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We propose a novel pharmacological fMRI (phMRI) method for objectively quantifying

disease severity in Parkinson disease (PD). It is based on the clinical observation that the

benefit from a dose of levodopa wears off more quickly as PD progresses. Biologically

this has been thought to represent decreased buffering capacity for dopamine as

nigrostriatal cells die. Buffering capacity has been modeled based on clinical effects,

but clinical measurements are influenced by confounding factors. The new method

proposes to measure the effect objectively based on the timing of the known response

of several brain regions to exogenous levodopa. Such responses are robust and

can be quantified using perfusion MRI. Here we present simulation studies based on

published clinical dose-response data and an intravenous levodopa infusion. Standard

pharmacokinetic-pharmacodynamic methods were used to model the response. Then

the effect site rate constant ke was estimated from simulated response data plus

Gaussian noise. Predicted time – effect curves sampled at times consistent with

phMRI differ substantially based on clinical severity. Estimated ke from noisy input data

was recovered with good accuracy. These simulation results support the feasibility of

levodopa phMRI hysteresis mapping to measure the severity of dopamine denervation

objectively and simultaneously in all brain regions with a robust imaging response to

exogenous levodopa.

Keywords: phMRI, drug discovery and development, pharmacological biomarkers, levodopa, pharmacodynamics,

hysteresis, pharmacokinetic-pharmacodynamic modeling, ASL

INTRODUCTION

The intensity and duration of the effect after injection appear to correlate with

the degree of akinesia, the action of L-DOPA lasting longer the less pronounced

the akinesia. —Hirschmann and Mayer (translated) (1).

Parkinson disease (PD) is characterized by progressive death of cells projecting from the substantia
nigra to the striatum. One of the most important unmet needs in PD is to find objective,
quantitative in vivo biomarkers of disease severity. Biomarkers of nigrostriatal denervation are
sought for several important reasons, including as surrogate markers of disease progression
in treatment trials (2, 3). Putative imaging biomarkers of disease progression include striatal
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[18F]fluorodopa PET or [123I]ioflupane SPECT. Unfortunately,
these techniques do not accurately quantify nigrostriatal cell loss
(4). Presynaptic dopaminergic imaging of the midbrain does (5);
nevertheless, alternative methods would be welcome.

Here we describe a novel potential biomarker, based on
the common clinical observation that the benefit from a dose
of levodopa wears off more quickly as PD progresses. Early
in the course of disease, a small dose of levodopa provides
benefit long after the plasma levodopa concentration has declined
substantially from its peak. The body responds as if the levodopa
in the plasma filled a reservoir and then slowly leaked out
to produce benefit. With disease progression, even though
the same amount of levodopa circulates in the blood, the
benefit wears off much faster, as if the reservoir had become
leakier. Biologically, the reservoir may represent the diminishing
buffering capacity of ascending dopaminergic axons as midbrain
dopamine neurons die off (6). This wearing off of benefit has
been quantified by amathematical model that postulates a central
effect compartment (reservoir) whose concentration of levodopa
directly determines the clinical benefit. The buffering capacity
in this model can be characterized by a single number, the
effect site rate constant ke, which can be computed from serial
measurements of both plasma concentration and clinical status
(7). On average, patients with more severe PD and longer disease
duration have a larger (“leakier”) ke when modeled this way
(Figure 1) (8–13). In fact, ke can be the strongest predictor of
the kinetics of response to levodopa in PD (9, 12). Dopamine
buffering capacity as measured by ke also correlates significantly
with nigrostriatal denervation as measured by DOPA uptake
(14) or dopamine transporter imaging (15). Unfortunately, the
clinical measurements used to determine ke are influenced by
confounding factors such as patient fatigue and motivation,
which likely add variance to the measurement. A direct,
objective brain measure of response to levodopa may reduce this
added variance.

The effect of levodopa on the brain can be seen by
measuring movement, but also by measuring regional cerebral
blood flow (rCBF), reflecting regional brain activity (16–19).
Crucially, using quantitative techniques, levodopa has no direct
vascular effects after adequate carbidopa pretreatment (16–18).
Levodopa’s regional CBF effects reflect its regional effects on
glucose metabolism and are prominent in pons and midbrain,
thalamus, middle frontal gyrus, insula, putamen and cingulate
cortex (17, 19). Drug effects on rCBF in PD can be quantified
without ionizing radiation using arterial spin labeling (ASL)
perfusionMRI (20–22). Themidbrain rCBF response to levodopa
is robust whether measured with [15O]water PET (16–19) or with
perfusion MRI (22).

Here we show, using simulated data based on published results
in human PD patients, that quantifying dopamine buffering
capacity ke is likely to be feasible with existing technology.

METHODS

Pharmacokinetics
Measuring ke with levodopa phMRI would be infeasible if one
had to repeatedly image a subject until a dose of levodopa wore

FIGURE 1 | Across groups of PD patients, ke is a surrogate for disease

duration (r = 0.95). Data redrawn from Harder and Baas (8) and Contin

et al. (9).

FIGURE 2 | Plasma levodopa concentrations in PD patients following the “final

dose” intravenous infusion method in Black et al. (26). The 3 lines mark the

mean, 90th and 10th percentile for samples collected in the corresponding

intervals. Redrawn from data reported in Black et al. (26).

off completely, perhaps for several hours in early PD. Fortunately,
with faster wearing-off as PD progresses, there is also faster
“wearing-on” or onset of drug effect (10, 23–25). In fact, with a
completely unrelated drug that also shows equilibration delay,
giving the drug as a rapid intravenous (i.v.) infusion followed
by a slow maintenance infusion allowed estimating the ke just as
precisely from the first 20min of data as from 3½ h of data (7).
Fortunately we have used exactly this approach to dose levodopa
in PD: a fast i.v. loading dose followed by a slow maintenance
infusion (26) (Figure 2). This infusion method allows us to
transiently achieve plasma levodopa concentrations of 1,500–
3,500 ng/mL, so we can measure ke from both the rapid rise and
fall of plasma levels.

For present purposes, likely time – concentration curves Cp(t)
in people with PD were taken from this infusion protocol,
which aims to produce a steady-state levodopa concentration
of 600 ng/ml, and consists of a 10-min loading dose at 0.6426
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FIGURE 3 | Predicted levodopa concentration in the effect compartment at

various disease severity levels. Curves are labeled by t½e = ln 2/ke from more

severe PD (t½e = 5min.) to milder PD (t½e = 277min.).

mg/kg followed by a maintenance infusion at 2.882 × 10−5

mg/kg/min × (140 yr–age)/yr (26). For a 65-year-old 70-
kg person that means 45mg over 10min followed by 0.15
mg/min, for a total dose over 150min of 66mg. That i.v.
dose is bioequivalent to 78mg oral levodopa (27), though
of course i.v. dosing leads to much higher transient peak
plasma concentrations.

Using those data, we aggregated individual data points by
time bins and plotted the mean, to estimate the most likely
Cp(t), and the 10th and 90th percentile, to deal with a range
of metabolic rates in patients (Figure 2); see mpdp1.ipynb
at https://bitbucket.org/kbmd/hysteresis). The NumPy and
matplotlib libraries in Python were used for simulations
and data visualization (Python Programming Language,
RRID:SCR_008394; NumPy, RRID:SCR_008633; MatPlotLib,
RRID:SCR_008624) (28, 29).

Modeling the Effect Compartment
Holford and Sheiner describe the theoretical background for the
effect compartment model (30). A later paper by Sheiner’s group
simplifies the modeling with the assumption that Ce = Cp at
steady state, leading to the definition of the effect compartment
concentration curve by the simpler differential equation Ce

′
=

ke(Cp–Ce) (31).
If we use piecewise linear interpolation to estimate Cp(t)

between blood samples [as did Unadkat et al. (31)], Ce can be
computed in closed form. We can write Cp as Cp(t–ti)= Cp(ti)+
mi(t–ti) on the interval [ti, ti+1], where mi = [Cp(ti+1)–Cp(ti)]/
[ti+1-ti]. We need a value for the effect site concentration before
the infusion starts, Ce(t0). For the purposes of this report, we can
reasonably assume Ce(t0) = Cp(t0), which will be approximately
true if at the time of the first blood draw patients have refrained
from taking oral levodopa for 8–10 h, since t½e is <5 h, and
usually <2.5 h [see Table 4 in Contin et al. (9)].

The solution to this initial value problem is

Ce (t) =

(

Cp (ti)−
mi

ke

)

+mi (t−ti)

+

(

Ce (ti) − Cp (ti) +
mi

ke

)

e−k(t−ti)

defined on the interval (ti, ti+1] (32).

Predicting Effect From Levodopa
Concentrations in PD
To test this method, one needs to estimate a reasonable variety of
time: effect curves in PD. Not only ke but also the concentration–
effect curve changes with disease severity. Contin et al. showed
that a sigmoid Emax model reasonably fit the data from a wide
range of PD severity (9). We adopt their measurements of
EC50, n (the Hill coefficient) and ke for a variety of disease
severity groups; namely, means for Hoehn and Yahr (33) stages
I through IV in addition to the mildest and most severely
affected individual subjects in the Contin et al. report (their
Table 4). These parameters and the sigmoid Emax model are
combined to create time–effect curves that we could expect from
a brain region whose activity changes reliably with increased
dopamine release in the brain with administration of exogenous
levodopa. Note that the dopamine receptor may be “upstream”
(e.g., posterior putamen) to the dopa-responsive region (e.g.,
motor cortex); dopamine receptors are not needed in the dopa-
responsive region itself. The simulated data use a baseline CBF
of 50 ml/hg/min and maximal effect was set at 35 ml/hg/min,
consistent with a ∼70% rCBF increase in midbrain after a
relatively large levodopa-carbidopa dose (22).

Adding Noise
The brain imaging time–effect curves assessed by any real
brain imaging method will not be perfect, noise-free estimates,
but will be contaminated by variability from biological or
instrumentation issues. To test how well we can expect to recover
ke (and the other pharmacodynamic parameters) from a real
experiment, we add noise to the simulated data described in the
previous paragraph. We added Gaussian noise with a coefficient
of variation (CoV) of 12.9%; this value was chosen based on the
CoV in a cortical gray matter region across sixteen 34-s CBF
images in 11 adults with PD scanned with a pCASL sequence
while fixating a crosshair (unpublished data, K. J. Black and
colleagues) (34, 35). For this study, all methods were carried
out in accordance with relevant guidelines. The experimental
protocol was approved by the Washington University Human
Research Protection Office (ID # 201703122). All participants
provided informed consent.

Parameter Estimation
We simultaneously estimated ke, EC50, and n from the data, given
the model, using the lmfit package in Python (ampgo followed by
emcee modules) (36).

Accuracy
The accuracy of the method was tested by comparing the
estimated ke to the input ke. Secondary similar analyses were
done for EC50 and n.
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FIGURE 4 | Predicted time:effect curves at various disease severity levels assuming (A) mean, (B) high, and (C) low Cp(t) in response to the levodopa infusion.

RESULTS

Predicted Levodopa Time: Concentration
Curves in Effect Compartment
Figure 3 shows the expected concentration over time in the
effect compartment, depending on the severity of PD. One can
easily appreciate the faster exchange between plasma and the

effect compartment when ke is high (i.e., when the equilibration
half-life t½e is short).

Time: Effect Curves by Disease Severity
Wemodeled the expected rCBF response inmidbrain to the rapid
i.v. infusion, based on published levodopa pharmacokinetics in
PD (26) and published mean pharmacodynamic parameters for
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Hoehn & Yahr stages I, II, III, and IV (8, 9). The predicted signals
are quite distinct, assuming a typical Cp(t) time:plasma curve
(Figure 4A). If a given subject’s pharmacokinetics produce higher
plasma levels, the distinctions are still fairly clear (Figure 4B). Of
course, if an individual’s plasma levels are low, an effect may not
be evident, especially in more severe PD (Figure 4C).

Accuracy
ke estimated from time: effect curves in the presence of noise was
generally accurate (Figure 5; see also Supplementary Table 1).
More advanced disease led to more distinct predicted time–
activity curves (see Figure 4A), reflected in more accurate results
(Figures 5A–C).

Results were more accurate if the noise was reduced
from a CoV of 12.9 to 5% (Figures 5D–F; see also
Supplementary Table 2). Similar plots for EC50 and n are
provided as Supplementary Figures 1-2.

In an attempt to improve further the accuracy, we examined
the effect of spreading the levodopa infusion over twice the time.
We hypothesized that the limited temporal resolution of the
perfusion MRmethod, combined with the relatively small timing
difference in onset of action in mild vs. very mild PD, limited
discrimination at the milder end of the severity range. Results are
shown in Figure 6. Similar plots for EC50 and n are provided as
Supplementary Figures 3, 4.

DISCUSSION

We present a novel brain imaging method for objectively
quantifying disease severity in Parkinson disease (PD), which
we refer to as dopamine buffering capacity imaging, or more

precisely, levodopa phMRI hysteresis mapping. The temporally
distinct time: effect curves predicted in Figure 4 suggest that even
with some imperfection in the rCBF signal, we can expect to
derive a reasonably accurate ke for a brain region that responds
to exogenous levodopa with a clear dose-response curve.

Demonstrating efficacy for potential disease-modifying
therapies in PD has been difficult. Delayed start designs and
similar approaches that rely on change in clinical severity over
time require years to complete, large patient groups, and even
then have not yet been successful (37). A validated biomarker
would be of great value in improving this situation (2). The
Michael J. Fox Foundation for Parkinson’s Research designates
“the identification, development and use of biomarkers to
diagnose and track Parkinson’s disease” as a priority area,
noting that a successful biomarker “would mean better disease
management for patients” and “improve and speed clinical
development of disease-modifying therapies” (38). In simulated
data based on published results and reasonable assumptions,
levodopa phMRI hysteresis mapping appears likely to fill
that need.

Of course one does not need anMRImachine to tell if a drug is
improving movement in PD, and the present proposal draws on
previous studies using pharmacokinetic-pharmacodynamic (PK-
PD) modeling of tapping speed or UPDRS score response to
levodopa challenge. However, the assessment of drug response
using brain imaging is novel, and provides several potential
advantages. The rCBF response is objective, rater-independent,
and does not require subject movement. Furthermore, buffering
capacity is measured simultaneously in all levodopa-responsive
brain regions rather than just the motor system, potentially
informing pathophysiological research on the increasingly

FIGURE 5 | Estimated ke (vertical axis) across 100 sets of noise added to the time: effect curve computed for the ke, EC50, and n for various severities of PD as

reported in Contin et al. (9) (horizontal axis), assuming (A) mean, (B) high and (C) low Cp(t) in response to the levodopa infusion. Noise CoV = 12.9%. Width of plot is

proportional to frequency of output of the given magnitude. Filled circle: input n. Horizontal lines note the 5, 50, and 95th percentiles. At right, similar results are shown

for noise CoV = 5% for (D) mean, (E) high, and (F) low Cp(t) responses to the LD infusion.
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FIGURE 6 | Estimated ke (vertical axis) across 100 sets of noise added to the time:effect curve computed for the ke, EC50, and n for various severities of PD as

reported in Contin et al. (9) (horizontal axis), with Cp(t) estimated for an levodopa infusion twice as long (at half the rate, so that the total infused dose is equivalent).

(A) noise CoV = 12.9%; (B) noise CoV = 5%.

recognized non-motor symptoms of PD (39). The only
assumption is that regional brain activity somewhere in the brain
corresponds temporally to clinical severity.

Chan, Nutt, and Holford have subsequently extended the PK-
PD model with the aim of better modeling long-term changes
with disease progression in PD (40, 41). Their revised model
includes factors intended to account for clinical observations like
morning benefit and the long-duration response, and in their
data ke (reported as Teqf = ln 2/ke) did not change significantly
over time. However, as they note, other factors could explain
the difference in results, and their more complicated model was
made possible by a very large set of longitudinal data. While
the extended model may be ideal for optimal understanding
of physiology from clinical PK-PD data, it is not essential for
the present purpose of identifying a biomarker of nigrostriatal
denervation in PD. In other words, if ke as derived from the
model we use correlates highly with disease severity, it will serve
its intended purpose just fine.

Every step of this method has been proven individually:
i.v. levodopa has been used safely for over 50 years (42); the
infusion method described for the simulated data has been used
in over 100 subjects [(20, 26) and Black et al. unpublished data];
levodopa concentration can be quantified accurately in plasma
(43); the response to levodopa can be measured by ASL fMRI
(20–22); midbrain has a robust rCBF response to single, clinically
sensible doses of levodopa (16–19, 22), and software exists for
estimating PK-PD parameters from fMRI data on a voxel-by-
voxel or regional level (36, 44). In other words, every part of the

method described here is well proven; it is their combination and
interpretation as a disease severity measure that is novel.

Foreseeable Obstacles and Possible
Solutions
Some potential difficulties in implementing dopamine buffering
capacity imaging are foreseeable, but can be mitigated. These
include a need for high temporal resolution, uncertain optimal
dosing, head movement during MRI, and variable attention and
alertness during the scans.

Temporal Resolution
Prior data showing robust rCBF responses to levodopa averaged
data across a group and over several scans in the pre- and on-
drug conditions, i.e., with a time resolution of about 30min.
Measuring dopamine buffering capacity in individual subjects
pushes the envelope, requiring measuring response to levodopa
in single subjects and at a time resolution of 1–2min or better.
Fortunately, current pCASL methods allow an unbiased whole-
brain measure of blood flow in about 5–35 s. However, these
images are statistically noisy. If estimated ke proves less accurate
with individual subject data than these simulations predict,
additional information contained in the data may strengthen
prediction of disease severity. Specifically, from the plasma
levodopa concentration curve and the MRI response data one
computes not only ke but also EC50 and n, which also change
with disease severity (9). Possibly combining all three parameter
estimates may more accurately measure disease severity.
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Optimal Dosing
Subjects with more advanced disease will show little response
if they also happen to have low plasma levodopa levels.
Solutions could include higher dosing for more severely affected
individuals, though this choice could increase the risk of
dyskinesias in the scanner that could affect comfort or head
movement. Alternatively, if needed, one could estimate the
optimal dose for each subject with, say, a single small test dose
of i.v. levodopa with a pre- and post-drug blood sample, on a day
prior to the scan day.

Head Movement
In our experience, most PD patients do well holding the head
still during an MRI session. However, acquiring a single CBF
image can take 6–34 s (34), an interval long enough that head
movement on the scale of mm may be non-trivial. Participants
with levodopa-induced dyskinesias may have additional head
movement. Within-frame head movement adds to variance and
may bias quantitative estimates. Solutions may include more
rigid head fixation, shorter repetition times (TRs), prospective
motion correction, or removing or underweighting CBF images
compromised by movement (45).

Attention/Alertness
In initial pilot studies, we find that several factors combine to
make continued alertness throughout the scan period difficult:
PD patients often have insomnia, the scans are long and
repetitive, and levodopa contributes to sleepiness. Solutions
may include adding an attention task (though that will change
resting brain activity), study staff repeatedly awakening the
participant, or monitoring for alertness and removing or
accounting statistically for frames during which the participant
appears asleep.

Next Steps
The simplest first step to validating this method is correlative in

nature. Specifically, one would enroll people with a wide variety
of PD severity and compare regional ke values, most likely in

midbrain or posterior putamen, to clinical measures of disease
severity such as off-period UPDRS scores (46). More definitive

validation of dopamine buffering imaging may include longer-
term or autopsy studies in patients, necropsy studies in animals
with graded nigrostriatal lesions, or comparison to the recently
validatedmidbrain [11C]DTBZ PET approach (5). If these studies

are successful, the dopamine buffering capacity imaging method
will beg for further application as a surrogate marker of disease
severity in PD.
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