosis of
ECs (97). Some studies have found a correlation between
the parvovirus B19 DNA expression levels and the severity
of ED in SSc (98, 99). Recently, new evidence focuses on
whether SARS-CoV-2 infection triggers autoimmunity and
may have a role in SSc pathogenesis. Indeed, exploration of
the SARS-CoV-2-related endotheliitis might provide further
important information in the understanding of the early SSc
pathogenesis (100).

Complement System
The complement system role in the pathogenesis of SSc
vasculopathy has not been exhaustively studied. Its classical
functions such as opsonization, recruitment of inflammatory
cells, influence of coagulation cascade and angiogenesis are
primary for ECs integrity. In normal conditions, complement
attack is tightly regulated by regulatory proteins, ensuring
protection of EC layer. A reduced expression of these regulators
has been shown in SSc skin, potentially leading to endothelium-
bound membrane attack complex of complement deposition that
could cause EC apoptosis (101).
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Autoantibodies
The anti-endothelial cell antibodies (AECAs) can be found in
almost 50% of SSc patients and can react with various cell surface
antigens on ECs leading them to apoptosis (102) through the
antibody-dependent cell-mediated cytotoxicity mechanism (103–
105). An association between circulating antibodies and vascular
manifestations has been described for antibodies against cell
surface receptors such as angiotensin II type 1 receptor and
endothelin-1 type A receptor (106). Among other antibodies
possibly associated with vasculopathy in SSc, aPL should be
considered. Their frequency in SSc is highly heterogeneous
and ranges from 0 to 57% (107). Sobanski et al., carried
out a meta-analysis, revealing an overall pooled prevalence of
14% (108). ACL and anti-β2-GPI antibodies can contribute
to accelerated atherosclerosis by interacting with ECs and
inducing a proinflammatory endothelial phenotype (41). Some
studies reported an association between aPL positivity and
PAH and DU (109–113), while others did not (108, 114,
115). Lastly, considering the strong clinical associations of SSc
specific antibodies (anticentromere, anti-topoisomerase 1, anti-
RNA polymerase III and anti-Th/To antibodies) and their role
as prognostic biomarkers, a potential pathogenicity of these
antibodies was suggested. Raschi et al., demonstrated that SSc
specific antibodies bound to their antigens to form immune
complexes (ICs) elicit pro-inflammatory and pro-fibrotic effects
on healthy ECs (95). They stated that immune complexes
composed with SSc specific antibodies might contribute to
scleroderma pathogenesis through a direct interaction with TLRs.
Endothelial incubation with SSc-ICs modulates several molecules
(endothelin-1, IL-8, inter-CAM-1, IL-6, and transforming
growth factor β1) involved in the three cardinal scleroderma
pathophysiologic processes (95).

T Cell Subpopulations
As previously outlined, Tang are required for endothelial
progenitor colony formation, promote new vessel formation
by secreting angiogenic factors such as VEGF and adhere to
ECs. Tang can interact directly with the CD31 expressed by
ECs via endothelial-T-cell CD31-CD31 homophilic interactions.
In addition, given that these cells also express the cytotoxins
granzyme B and perforin, they also have cytotoxic potential.
Zhang et al., reported that these cells secrete large amounts
of proinflammatory cytokines, such as tumor necrosis factor
alpha, IL-6 and IFN-γ, confirming their proinflammatory
features (116). Interactions these Tang related cytokines may
contribute to ED by exacerbating oxidative stress and reducing
phosphorylation of endothelial NOS (117). Their frequency is
increased in individuals with traditional CV risk factors further
supporting their role in regulating ED (60). It was found that
circulating Tang were significantly increased in SSc patients
with DU compared either with SSc patients without DU or
with healthy controls. In addition, in SSc patients, Tang levels
correlate with NVC patterns: higher levels were observed in
patients presenting late NVC pattern more frequently than in
those with early/active NVC patterns (58). In another study, the
absolute number of Tang was higher in SSc patients compared to
healthy controls, especially in SSc patients with PAH (118). Taken

together, these findings demonstrated that Tang are expanded in
SSc patients displaying severe peripheral vascular complications
suggesting that circulating Tang increase as a reaction to ischemia
and might represent a novel biomarker closely reflecting the
severity of SSc-related peripheral vasculopathy.

Endothelial Progenitor Cells
The scleroderma impairment of neovascularization could be
associated to both angiogenesis and vasculogenesis failure.
Besides insufficient angiogenesis, the contribution of defective
vasculogenesis to SSc vasculopathy has been extensively studied
(119). As mentioned above, EPCs are defined as circulating
primitive cells that contribute to postnatal vasculogenesis (120)
and, in SSc patients, circulating EPCs were shown to be reduced
in comparison with healthy controls (121). In addition to
quantitative alterations, an impaired potential of SSc-derived
EPCs to differentiate into mature ECs was reported in terms
of functional properties of EPCs (122). It was suggested that
EPC precursors were functionally altered before their release into
the bloodstream because of a dysregulated microenvironment
within the bone marrow (reduced microvascular density and
increased fibrosis) (123, 124). In addition, the hypoxic condition
of the affected tissues of SSc patients are known to stimulate
the differentiation of monocytic EPCs, one EPCs subset (125),
through activation of hypoxia-inducible factor (HIF)-1α (126).
These local stimuli promote the accumulation of functionally
altered monocytic EPCs into the affected lesions of SSc and,
since monocytic EPCs are capable of differentiating into cells
that produce extracellular matrix proteins (127, 128), they might
participate in the fibrotic process in the affected organs (128, 129).

Cardiovascular Disease Risk
Assessment in Systemic Sclerosis
SSc patients are at a higher risk of atherosclerosis, albeit, its
pattern appears to be less aggressive compared with other
rheumatic diseases (130). The alteration of microvasculature is
a main feature of SSc and a central cause of complications,
but also a macrovascular dysfunction was described (131).
In fact, a high incidence of coronary artery disease among
SSc patients was reported (132). Among all the connective
tissue diseases, SSc is currently associated with the highest
mortality rate, with an estimated 10-year survival of 66–82%
(133). Due to the recent improvements in the treatment, SSc
patients are dying less from SSc-related complications and more
from non-SSc related causes, which now account for about
50% of all SSc deaths (133). CVD contributes significantly
to SSc mortality burden, accounting for 20–30% of all SSc
deaths. For this reason, an accurate understanding of CV
risk is crucial in order to improve the overall outcomes
of SSc patients (86). However, recommendations for cardiac
assessment, CVD risk stratification and prevention strategies in
this particular population are currently lacking (134). All patients
with SSc should undergo a full evaluation for conventional
CV risk factors, even if, compared to general population, the
prevalence of traditional CV risk factors in SSc do not seem
to differ significantly (135). Standard therapies have to be
considered in this context. Early treatment with calcium channel
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blockers (CCBs), angiotensin-converting enzyme inhibitors, and
endothelin receptor antagonists (ERAs), were demonstrated to
be efficacious on myocardial perfusion and contractility, as they
improve cardiac microcirculation (136). Vasodilator agents such
as phosphodiesterase-5 inhibitors, reducing circulating cytokines
and chemokines and suppressing oxidative stress, can improve
endothelial function in the patients (137). According with the
last published recommendations (8), the management of blood
pressure and of hyperlipidemia in these patients should follow
the rules used in general population, without specific indications
about the use of low-dose aspirin for the prophylaxis.

ENDOTHELIAL DYSFUNCTION
ASSESSMENT

The first demonstration of ED in atherosclerotic patients was
done using intracoronary infusion of acetylcholine by Ludmer
and colleagues in the nineteenth century, heralding an important
shift in the paradigm of human atherosclerosis regarded as a
purely structural disease (138). Later, several and less invasive
techniques to detect changes in the morphology and function
of the microcirculation at subclinical level have been developed.
The forearm circulation but also the retinal capillary bed was
considered as a surrogate for coronary arteries (138). These
techniques were mostly applied to primary CVD, except for
NVC which is applied in the routinely SSc evaluation In
this review we focused the attention on techniques evaluating
peripheral circulation.

Nailfold Video-Capillaroscopy
Nailfold video-capillaroscopy is a non-invasive and reproducible
imaging study of capillary circulation which is easily accessible
in daily routine. It is a well-documented and established tool
for the evaluation of peripheral microcirculation in SSc and it
has been incorporated in the last international SSc classification
criteria (139, 140). The specific alterations which are recognized
in SSc form a characteristic morphological pattern known as
“scleroderma pattern” (141). The “early” pattern is characterized
by few enlarged/giant capillaries, few hemorrhages and relatively
well-preserved capillary distribution with no evident loss; the
“active” pattern is defined by frequent giant capillaries and
hemorrhages and by mild disorganization of the architecture with
moderate loss of capillaries; the “late” pattern is characterized
by the disorganization of the normal capillary array and the
presence of scarce capillaries which show irregular enlargement
with ramified/bushy structure (139). Over the last years, the
implications of NVC have expanded beyond the diagnostic
evaluation of Raynaud’s phenomenon to the point that NVC
patterns are considered as potential surrogate markers of disease
severity and of disease progression (142). Morphological vascular
patterns are correlated to the severity of SSc as they seem to
reflect the different phases of the disease. The early pattern
characterizes the incipient vascular changes and the active/late
patterns represents the extensive capillary damage characterizing
the fibrotic phase of SSc (143). Indeed, several studies have
investigated the association between NVC and SSc manifestations

finding some associations of NVC alterations to PAH (144–
146) and to telangiectasias (147, 148). However, these data
were not confirmed throughout the studies on the topic (149–
151). In view of ED and CVD risk in SSc patients, NVC
patterns have been associated with arterial stiffness and CVD
risk scores supporting a link between micro and macrovascular
damage in this disease (152, 153). Limited data exist on
the use of NVC in SLE. Many different capillary forms and
patterns and a variable prevalence of capillary abnormalities
has been reported. In morphometric studies longer capillaries
have been described as characteristics of SLE, while in the
presence of an associated antiphospholipid syndrome the typical
NVC findings are called “comb-like” hemorrhages and consists
in multiple hemorrhages from normal shaped capillaries (154,
155). Non-specific morphological alterations, can be found in
approximately 75% of SLE patients and relevant capillaroscopic
changes correlate with disease activity and with the presence of
anti-U1RNP antibodies and aCL (154). However, reported data
on association between these findings and disease-related organ
involvement are conflicting (156). In addition to morphological
and structural evaluation of capillary bed, a dynamic method
for studying skin capillaries has been applied to NVC, based
on the principle of reactive hyperemia after arterial occlusion.
It allows to investigate whether capillary rarefaction is related
to a structural anatomic absence of capillaries or to a non-
perfusion, reflecting both functional and structural status of
the microcirculation (157). However, NVC is routinely used to
evaluate structural microvascular changes without the complete
estimation of the functional endothelial reserve (158). Few
experiences are available on NVC in primary CVD. At present, no
convincing evidence of a prognostic value of a decreased capillary
density in hypertension was demonstrated (159).

Other Techniques
In the last years, methodologies that allow functional
microcirculation assessment have been used, including
established methods based on medium vessels, such as flow-
mediated vasodilatation (FMD) of brachial artery (160), or
small digital vessels, namely peripheral arterial tonometry
(PAT) (161), as well as laser doppler techniques, such as laser
doppler flowmetry (LDF), laser doppler imaging (LDI) (162),
laser speckle contrast imaging (LSCI), laser speckle contrast
analysis (LASCA), and near-infrared spectroscopy (NIRS) (163).
All of these techniques found a common basic principle: a
vasodilatation in healthy arteries in response to mechanical
(e.g., post-occlusive reactive hyperemia), physical (e.g., thermal
challenges) and chemical stimuli (e.g., pharmacological with
vasoactive substances, administered through intra-arterial
infusion or iontophoresis) (138, 156). However, vascular
responses are not only determined by the functional condition
of the vasculature, but also by the structural status of the
microvasculature. Endothelium-dependent and endothelium-
independent responses can be differentiated applying exogenous
NO donors (e.g., glycerol-trinitrate) or direct non-NO donors
(e.g., adenosine): impaired endothelial-independent function
is associated with structural vascular alterations with changes
in smooth muscle cells, rather than endothelium alterations
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TABLE 1 | Applications of endothelial function assessment techniques in systemic lupus erythematosus and systemic sclerosis.

Technique Method of vasodilatation detection
after stimuli*

Finding in

Systemic lupus erythematosus Systemic sclerosis

Flow-mediated vasodilatation
(FMD)

Ultrasound measurement of diameter
changes of the artery

– Lower FMD in patients compared to
healthy subjects (176)

– Lower FMD in patients carrying aPL
and in patients with lupus nephritis
history compared to the others (177,
178)

– Lower FMD in patients compared to
healthy subjects (179)

– Lower FMD in DU-patients compared
to non-DU patients and FMD
correlation with NVC patterns (179)

Peripheral arterial tonometry
(PAT)

Measurement of digital pulse volume
through specific plethysmographic
finger probes

– Lower RHI in patients compared to
healthy controls without correlation with
SLEDAI (180)

– Lower RHI in patients compared to
healthy subjects (181)

– Decreased RHI values in DU-patients
compared to non-DU patients and
inverse correlation between RHI values
and mean PAP at RHC in patients (182)

Laser doppler
flowmetry/imaging (LDF/LDI)

Laser doppler assessment of the skin
capillary perfusion by measuring the
light scatter

– Higher microvascular dilatation in
patients treated with antimalarial drugs
compared to patients not in treatment
(183)

– Impaired endothelium dependent
vasodilatation in PAH- compared to
non-PAH-patients (169)

Laser speckle contrast
imaging/analysis (LCSI/LASCA)

Laser speckle contrast analysis of
tissue microvascular blood perfusion

– Lower peripheral blood perfusion and
impaired microvascular reactivity in
patients compared to healthy subjects
(184, 185)

– Positive correlation of peripheral blood
perfusion and number of capillaries
evidenced at NVC in patients (184)

– Lower peripheral blood perfusion in
patients compared to healthy subjects
(181)

– Lower peripheral blood perfusion in in
DU- compared to non-DU patients with
association of decreased skin perfusion
to progression of NVC damage (186)

Near-infrared spectroscopy
(NIRS)

Assessment of the regional tissue
oxygenation through the near-infrared
light

NA – Lower StO2 values (both at baseline
and at recovery time after the ischemic
stimuli) in patients compared to healthy
subjects (163)

– Higher StO2 values in patients treated
with sildenafil compared to patients not
in treatment (163)

Microvascular imaging (MVI) Ultrasound evaluation for flow
quantification of small fingertip vessels

NA – Peak systolic and end-diastolic flow
velocities differ between patients and
healthy subjects (187)

*Stimuli can be mechanical (post-occlusive reactive hyperemia), physical (thermal challenges), chemical (vasoactive drugs administered through intra-arterial infusion
or iontophoresis). aPL, antiphospholipid antibodies; DU, digital ulcers; na, not applicable; NVC, nailfold video capillaroscopy; PAH, pulmonary arterial hypertension;
PAP, pulmonary arterial pressure; RHC, right heart catheterization; RHI, reactive hyperemia index; SLEDAI, systemic lupus erythematosus disease activity index; StO2,
oxygen saturation.

(138). All the aforementioned stimuli can be used substantially
in the same way: the most frequently used are the brachial artery
occlusion with a blood pressure cuff and the administration
of sublingual nitroglycerin. The difference among the various
techniques is the way to assess the vasodilatation. In the brachial
artery FMD the respective diameter changes from the resting
state of the artery are measured by ultrasound (160). PAT is a
plethysmography technique that measures digital pulse volume
through specific probes placed on the fingers. The average PAT
amplitude (post-to-pre occlusion) of the tested arm, divided
by that of the contralateral arm, is automatically calculated as
the Reactive Hyperemia Index (RHI). An RHI < 1.67 is the
cut off to define ED (161). The laser techniques are: LDF/LDI
and LSCI/LASCA. LDF assesses the skin capillary perfusion
by measuring the doppler shift induced by the scatter of the
light induced by the flow of circulating red blood cells. LDI
works as LDF but enables the evaluation of blood flow over
a larger area of the skin compared to LDF. LSCI measures
the fluctuating granular pattern produced by the reflection of

the moving red blood cells illuminated by laser lights (162).
LASCA is similar to LSCI where the contrast is calculated
on a single pixel over a number of time frames, but has a
greater temporal resolution and smaller spatial resolution
than that of LSCI (164). NIRS-2D imaging provides indirect
information about the microcirculation state by assessing the
regional tissue oxygenation: a light in the near-infrared band
penetrates the tissue and exploiting the difference between
the oxygenated and deoxygenated hemoglobin in absorption
spectra, estimates the balance between local arterial supply and
tissue oxygen consumption. Consequently, NIRS-2D imaging
provides an average value of tissue oxygen saturation (stO2)
that is a marker of regional tissue oxygenation (163). All these
techniques, especially FMD and PAT, were firstly used in the
setting of atherosclerosis (55) and essential hypertension (165).
Furthermore, ED, analyzed by brachial artery FMD, predicted
long-term adverse CV in healthy subjects without heart disease
and low clinical risk (166–168). PAT was useful in predicting
non-obstructive coronary artery disease, not well predicted
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FIGURE 1 | Systemic lupus erythematosus and systemic sclerosis as paradigmatic diseases in showing multiple factors involved in cardiovascular complications
related to inflammatory and autoimmune processes. ACA, anti-centromere antibodies; anti-dsDNA, anti-double stranded-DNA antibodies; AECA, anti-endothelial
cell antibodies; aPL, anti-phospholipid antibodies; anti-topo-I, anti-topoisomerase-I antibodies; C’, complement; CV, cardiovascular; DU, digital ulcers; ECs,
endothelial cells; EPCs, endothelial progenitor cells; ET1, endothelin1; IFN, interferon; NETs, neutrophil extracellular traps; NO, nitric oxygen; ox-LDL, oxidized
low-density lipoprotein; PAH, pulmonary arterial hypertension; proinflamm-HDL, proinflammatory high-density lipoprotein; ROS, reactive oxygen species; RP,
Raynaud’s phenomenon; SLE, systemic lupus erythematosus; SRC, scleroderma renal crisis; SSc, systemic sclerosis; Tang, angiogenic T cells; VEGF, vascular
endothelial growth factor. Created with BioRender (academic license).

by the Framingham score, and late CV events in large case-
series (169). FMD and PAT were confirmed to be independent
predictors of CV events, with a relative risk of 0.90 per every
1% increase of FMD and 0.85 per every 0.1 increase in RHI
(170). The data on the predictive values of these techniques have
suggested that microvascular endothelial function assessment,
which is as an earlier indicator of CV risk, could play a significant
role in younger subjects or in subjects without a full-blown
CVD, such as patients with autoimmune diseases. Another
new technique which was recently applied in the context of
autoimmune diseases is the microvascular imaging (MVI)
which is a novel ultrasound modality for flow imaging, more
sensitive than the conventional power doppler modality (171). It
generates a high-resolution flow mapping of small vessels using
adaptive image analysis to achieve an increased low-velocity
blood flow stability (172). The evidence of the application of
all these tools in SLE and SSc patients is reported in Table 1.
In addition to the evaluation of the peripheral microcirculation
of the skin, also the retinal district can be evaluated. In

fact, retinal arterioles constitute another microvascular area
directly and easily observed with relatively simple approaches
and which share several common characteristics, including
anatomic, physiological, and embryological features with
heart and brain microcirculation. Recently, LDF of retinal
arterioles and adaptive optics (AO), have been introduced
in order to analyze small vessels morphology at the retinal
field (173). Wall to lumen ratio (WLR) of retinal arterioles
is the parameter which can be calculated for the evaluation
of small resistance artery structure. Supporting the concept
that changes in macrovasculature and microvasculature are
strongly interrelated, a significant correlation among WLR
values of retinal arterioles with other microvascular indexes,
such as media to lumen ratio (MLR) of subcutaneous small
resistance arteries, and macrovascular parameters, such as
aortic and carotid stiffness, clinic and 24-h ambulatory blood
pressure has been previously found in patients with hypertension
(173) and initially evaluated in patients with autoimmune
diseases (174).
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CONCLUSION

Patients with systemic autoimmune diseases show an excess
of CV mortality, and they represent a model for the study of
pathogenetic mechanisms which have been recently evaluated as
determinants in atherosclerosis and in its complications (175).
In fact, the evaluation of the risk factor profile should take into
account additive aspects, defined as “non-traditional drivers”
which are commonly found in patients with rheumatic diseases
(175). Systemic lupus erythematosus and systemic sclerosis were
presented in this review as paradigmatic diseases in describing
the principal factors which are involved in the determination of
the excess of risk, such as ED, microangiopathy and accelerated
atherosclerosis. Chronic inflammation and autoimmunity are
presented as the main actors in this process and both aspects are
well described in SLE and SSc (Figure 1). Despite the fact that
they have many points in common, SLE represents an example of

a disease in which immune system plays a central role in the organ
manifestations, CV complications included, as a consequence
of the state of inflammation, such a secondary condition. On
the other hand, SSc is a disease in which ED is a primary
dysfunction, responsible of many typical clinical features of the
disease. The Framingham risk score underestimates the CV risk
in patient with autoimmune diseases. Clinical tools that assess
the microvasculature could represent a new approach in the CV
risk evaluation, helping in the development of new models of
risk prediction of our patients and changing the management
of these diseases.
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