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Background: Autism spectrum disorder (ASD) is a group of early-onset

neurodevelopmental disorders. However, there is no valuable biomarker for the

early diagnosis of ASD. Our large-scale and multi-center study aims to identify metabolic

variations between ASD and healthy children and to investigate differential metabolites

and associated pathogenic mechanisms.

Methods: One hundred and seventeen autistic children and 119 healthy children

were recruited from research centers of 7 cities. Urine samples were assayed by
1H-NMR metabolomics analysis to detect metabolic variations. Multivariate statistical

analysis, including principal component analysis (PCA), and orthogonal projection to

latent structure discriminant analysis (OPLS-DA), as well as univariate analysis were used

to assess differential metabolites between the ASD and control groups. The differential

metabolites were further analyzed by receiver operating characteristics (ROC) curve

analysis and metabolic pathways analysis.

Results: Compared with the control group, the ASD group showed higher levels of

glycine, guanidinoacetic acid, creatine, hydroxyphenylacetylglycine, phenylacetylglycine,

and formate and lower levels of 3-aminoisobutanoic acid, alanine, taurine, creatinine,

hypoxanthine, and N-methylnicotinamide. ROC curve showed relatively significant

diagnostic values for hypoxanthine [area under the curve (AUC) = 0.657, 95% CI 0.588

to 0.726], creatinine (AUC = 0.639, 95% CI 0.569 to 0.709), creatine (AUC = 0.623,

95% CI 0.552 to 0.694), N-methylnicotinamide (AUC = 0.595, 95% CI 0.523 to 0.668),

and guanidinoacetic acid (AUC = 0.574, 95% CI 0.501 to 0.647) in the ASD group.
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Combining the metabolites creatine, creatinine and hypoxanthine, the AUC of the ROC

curve reached 0.720 (95% CI 0.659 to 0.777). Significantly altered metabolite pathways

associated with differential metabolites were glycine, serine and threonine metabolism,

arginine and proline metabolism, and taurine and hypotaurine metabolism.

Conclusions: Urinary amino acid metabolites were significantly altered in children with

ASD. Amino acid metabolic pathways might play important roles in the pathogenic

mechanisms of ASD.

Keywords: autism spectrum disorder, 1H-NMR analysis, metabolomics, urine, amino acid metabolite

INTRODUCTION

Autism spectrum disorder (ASD) is a group of early-onset
neurodevelopmental disorders characterized by social
communication difficulties, narrow interests, and repetitive
stereotyped behaviors (1). In the United States, the prevalence
of ASD has increased in recent years, ranging from 1.57% in
2009 to 1.85% in 2020 (2, 3). The prevalence of ASD among
children aged 6–12 years is ∼0.70% in China (4). The large cost
associated, mainly consisting of special education services and
parental productivity loss, has caused a heavy burden to society
and families (5). Despite the lack of effective drug treatments,
several studies highlight the potential benefits of early diagnosis
and parent-mediated interventions, which have to some extent
improved children’s social and communicative abilities (6, 7).
The detection rate of genetic etiology of ASD is about 10–15%
(8–10). However, early diagnosis remains a challenge for non-
genetic ASD, which is mainly based on combining clinician
observation with caregiver reports (11). Currently, there is an
urgent need to find valuable biomarkers for the early diagnosis
of ASD.

Some metabolomic studies have indicated the presence of
elevated biomarkers in blood and urine samples from ASD
patients, and these biomarkers include pyruvate, lactate, and
mitochondrial-related enzymes (12–14). Major analytical
techniques for metabolomics are nuclear magnetic resonance
spectroscopy (NMR) and chromatography, including gas
chromatography–mass spectrometry (GC-MS) and liquid
chromatography–mass spectrometry (LC-MS). The advantages
of 1H-NMR are that the sample preprocessing is simple
and non-destructive and that the detection of metabolites is
comprehensive (15, 16). In 2010, Yap et al. first used urinary
1H-NMR analysis to detect potential biomarkers for ASD (17).
Over the last few years, with urinary 1H-NMR analysis, some

Abbreviations: ASD, Autism spectrum disorder; PCA, Principal component

analysis; OPLS-DA, Orthogonal projection to latent structure discriminant

analysis; NMR, Nuclear magnetic resonance spectroscopy; DSM-5, Statistical

manual of mental disorders 5; ADOS, Autism diagnostic observation schedule;

ADI-R, Autism diagnostic interview-revised; SW, Spectral width; RD, Recycle

delay; FID, Free induction decay; CV, Cross-validation; CV-ANOA, Variance

analysis of the cross-validated residuals; ROC, Receiver operating characteristics;

AUC, Area under the curve; FNR, False-negative rate; FPR, False-positive rate;

PPV, Positive predictive value; NPV, Negative predictive value; LR+, Likelihood

ratio positive; LR–, Likelihood ratio negative; MSEA, Metabolite sets enrichment

analysis.

discriminating metabolites have been identified between ASD
and healthy people. Studies indicated that ASD group showed
higher levels of hippurate, glycine, tryptophan and D-threitol
and lower levels of glutamate, creatine, valine, betaine and 3-
methylhistidine. Further analyses indicated possible pathogenic
mechanisms involving gut microbial metabolism, oxidative
stress conditions and amino acid metabolism (18, 19). Overall,
1H-NMR analysis shows great potential for the identification
of biochemical signatures and investigation of the disease
mechanisms of ASD. However, previous 1H-NMR analyses
lack large-scale sample sizes to confirm the significance and
connection between metabolites and ASD. We aimed to conduct
a large-scale and multi-center study to identify metabolic
variations between ASD and control groups through urinary
1H-NMR metabolomics analysis and to investigate potential
biological mechanisms related to differential metabolites.

METHODS

Participants
The study was conducted from January 2014 to December 2016.
All the participants were recruited from research centers of 7
cities (Shanghai, Guangzhou, Changsha, Chongqing, Chengdu,
Wenzhou, and Beijing). Participants were drawn from ASD and
control group.

Autistic children from both hospitals and local autism
rehabilitation of each research center were enrolled in the ASD
group. The inclusion criteria for ASD group were: (a) children
aged 2–18 years; (b) no limitation on the gender; (c) the diagnosis
of ASD was based on the Diagnostic and Statistical Manual
of Mental Disorders 5 (DSM-5) criteria (1) and confirmed
with the Autism Diagnostic Observation Schedule (ADOS) and
the Autism Diagnostic Interview-Revised (ADI-R) criteria by
trained clinical psychiatrists from each research center; (d) urine
sample was available. Exclusion criteria for ASD group were:
(a) symptomatic autism (such as Rett syndrome and fragile X
syndrome); (b) other mental illness (such as attention-deficit
hyperactivity disorder); (c) other neurological disorders (such
as epilepsy and central nervous system infections); (d) inherited
metabolic diseases; (e) history of brain injury; (f) taking non-
essential drug or dietary supplement before (72 h) and during
sample collection.

Healthy children from the health examination center of
each research center were enrolled in the control group. The
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inclusion criteria for control group were: (a) children with no
abnormality in health examination and typical development;
(b) age- and sex-matching with ASD group; (c) urine sample
was available. Exclusion criteria for control group were: (a)
siblings of ASD group; (b) clinical evidence of ASD diagnosis; (c)
mental illness (such as attention-deficit hyperactivity disorder);
(d) neurological disorders (such as epilepsy and central nervous
system infections); (e) inherited metabolic diseases; (f) history of
brain injury; (g) taking non-essential drug or dietary supplement
before (72 h) and during sample collection.

After all eligible participants and their parents provided
informed consent, they were invited to participate in the study.
The study was approved by the institutional ethics committee at
the Children’s Hospital of Fudan University.

Sample Collection
First morning urine specimens were collected from all
participants during the research period. Samples were collected
in 15mL urine collection tubes without preservative. Each
sample was centrifuged and aliquoted into 1.5mL EP tubes.
Afterwards, samples were numbered (“1” represents the ASD
group, and “2” represents the control group) and stored at
−80◦C immediately until 1H-NMR analysis.

1H-NMR Spectroscopy Experiments and
Data Processing
Sample Preparation
A 500 µL urine sample was added to a 1.5mL EP tube prefilled
with 14 µL KF (5M) solution. After vortexing, the sample was
allowed to rest for 10min, followed by centrifugation (12,000
rpm, 4◦C) for 10min. A total of 450 µL liquid supernatant was
added to an NMR tube preloaded with 10 µL EDTA-d12 (0.1M).
The NMR tube cap was covered and mixed by hand. Finally, 45
µL Na+/K+ buffer (1.5M, pH = 7.40) was added to the NMR
tube, which was mixed by hand and then placed in the NMR
spectrometer for data collection. The sample preparation process
for 1H-NMR analysis is shown in Supplementary Figure 1.

1H-NMR Spectroscopy Experiments
All 1H-NMR spectroscopy experiments were performed at 298K
using a Bruker AVIII 600 MHz NMR spectrometer (Bruker
BioSpin, Germany) with a proton resonance frequency of
600.13 MHz.

The NOESYGPPR1D pulse sequence (RD-90◦-t1-90◦-tm-
90◦-ACQ) was used to collect the spectra. The parameters were
set as follows: spectral width (SW) was 20 ppm, recycle delay
(RD) was 2 s, mixing time (tm) was 80ms, t1 was 4 µs, 90◦ pulse
length was 14.8 s, data time was 1.36 s, data points were 32K, and
free induction decay (FID) accumulation was 64 times.

Data Processing
Spectra were processed using MestReNova software
(MestReNova 8.1, Spain). The 1H-NMR FID signals were
multiplied by an exponential function equivalent to a line
broadening of 1Hz before performing an automatic Fourier
transformation. The phase distortion and baseline of each
spectrum were manually adjusted. The internal standard
trimethylsilyl propanoic acid (TSP, δ = 0 ppm) was used as the

baseline to calibrate the chemical shifts. The concentration of
TSP was 0.261 mmol/L, and the spectrum of TSP represented
12 1H. The regions of the 1H-NMR spectra (δ 0.3–9.5 ppm)
were divided into consecutive integrated spectral regions of
equal width (δ 0.004 ppm). The spectral region of the water
(δ 4.71–5.055 ppm) and urea (δ 5.6–6.12 ppm) peaks were
removed from each spectrum to minimize variations caused
by the presaturation of the residual water and urea resonances.
Mnova software was used to correct the spectra with obvious
chemical shifts after the integration. Metabolites were assigned
by referencing the values for chemical shifts in J-resolved (JRES),
COZY, TOCSY, HSQC, andHMBC spectra and literature reports.
A series of 2D NMR spectra were acquired for selected samples.

To eliminate the instrument differences of sensitivity and
stability and to reduce the analysis errors caused by the
concentration differences of the samples, two normalization
methods were performed. Creatinine normalization: the 1H-
NMR spectra were normalized by using the creatinine methylene
resonance (δ= 4.05 ppm) as a reference. Total area normalization
(20): the integrated area in each bucket was normalized by the
total sum of peak intensities to eliminate the effects of variable
concentration among different samples.

Data and Statistical Analysis
Clinical Characteristics of Participants
Difference in age between the ASD and control groups was
evaluated by Student’s t-test when the distribution was normal or
the Mann-Whitney U test when it was skewed. Difference in sex
was investigated using chi-square test. Statistical analyses were
performed by using the SPSS statistical package program (version
20, SPSS Inc., Chicago, IL, USA), and P < 0.05 was considered
statistically significant.

Multivariate Analysis
The normalized data were imported into the SIMCA-P+ software
package (version 13.0, Umetrics, Sweden) for multivariate
statistical analysis, including principal component analysis
(PCA) and orthogonal projection to latent structure discriminant
analysis (OPLS-DA) (21–24). PCA was first used to observe
the overall distribution among samples and the stability of the
whole analysis process. Abnormal data, which related to sample
contamination or improper sampling, were removed according
to the overall aggregation trend in all the samples. After which
OPLS-DA was used to distinguish the overall difference in the
metabolic profile and to find differential metabolites between
the groups.

To prevent model overfitting, an internal validation method
was used to verify the validity of the model. The OPLS-DAmodel
was validated by a 7-fold cross-validation (CV) (25). R2 and Q2

were two parameters to assess the quality of the model. OPLS-DA
was further validated by variance analysis of the cross-validated
residuals (CV-ANOVA) (26), and the model was considered valid
at P < 0.05.

After multiplying the loading value of each variable with
its standard deviation, backtracking conversion of the data
was performed. Then, the data were assessed by multivariate
analysis and imported into mapping software based onMATLAB
(version 7.1, USA) to plot the loading diagram of the correlation
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FIGURE 1 | A typical 600 MHz 1H-NMR spectrum of a urine sample. Region of dashed box is vertically magnified 8 times. Metabolites corresponding to each number

are listed in Supplementary Table 1.

FIGURE 2 | After the creatinine normalization, multivariate analysis results of 1H-NMR spectra of urine samples from the ASD group (green dots, 1) and control group

(blue squares, 2). (A) PCA score plot: R2X = 0 403, Q2 = 0.135. (B) OPLS-DA score plot: R2X = 0.257, Q2 = 0.0138, CV-ANOVA P = 0.523.

coefficient. The Pearson correlation coefficient represented the
linear correlation between the variable and the first principal
component score value of the OPLS-DA model and was used to
determine whether the variation contributed significantly to the
intergroup differentiation. The significance was evaluated by the
threshold value of the absolute correlation coefficient, which was
determined according to the confidence interval of the sample
size. If the absolute value of the Pearson correlation coefficient
of the variable was higher than the threshold value (P < 0.05),
the content of the variable was considered significantly different
between groups.

Univariate Analysis
Differential metabolites between the two groups were selected
for univariate analysis. Data from the total area normalized
peak area are expressed as the mean ± SD. An independent
sample t-test was used for comparing the two groups when the
distribution was normal. The non-normal distribution data were
evaluated by Mann-Whitney U test. P < 0.05 was considered
statistically significant. The false discovery rate (FDR) was used to
correct multiple hypothesis testing. FDR P < 0.1 was considered
statistically significant. We applied correlation analysis to detect
the relationship between differential metabolite levels and age.
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FIGURE 3 | After the total area normalization, multivariate analysis results of 1H-NMR spectra of urine samples from the ASD group (green dots, 1) and control group

(blue squares, 2). (A) PCA score plot: R2X = 0.366, Q2 = 0.0656. (B) OPLS-DA score plot: R2X = 0.274, Q2 = 0.0565, CV-ANOVA P = 0.009.

FIGURE 4 | OPLS-DA model: a polychromatic correlation coefficient loading plot.

Receiver Operating Characteristics (ROC) Curve

Analysis
The sensitivity and specificity of metabolites with significant
differences between the two groups in the diagnosis of ASD
were evaluated using a ROC curve analysis. ROC curves were
generated by using MedCalc statistical software (version 19.1.7,
Belgium). The area under the curve (AUC) was used to measure
the overall degree of identification power. An AUC > 0.7 was
considered acceptable. Optimal cut-off points were determined
by maximizing the Youden’s J index (J = sensitivity + specificity
– 1). The sensitivity, specificity, false-negative rate (FNR), false-
positive rate (FPR), positive predictive value (PPV), negative
predictive value (NPV), likelihood ratio positive (LR+), and

likelihood ratio negative (LR–) were calculated to compare the
diagnostic accuracy of the metabolites. Further analysis was
performed after each group was stratified by sex and age. Logistic
regression was used to analyse the combined metabolites.

Metabolic Pathways and Network Analysis
MetaboAnalyst (version 4.0, https://www.metaboanalyst.ca/) was
used for pathway and network analyses (27). All differential
metabolites were imported into the pathway analysis module to
obtain matched pathways according to the P-values from the
pathway enrichment analysis and pathway impact values from
the pathway topology analysis. Significantly affected metabolic
pathways associated with differential metabolites were identified
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by metabolite set enrichment analysis (MSEA). A metabolite-
gene-disease interaction network was established to detect the
connections of differential metabolites and associated pathways.

RESULTS

Characteristics of the ASD and Control
Groups
A total of 117 children with ASDwere enrolled in the ASD group,
and 119 healthy children were enrolled in the control group. The
mean ages of the ASD and control groups were 10.12± 2.60 and
9.90 ± 1.73, respectively, with no significant difference between
them (P = 0.468). The male to female ratios were 4.82:1 in the
ASD group and 3.58:1 in the control group, with no significant
difference between them (P = 0.388).

1H-NMR Spectrum of Urine Samples
1H-NMR spectra of urine samples from all participants
were collected. A typical 1H-NMR spectrum is shown in
Figure 1. The keys for metabolites in Figure 1 are given in
Supplementary Table 1. A total of 39 metabolites were identified
in the 1H NMR spectra of urine samples.

Multivariate Analysis of 1H-NMR Spectra of
Urine Samples
Creatinine Normalization Analysis
After creatinine normalization, PCAwas performed on 1H-NMR
spectra of urine samples. Discriminant variables obtained from
the PCA score plot (Figure 2A) were R2X = 0.403 and Q2 =

0.135. The OPLS-DA score plot (Figure 2B) showed R2X= 0.257
and Q2 = 0.0138. CV-ANOVA of the OPLS-DA model indicated
that the model was not valid (P = 0.523).

TABLE 1 | Pearson’s correlation coefficient of discriminant metabolites.

Metabolites Pearson’s correlation

coefficient*

3-Aminoisobutanoic acid 0.208

Alanine 0.220

Taurine 0.242

Glycine −0.237

Guanidinoacetic acid −0.424

Creatine −0.278

Creatinine 0.268

Hydroxyphenylacetylglycine −0.190

Phenylacetylglycine −0.233

Hypoxanthine 0.370

Formate −0.248

N-methylnicotinamide 0.348

Unknown −0.296

*The negative value indicates that themetabolite content in the urine samples of the control

group is significantly lower than that of the ASD group. Conversely, the positive value

indicates that the metabolite of the control group is significantly higher than that of the

ASD group.

Total Area Normalization Analysis
The 1H-NMR spectra of the two groups were analyzed by PCA
after total area normalization. The parameters of the PCA score
plot (Figure 3A) were R2X= 0.366 and Q2 = 0.0656. The OPLS-
DA score plot (Figure 3B) showed R2X = 0.274, Q2 = 0.0565
and CV-ANOVA P = 0.009. These results suggested that the
model was valid.

Differential Metabolites Between the ASD
and Control Groups
To distinguish the metabolic differences between the two groups,
a polychromatic correlation coefficient loading plot (Figure 4)
was drawn. The color of the polychromatic loading plot was
encoded by the absolute value of the correlation coefficient.
The warmer the color is, the higher the absolute value of the
correlation coefficient and the greater the contribution to the
intergroup differentiation. The threshold of the absolute value
of the Pearson’s correlation coefficient was determined to be
0.182. The variables corresponding to the correlation coefficient
with an absolute value > 0.182 contributed significantly to the
intergroup differentiation (P < 0.05). Differential metabolites
identified by the Pearson’s correlation coefficient were showed
in Table 1. Compared with the control group, the ASD group
showed higher levels of glycine, guanidinoacetic acid, creatine,
hydroxyphenylacetylglycine, phenylacetylglycine and formate
and lower levels of 3-aminoisobutanoic acid, alanine, taurine,
creatinine, hypoxanthine and N-methylnicotinamide.

The fold changes of differential metabolites are summarized in
Figure 5. A total of 6 metabolites, including 3-aminoisobutanoic
acid (P = 0.0425), creatine (P = 0.0009), creatinine (P <

0.0001), hypoxanthine (P < 0.0001), formate (P = 0.0267),
and N-methylnicotinamide (P = 0.0149), showed significant
differences in the normalized peak areas between the two groups.
The differences of above 6 metabolites remained significant
after correction for multiple hypothesis testing (FDR P < 0.1)

FIGURE 5 | Comparation of the fold changes of the differential metabolites

between the ASD and control groups. The fold change represents the ratio of

average peak area between ASD group and control group.
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(Table 2). Correlation analysis showed that the level of creatinine
was positively correlated with age in the ASD group (r = 0.215,
95% CI 0.013 to 0.401, P = 0.0370). In the control group, the
level of creatinine was also positively correlated with age (r =
0.215, 95% CI 0.036 to 0.380, P = 0.0190), and creatine was
negatively correlated with age (r = −0.277, 95% CI −0.435 to
−0.102, P = 0.0023).

Differential Metabolites and Potential
Biological Mechanisms
The Sensitivity and Specificity of Metabolites in the

Diagnosis of ASD
The diagnostic accuracies of differential metabolites in the
two groups were evaluated by ROC curve analysis (Table 3,
Supplementary Figure 2). The ROC curve showed relatively
significant diagnostic values of hypoxanthine (AUC = 0.657,
95% CI 0.588 to 0.726), creatinine (AUC = 0.639, 95% CI

0.569 to 0.709), creatine (AUC = 0.623, 95% CI 0.552 to
0.694), N-methylnicotinamide (AUC = 0.595, 95% CI 0.523
to 0.668) and guanidinoacetic acid (AUC = 0.574, 95% CI
0.501 to 0.647) for ASD (Supplementary Figure 3). The AUC
of ROC analysis of the creatine/creatinine ratio was 0.6480

(95% CI 0.579 to 0.718). For each metabolite, there was no

significant difference in AUCs between males and females

(Supplementary Table 2). Compared with age stratification of 7–

9 years old, the metabolites guanidinoacetic acid and creatine

showed significantly higher diagnostic accuracy for ASD in the

age stratification of 13–15 years old (AUC of guanidinoacetic acid
= 0.802, 95% CI 0.566 to 0.944, P = 0.0282; AUC of creatine
= 0.823, 95% CI 0.589 to 0.955, P = 0.0344. Results shown
in Supplementary Table 3). By combining the metabolites of
creatine, creatinine and hypoxanthine, the AUC of the ROC
curve reached 0.720 (95% CI 0.659 to 0.777), with a sensitivity
of 80.34% and specificity of 52.94%.

TABLE 2 | Peak areas of differential metabolites after the total area normalization.

Metabolites ASD group Control group P-value* FDR P-value* Fold change

Mean SD Mean SD

3-Aminoisobutanoic acid 0.77 0.61 0.94 0.68 0.0425 0.0921 0.82

Alanine 0.52 0.16 0.51 0.17 0.8440 0.9975 1.01

Taurine 0.63 0.21 0.62 0.17 0.9162 0.9162 1.00

Glycine 1.24 0.39 1.19 0.44 0.3430 0.4459 1.04

Guanidinoacetic acid 1.42 0.32 1.36 0.36 0.1446 0.2350 1.05

Creatine 1.78 0.86 1.43 0.72 0.0009 0.0039 1.24

Creatinine 4.68 0.90 5.26 1.21 <0.0001 0.0012 0.89

Hydroxyphenylacetylglycine 0.15 0.06 0.15 0.06 0.8860 0.9598 1.01

Phenylacetylglycine 0.48 0.20 0.44 0.21 0.1097 0.2037 1.10

Hypoxanthine 0.02 0.01 0.04 0.03 <0.0001 0.0007 0.62

Formate 0.06 0.04 0.05 0.02 0.0267 0.0694 1.17

N-methylnicotinamide 0.01 0.01 0.01 0.01 0.0149 0.0484 0.79

Unknown 0.26 0.34 0.22 0.18 0.3109 0.4491 1.16

*Bold value indicate that the difference was considered statistically significant (P < 0.05, FDR P < 0.1).

TABLE 3 | Diagnostic accuracies of differential metabolites between the ASD and control groups.

Metabolites AUC Cut-off Sensitivity (%) Specificity (%) FNR (%) FPR (%) PPV (%) NPV (%) LR+ LR–

3-Aminoisobutanoic acid 0.568 0.5890 67.52 50.42 32.48 49.58 57.2 61.2 1.36 0.64

Alanine 0.508 0.4190 73.50 31.93 26.50 68.07 51.5 55.1 1.08 0.83

Taurine 0.502 0.5683 44.44 61.34 55.56 38.66 53.1 52.9 1.15 0.91

Glycine 0.560 1.2698 41.88 70.59 58.12 29.41 58.3 55.3 1.42 0.82

Guanidinoacetic acid 0.574 1.2573 76.07 40.34 23.93 59.66 55.6 63.2 1.27 0.59

Creatine 0.623 1.8805 44.44 77.31 55.56 22.69 65.8 58.6 1.96 0.72

Creatinine 0.639 4.6505 55.56 69.75 44.44 30.25 64.4 61.5 1.84 0.64

Hydroxyphenylacetylglycine 0.504 0.1710 26.50 78.99 73.50 21.01 55.4 52.2 1.26 0.93

Phenylacetylglycine 0.571 0.2742 87.18 26.89 12.82 73.11 54.0 68.1 1.19 0.48

Hypoxanthine 0.657 0.0359 88.03 36.13 11.97 63.87 57.5 75.4 1.38 0.33

Formate 0.529 0.0768 19.66 91.60 80.34 8.40 69.7 53.7 2.34 0.88

N-methylnicotinamide 0.595 0.0104 74.36 49.58 25.64 50.42 59.2 66.3 1.47 0.52

AUC, area under the curve; FNR, false-negative rate; FPR, false-positive rate; PPV, positive predictive value; NPV, negative predictive value; LR+, likelihood ratio positive; and LR–,

likelihood ratio negative.
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Correlated Metabolic Pathways and Networks
The main metabolic pathways associated with differential
metabolites are shown in Supplementary Figure 4. According
to the bubble plot of the metabolic pathway impact, there
were significant metabolite changes in the glycine, serine and
threonine metabolism, glyoxylate and dicarboxylate metabolism
and taurine and hypotaurine metabolism pathways (Figure 6A).
The plot of metabolite set enrichment analysis (MSEA) listed
the significant enrichment pathways of differential metabolites
(Figure 6B). Glycine, serine and threonine metabolism, primary
bile acid biosynthesis and aminoacyl-tRNA biosynthesis were the
pathways with the most significant enrichment. The metabolite-
gene-disease interaction network provides a global view of the
connection of the differential metabolites and the potential
functional relationships among metabolites, connected genes,
and target diseases (Supplementary Figure 5).

DISCUSSION

Complex etiologies and atypical symptoms pose very large
challenges to the early diagnosis of ASD. Urinary 1H-NMR
analysis provides a fast and comprehensive assessment to detect
potential biomarkers of ASD (28). Our study was based on the
1H-NMR analysis of urine samples fromASD and control groups
to identify candidate metabolites and associated pathogenic
mechanisms. Compared with other studies of urinary 1H-NMR
metabolomics analysis of ASD, our study sample was large
size, multi-center, and representative. Besides, our study used
two normalization methods, creatinine normalization and total
area normalization. The analysis using creatinine normalization

showed no significant differences between the two groups,
though the total area normalization did detect a difference.
The variation of creatinine was confirmed by the total area
normalization.Whiteley et al. also found that excretion of urinary
creatinine in the group of pervasive developmental disorders,
which included ASD, was significantly lower than controls (29).
The abnormal creatinine metabolism might be caused by rigidity
in food choice and various exclusion diets associated with ASD
(30). Therefore, total area normalization was more suitable for
our study.

The results obtained from the 1H-NMR analysis revealed
that the levels of glycine, guanidinoacetic acid, creatine,
hydroxyphenylacetylglycine, phenylacetylglycine and formate
were higher in the ASD group than those in the control
group. Moreover, the levels of 3-aminoisobutanoic acid, alanine,
taurine, creatinine, hypoxanthine and N-methylnicotinamide
were lower in the ASD group than those in the control
group. The normalized peak areas of 3-aminoisobutanoic
acid, creatine, creatinine, hypoxanthine, formate and N-
methylnicotinamide differed significantly between the two
groups. The metabolite levels of glycine, taurine, creatine and
creatinine were consistent with those from previous reports (19,
31). Our study is the first to detect variations in the metabolites
of hydroxyphenylacetylglycine in urine samples from children
with ASD. The results of ROC analysis indicated that creatine,
creatinine and hypoxanthine have the potential to be biomarkers
for the diagnosis of ASD. The creatine/creatinine ratio slightly
improved the diagnostic accuracy. Recent research has reported
significant female-related alterations of creatine and creatinine,
and the creatinine/creatine ratio might be a good predictor of

FIGURE 6 | Metabolic pathway analyses utilizing the MetaboAnalyst functional interpretation tools. (A) Bubble plot of metabolic pathway impact. The metabolic

pathways are shown as bubbles. The X coordinate and size of the bubble represent the value of pathway impact in the topology analysis. The Y coordinate and color

of the bubble represent the P-value of the enrichment analysis. The darker red color and larger size indicate a more significant metabolite change in the corresponding

pathway. (B) Metabolite set enrichment analysis (MSEA) plot. Significantly enriched pathways are represented by bars. The color and length of the bar are based on

the P-value and fold enrichment, respectively.

Frontiers in Psychiatry | www.frontiersin.org 8 May 2021 | Volume 12 | Article 624767

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Ma et al. Differential Metabolites in Chinese Autistic Children

ASD in female subjects (32). We further found that combining
the metabolites creatine, creatinine and hypoxanthine as a
potential diagnostic indicator can largely improve the diagnostic
accuracy for ASD.

The extension study of the metabolic pathway analysis
demonstrated a possible imbalance of amino acid metabolism
in ASD children. Differential metabolites between the ASD
and control groups involved glycine, serine and threonine
metabolism, arginine and proline metabolism, taurine and
hypotaurine metabolism, and glutathione metabolism pathways
(Supplementary Figure 6). In accordance with previous
observations, amino acid metabolism disorder plays an
important role in the pathogenesis mechanism of ASD (33–37).
Creatine and creatinine, which show significant metabolism
alterations in ASD, play an essential role in maintaining a high
level of energy supply for the brain (38). Studies have indicated
that creatine deficiency occurs in some ASD cases, and creatine
may be a therapeutic target for ASD (38–41). Abnormalities
in creatinine might closely linked to abnormalities in creatine.
Creatine is biosynthesized from glycine and arginine with an
intermediate metabolite of guanidinoacetic acid. Glycine acts
as an excitatory neurotransmitter in the early developmental
stage. As the nervous system matures, it transforms to the
major inhibitory neurotransmitter. If the transformation does
not occur, an abnormal level of glycine may result in neural
disorders, including ASD (42–44). The taurine and hypotaurine
metabolism pathway also differed significantly between the two
groups. Oxidative stress imbalance is considered to be important
components of the pathophysiology of ASD, and antioxidant
therapy may improve the prognosis of ASD (45, 46). Park
et al. reported that taurine, as an antioxidant and regulator
of inflammation, might be a valid biomarker for ASD (47).
Combined with vitamin D3, taurine showed benefits in the
treatment of ASD (48, 49). All metabolic pathways interact with
each other and constitute a complex network with related genes
and diseases (Supplementary Figure 5).

Many studies have reported that ASD is associated with
abnormal gut microbial metabolism (50–52). Gut microbiota
metabolites, including phenylalanine, tyrosine, hippurate and
tryptophan, have been reported to be factors in the development
of ASD (53–56). In our study, phenylacetylglycine, a gut
microbial co-metabolite, had a slight variation between the
two groups. Phenylacetylglycine is the end product of the
phenylalanine metabolism pathway (57). However, there are no
studies on the relationship between phenylacetylglycine and the
pathogenesis of ASD.

LIMITATIONS

There are some limitations in our study. At the cellular
level, biochemical processes such as oxidative phosphorylation,
redox reaction, and oxidative stress are regulated by circadian
rhythms (58). About 50% of metabolites are thought to be
rhythmic, involving metabolic pathways such as nucleotides,
energy, oxidation, and carbohydrates (59). Studies indicated
that disrupted circadian rhythm is closely related to ASD (60–
62). Thus, in our study, inconsistent urine collection times
may have affected the quality of metabolic analyses due to the

restriction of research centers. A few small-scale sample studies
have set healthy sibling group as control to remove the effects of
confounding factors, such as heredity and environment (17, 19).
However, our study lacks of healthy siblings as controls.

Though 1H-NMR analysis is the regular NMR method,
some studies have used 2D HSQC-NMR to improve urinary
screening in ASD. Compared to 1H-NMR analysis, 1H-13C
HSQC-NMR analysis shows the advantage of improving the
metabolite detection accuracy and the discrimination ability (18,
31). Moreover, it is necessary to compare metabolite levels that
vary with ASD severity to better clarify the pathogenesis of ASD.

CONCLUSIONS

In our study, 1H-NMR metabolomic analysis was used to
investigate urinary metabolism patterns in the ASD and control
groups. We revealed that urinary amino acid metabolites were
significantly altered in children with ASD. A series of variations
in amino acid metabolism pathways, including glycine, serine
and threonine metabolism, arginine and proline metabolism,
and taurine and hypotaurine metabolism might play important
roles in the pathogenic mechanisms of ASD. Further studies of
differential metabolites are needed to improve the understanding
of ASD pathogenesis.
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