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A perceptual scaling approach to eyewitness
identification
Sergei Gepshtein 1,2✉, Yurong Wang1,3, Fangchao He1,4, Dinh Diep1 & Thomas D. Albright 1✉

Eyewitness misidentification accounts for 70% of verified erroneous convictions. To address

this alarming phenomenon, research has focused on factors that influence likelihood of

correct identification, such as the manner in which a lineup is conducted. Traditional lineups

rely on overt eyewitness responses that confound two covert factors: strength of recognition

memory and the criterion for deciding what memory strength is sufficient for identification.

Here we describe a lineup that permits estimation of memory strength independent of

decision criterion. Our procedure employs powerful techniques developed in studies of

perception and memory: perceptual scaling and signal detection analysis. Using these tools,

we scale memory strengths elicited by lineup faces, and quantify performance of a binary

classifier tasked with distinguishing perpetrator from innocent suspect. This approach reveals

structure of memory inaccessible using traditional lineups and renders accurate identifica-

tions uninfluenced by decision bias. The approach furthermore yields a quantitative index of

individual eyewitness performance.
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Eyewitness identification has long played a valuable role in
criminal investigations and prosecutions. Despite this value,
our society has been confronted in recent years with many

rank failures of eyewitness testimony1. For example, more than
350 people, many serving lengthy prison sentences, have been
exonerated in the United States because their DNA was found to
be incompatible with evidence collected from the crime scene. In
~70% of these cases, misidentification by eyewitnesses con-
tributed significantly as evidence for conviction2.

It is natural to ask what can be done to improve the perfor-
mance of eyewitnesses, such that they are more likely to identify
the culprit and less likely to misidentify an innocent person3,4. A
major focus of research on this topic has been the manner in
which an eyewitness lineup is presented5–11. The traditional
simultaneous (SIM) lineup is composed of (typically) six facial
photographs shown at the same time (Fig. 1a). One of the faces is
that of the suspect and the others, known as fillers, are of people
known to be innocent. The alternative sequential (SEQ) lineup
involves presenting the photographs one at a time (Fig. 1b). In
both lineup types, witnesses are asked to identify the perpetrator
or to reject the lineup if no face matches the memory from the
crime scene.

The performance of eyewitnesses under the SIM and SEQ
paradigms reflects recognition memory12, a form of declarative
memory retrieval in which a sensory cue stimulus elicits the trace
of a previous encounter with the stimulus. This recognition
memory signal is the basis upon which an eyewitness decision is
made. The eyewitness also employs a decision criterion: only
recognition memory signals that meet this criterion lead to
identification. Because this recognition process is covert, the overt
response (“that’s the culprit”) confounds the strength of the
recognition memory signal with the decision criterion, leaving the
outcome susceptible to unrecognized bias.

Recent laboratory studies of SIM and SEQ lineups have
attempted to overcome this problem using expressed confidence
as a proxy for the eyewitness decision criterion or by introducing
explicit biasing instructions8–12. This approach has enabled some
important insights into eyewitness memory under different
lineup conditions12–16. A desirable alternative is to estimate
recognition memory signals themselves, which would enable
criterion-independent analyses of the relative strengths of these
signals. We propose here a lineup procedure that does so. Our

procedure employs two powerful experimental techniques that
are rooted in the history of scientific study of perception and
memory: perceptual scaling and a signal detection method known
as receiver operating characteristic (ROC) analysis.

Broadly considered, the goal of perceptual scaling is to map the
relationship between a set of physical stimuli and the corre-
sponding responses of an observer’s perceptual system. The goal
of signal detection analysis in this context is to determine the
optimal performance of a perceptual system tasked with classi-
fication of a set of stimuli. Used together, these tools enable us to
scale the strengths of recognition memory signals elicited by
lineup faces, and to quantify the best possible discriminability of
those signals. Although these tools have been previously com-
bined in laboratory studies of perceptual discrimination17, they
have not been applied jointly to the eyewitness identification
problem.

We utilize this approach to reveal detailed structure of eye-
witness recognition memories for a complete set of lineup faces.
We then use these memory signals to measure how well an
optimal statistical classifier can distinguish the perpetrator from
an innocent suspect. Performance of the optimal classifier com-
pares well to traditional lineup procedures, with the added ben-
efits that identification decisions made by the classifier are not
subject to unrecognized bias, that it renders a numerical index of
performance for individual eyewitnesses, and that lineup filler
choices are quantitatively assessed for fairness. For all of these
reasons, this approach has enormous potential as a research tool
for evaluating effects of other variables on eyewitness perfor-
mance and as a practical tool for unbiased investigation and
prosecution of crimes.

Results
Scaling of memory signals elicited by lineup faces. Our scaling
procedure employs Louis Thurstone’s Method of Paired Com-
parisons18, which is a longstanding behavioral technique designed
to scale stimuli along a psychological continuum, such as per-
ceptual similarity to a target stimulus. In essence, the method
estimates the central tendency and variance of the perceptual
signals elicited by each stimulus, from which it is possible to draw
criterion-independent conclusions about perceived similarity.
This method has been used in many practical applications, such
as product marketing and preference testing19,20, optometric

a Simultaneous b Sequential c Paired comparisons

Time Time

Fig. 1 Three eyewitness lineups. a Simultaneous (SIM) lineup, in which six facial photographs are presented at the same time. b Sequential (SEQ) lineup, in
which six photographs are presented one at a time. In both SIM and SEQ lineups, subjects are asked to identify the perpetrator or to reject the lineup if no
face is recognized from the crime. c Paired comparison (PAR) lineup, in which facial photographs are presented in pairs. Upon viewing each pair, subjects
are required to report (in a two-alternative forced choice task) which of the two faces is more similar to memory of the perpetrator. For the present
experiment there were 15 possible pairs; each pair was presented three times in random order (a small subset of face pairs is shown in c).
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assessment (“which is clearer: lens one or lens two?”)21, and
hearing-aid evaluation22. In cases where the target exists in
memory alone, such as with eyewitness identification, the method
estimates the central tendency and variance of recognition
memory signals elicited by the cue stimuli.

Features of the paired comparison approach can be shown by
our application of the method to the eyewitness identification
problem. Subjects were initially presented with a video of a mock
crime, followed by a delay and then presentation of a lineup. The
paired comparison (PAR) lineup consisted of three presentations
of all possible pairings (N= 15) of six face images (designated
F1–F6), one of which (F1) was the suspect (Fig. 1c). Upon
viewing each pair, each subject was required to report which of
the two faces was more similar to their memory of the
perpetrator. Each report, or vote, is thus a relative judgment,
not an absolute identification of the sort rendered in a SIM or
SEQ lineup. The complete set of votes was used to compute a
voting score, which quantifies the perceived similarity of each face
to the perpetrator.

To illustrate perceptual scaling, we present the similarity
matrix for one subject in Fig. 2a. Each cell in the matrix
corresponds to the indicated pair of faces and contains the sum of
votes to all presentations of that pair. For example, the values of
two and one in respective cells [3, 2] and [2, 3] indicate that F3
was preferred over F2. The voting score for each face is equal to

the sum of votes across all comparisons with each of the other five
faces, i.e., down each column of the matrix (Fig. 2b), normalized
by the number of repetitions (Fig. 2c).

Conditions of lineup composition. Superior lineups are natu-
rally defined as those that lead to a high probability of correctly
identifying the perpetrator (target) and a low probability of
incorrectly identifying an innocent suspect5. We evaluated our
PAR lineup procedure relative to this standard using two distinct
lineup conditions that have been routinely employed for this
purpose in traditional SIM and SEQ lineups5,8. In the target-
present (TP) condition the target (F1) was included in the lineup,
along with five fillers who matched the physical description of the
perpetrator. The target-absent (TA) condition differed from the
target-present condition solely in that the target was removed and
replaced by another face (F1*) that matched the physical
description of the perpetrator. PAR lineups were administered for
both TA and TP conditions and the perceptual scaling analyses
described below were performed separately for each condition.
Results of scaling in TA and TP conditions were subsequently
combined using a signal detection procedure described in the
section “Signal detection analysis of recognition memory signals”
below. This procedure yielded a criterion-independent measure of
the probability that an optimal binary classifier can distinguish
between the perpetrator and an innocent suspect.

Target-present lineup condition. We used our scaling procedure
initially to determine the top-ranked face within the set of six TP
PAR lineup faces (Fig. 2e), which is a simple analog of the
identification choice in traditional TP SIM and SEQ lineups. The
frequency distribution of top-ranked faces for the PAR lineup
appears in Fig. 3a. If subjects had no discriminative ability, each
face would be top-ranked equally often (16.7% of the time). In
fact, the target face (F1) was most commonly top-ranked (n= 20;
32.26%), significantly exceeding chance performance (p= 0.016).
By this simple measure, the target face was “identified” in the
PAR lineup at a rate comparable to that in the SIM (Fig. 3b) and
SEQ (Fig. 3c) procedures, but the number of lineup rejections (see
Methods) in the PAR lineup (n= 5; 8.06%) was significantly
lower than in the traditional lineups (SIM: n= 16, 48.48%; SEQ:
n= 24, 64.86%; p < 10−5).

Although generally supportive of the paired comparison
approach, this top-rank frequency analysis neglects the richness
of data produced by perceptual scaling and reveals nothing about
the consistency of recognition memory signals elicited by each
face or the degree to which signals vary between faces. In
particular, top-ranked status alone does not address the extent to
which that face is scaled significantly above all of the other faces
in the lineup.

To illustrate these additional features of the PAR data, we
asked what the relative rankings were within the set of six TP
lineup faces for the entire population of subjects assigned to that
condition (N= 62). Average voting scores are plotted in Fig. 4a.
As mentioned in the caption of Fig. 2, consistency of votes across
different presentations of each face is inversely proportional to
the variance of recognition memory signals elicited by that face.
This variance is represented in Fig. 4a by vertical bars that mark
interquartile ranges of the vote distributions for every face.
Average voting scores together with voting variance enable us to
evaluate the significance of differences between the rankings of
each lineup face. Face F1 was by far the top-ranked face (p=
0.00002), on average, which reflects the fact that this target face
consistently scored highly, even though it was not the top-ranked
face for every subject.
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Fig. 2 Method of paired comparisons applied to eyewitness
identification. Subjects were presented with a sequence of face pairs
shown schematically at top right (here using six numerals). The task was to
indicate which face in each pair was more similar to the remembered face
of the perpetrator. a Outcomes of pairwise comparisons were recorded in a
voting matrix. The matrix displayed contains results of 45 paired
comparisons (15 pairs each presented three times) for one subject, S15.
b The sum of votes in each column is the cumulative vote for every
face. c Dividing the cumulative vote of every face by the number of face
repetitions in the lineup yields the normalized voting score for every
face (c). Voting scores range from zero (face was never selected) to five
(face was selected every time it was presented). d, e Voting scores are
plotted as a function of ordinal face number in (d), and as a function of
face number ranked by the voting score in (e). The latter plot is the voting
function, whose slope reflects consistency of voting.
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We further divided these data by correctness of subject
responses. Voting scores for subjects who preferred target face
F1 (correct subjects) are plotted in Fig. 4b and scores for subjects
who preferred other faces (incorrect subjects) in Fig. 4c. As
expected, the average voting score for the target face greatly
exceeded the scores for other faces amongst subjects who
performed correctly (Fig. 4b) (p < 10−6). Notably, the average
score for target face F1 was also highest amongst subjects who
performed incorrectly (Fig. 4c) (p= 0.04). This counterintuitive
finding reflects high consistency of target face judgments among
our subjects. (Subjects in the incorrect group often ranked face F1
as their second choice.) More generally, the observed scaling of
voting scores reveals informative structure of recognition
memory signals not accessible using traditional lineups.

The data shown in Fig. 4 illustrate perceptual scaling of lineup
faces averaged across the population of subjects exposed to our
target-present PAR lineup. This population analysis is essential
for comparison with laboratory studies of eyewitness perfor-
mance under traditional SIM and SEQ lineup conditions, which
are necessarily based on population analysis. Another unique

feature of our PAR approach, however, is that it can be applied to
individual subjects. In such cases, the average recognition
memory signal for each lineup face is estimated from the
corresponding voting score. Variance of each recognition
memory signal is estimated from the consistency of votes that
underlie each voting score, which is in turn reflected in the slope
of the voting function obtained from each subject (see Methods
for details). Results of scaling for three individual subjects in the
target-present PAR condition are illustrated in Fig. 5. Low voting
variance is manifested as high slope (e.g., subject S55) and high
voting variance is manifested as low slope (e.g., subject S44).

Yet another feature of perceptual scaling is that it yields a
quantitative index of the degree to which the lineup is “fair,” i.e.,
not biased in favor of identification of one or another face. Lineup
fairness can significantly impact eyewitness performance8,23,24,
and a number of strategies have been employed to evaluate and
improve lineup fairness7,25,26. Perceptual scaling of lineup faces
reveals the perceptual similarity of those faces, allowing for
insight into the degree to which a lineup is fair or biased.
Specifically, the means and variances of voting scores can be used

Face number

N
um

be
r 

of
 s

ub
je

ct
s 25

20

15

10

5

6543Ø

Paired

32%

8%
5%

15% 15%

10%

16%

a

Face number

6543

25

20

15

10

5

Ø

Sequential

65%

16%

3% 5% 8%
3%

c

Face number

654321 2121

25

20

15

10

5

Ø

Simultaneous

48%

30%

9%
3% 6% 3%

b

Fig. 3 Results of three lineup procedures. Frequency distributions of subjects selecting the six faces used in three target-present lineups: paired
comparisons (PAR; N= 62 subjects) in (a), simultaneous (SIM; N= 33 subjects) in (b), and sequential (SEQ; N= 37 subjects) in (c). Symbol ø in the
abscissa of every plot represents the outcome in which subjects made no selection (i.e., “rejected” the lineup). In every lineup, more subjects correctly
selected the target (F1, red bar) than other faces. Proportion of correct identifications was largest in paired comparison lineup.

V
ot

in
g 

sc
or

e

5

4

3

2

1

0

136542

Face number

All subjects

Face number

Correct subjects

Face number

Incorrect subjects

5

4

3

2

1

0

1542

5

4

3

2

1

0

136 35642

a b c

** ** *** ** * *

Fig. 4 Results of perceptual scaling in the target-present condition. Structure of recognition memory is revealed by voting scores obtained from the
paired comparison (PAR) target-present lineup: for all subjects in (a) (N= 62 subjects, who also appear in Fig. 3a), for subjects who exhibited top-rank
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Vertical bars represent interquartile ranges. Significant differences between the faces in adjacent ranks are indicated by single (p < 0.05) or double (p <
0.01) asterisks. A nonparametric statistical test was used to evaluate differences, as described in Methods (section Perceptual scaling of lineup faces). This
is a one-sided statistical test.
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to quantify the extent to which lineup faces resemble one another.
This face similarity information can be taken in to account as a
factor that influences eyewitness performance. Even as we
attempted to construct a fair lineup, perceptual scaling revealed
that our lineup fillers resemble the target to varying degrees
(Fig. 4), which is evidence of an “unfair” lineup. We draw upon
this measure of lineup fairness below as we evaluate performance
using a signal detection procedure.

Target-absent lineup condition. The target-absent condition was
composed of a PAR lineup identical to the target-present con-
dition, with the exception that the target face was removed and
replaced by another face (F1*) that matched the physical
description of the perpetrator. The purpose of this manipulation
was to determine, in conjunction with the TP condition, the
relative probabilities of selecting the target vs. a non-target face.
As for the TP condition, we asked what the relative rankings were
within the set of six TA lineup faces for the entire population of
subjects assigned to that condition (N= 70). Average voting
scores are plotted in Fig. 6. Variance is represented by vertical
bars that mark interquartile ranges of the vote distributions for
every face. As expected, perceptual scaling for the newly added
face (F1*) was similar to that for other faces that matched the
physical description of the perpetrator.

The relative voting score distributions for the remaining TA
filler faces were also similar to those seen for the TP conditions
(cf. Figs. 4a and 6). The correlation of voting scores for the five
fillers that are common to both TP and TA conditions was high
(0.86, p= 0.036). We observed only one significant scaling
difference between voting scores in TP and TA conditions: face
F4 was scaled higher than F2 in the TP condition and the reverse
was true in the TA condition. In both conditions, F2 and F4 were
the filler faces ranked least similar to (and thus least confusable
with) the perpetrator.

Signal detection analysis of recognition memory signals. Our
perceptual scaling data provide insights into the structure of
recognition memory without asking each subject to make a
unique choice and thus without engaging a decision criterion for
identification. Using estimates of central tendency and variance
obtained from perceptual scaling, identification is elegantly
redefined as a problem of statistical inference. The distributions
of votes cast for each lineup face (Figs. 4a and 6) can be used to
estimate the likelihood of correct and incorrect identifications for
a given decision criterion, using the tools of signal detection
analysis27–29. (Identification here refers to classification of a given
face as a target. Correct identifications are targets classified as
targets; incorrect identifications are non-targets classified as tar-
gets.) We applied this method and assessed classification

performance for every decision criterion, thus deriving a
criterion-independent measure of the ability of an optimal sta-
tistical classifier to make lineup identification decisions based on
perceptual scaling data from a population of witnesses. Because of
measurement uncertainty, performance of the optimal classifier
will always be less than perfect, but it is the best performance that
can be achieved with the information available.

The outcome of our signal detection analysis is conveyed in the
form of ROC27,29, which is a method to visualize relative
probabilities of correct vs. incorrect identifications as a function
of decision criterion. (The term “decision criterion” here refers to
a statistical criterion value procedurally applied to overlap-
ping voting score distributions, in accordance with its use in
signal detection theory27. This is conceptually similar to, but
should not be confused with, the recognition memory factor cited
in the Introduction, in which decision criterion refers to the
memory strength that a human observer requires to make an
identification.) While ROC curves have been employed previously
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Structure of recognition memory is revealed by voting scores obtained
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This figure has the same format as Fig. 4a with the exception that label ‘1’ in
the abscissa of Fig. 4a, referring to the target face in the target-present
condition, is substituted by label ‘1*’, referring to the new face (F1*) that
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described in Methods (section Perceptual scaling of lineup faces). This is a
one-sided statistical test.
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to evaluate eyewitness performance with traditional SIM and SEQ
lineups8,10,13,30,31, our use of this approach is distinctive because
it is applied to a complete set of recognition memory signals,
derived from each subject in a manner that avoids decision bias.
By contrast, traditional lineups must integrate decisions across
subjects and often use expressed confidence as a proxy for
decision criterion.

In the next section, we present ROC curves obtained from
these analyses. These curves fall into two categories: those derived
by averaging across the subject population and those reflecting
individual subject performance.

Population signal detection analysis. Our population analyses
are based upon data obtained from a large number of face pair-
ings presented to each of many subjects. These analyses reveal
general tendencies in the data in a form that facilitates compar-
ison with traditional lineup studies, which necessarily yield
population-based ROCs.

We first applied our signal detection analysis to perceptual
scaling data from both TP and TA lineups. For the TP condition
we determined for every decision criterion the probability of
correctly classifying the target face as target. In the TA condition
each of the six lineup faces was drawn from the same parent
distribution, in the sense that they were all chosen to match the
physical description of the perpetrator. For this reason, there was
no single face designated as the innocent suspect; we considered
the likelihood that any one of the faces in the TA lineup could be
identified incorrectly. We thus determined separately for each
face the probability (for each decision criterion) of incorrectly
identifying that face. Following the same protocol used for this
purpose in traditional SIM and SEQ lineups8, the six face-specific
probability measures were then averaged to yield the probability
of incorrectly classifying a TA lineup face as target.

Correct and incorrect classification probabilities, computed as
described above for each decision criterion, are plotted on the
ordinate and abscissa of the ROC shown in Fig. 7. We call this
curve a recognition ROC because it derives from recognition
memory signals estimated by means of perceptual scaling. The
area under the recognition ROC (area under the curve, AUC;
0.75, p < 10−6) is a criterion-free index of the degree to which an
optimal statistical classifier is capable of correctly distinguishing
between the perpetrator and an innocent suspect based on scaling
data from the entire subject population. The recognition ROC
conveys the same performance metrics that are commonly
reported in studies of traditional SIM and SEQ lineups, but does
so by exploiting the full structure of recognition memory for
lineup faces, while at the same time avoiding the ambiguity of
witness’ decision criteria for identification.

With these PAR lineup performance metrics in hand, we can
compare the outcome of our approach to published data on
performance obtained using traditional lineups. As noted above,
we found our lineup to be unfair based on perceptual scaling,
since there are significant differences between the responses
elicited by our lineup faces (Figs. 4a and 6). We thus compared
our performance data to that from a representative experiment
using a lineup that was also acknowledged to be unfair
(Experiment 2 of ref. 8). The sequential and simultaneous lineup
results from this earlier study are plotted together with our
recognition ROC in Fig. 7. We recognize that there are procedural
and stimulus variations between studies (such as degree of lineup
fairness) that will affect discriminability. Nonetheless, the
performance evinced by the PAR lineup in this inter-study
comparison suggests that our approach has significant potential
as a tool for eyewitness identification. An important goal of future
studies will be to systematically vary lineup fairness (quantified by

perceptual scaling) and thereby determine the true impact of this
variable on performance.

Individual signal detection analysis. Because our perceptual
scaling method also provides recognition memory metrics for
individual subjects (e.g., see Fig. 5), we sought to apply the same
signal detection method to evaluate single-subject performance.
This is an unprecedented opportunity since traditional (SIM and
SEQ) lineups do not allow one to assess individual eyewitness
discriminability. However, individual subjects can only partici-
pate in the TP or the TA condition, but not both. In practice, this
means that the probability of misidentifying an innocent suspect
(which for population data was assessed using the TA lineup)
must be estimated from the probability of identifying a non-target
face in the TP lineup. This simulated target-absent approach is
based on the premise that the probability of classifying a non-
target face as target when viewing the TA lineup should, on
average, be no different from the probability of classifying a non-
target face as a target when viewing the TP lineup. Conceptual
and empirical support for this premise is threefold:

(1) With the exception of the target face, all faces included in
TA and TP lineups were drawn from the same parent
distribution of faces, in the sense that they were all chosen
to match the physical description of the perpetrator.
Incorrect identification of a filler in the TP lineup should on
average occur with the same likelihood as incorrect
identification of any face in the TA lineup, provided that
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Fig. 7 Signal detection analysis of recognition memory in the group of all
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pointing triangles) and cyan (up-pointing triangles) are partial ROCs of
collective subject performance in simultaneous (SIM) and sequential (SEQ)
lineups obtained by Mickes et al.8.
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the presence or absence of the target in the lineup does not
alter the scaling of the remaining faces.

(2) Well-developed arguments from voting theory (see Meth-
ods) predict that the presence or absence of the target in the
lineup should not alter perceptual scaling of the remaining
faces. Consistent with this prediction, the correlation of
voting scores for the five non-target faces that are common
to both TP and TA conditions was high (0.86; p= 0.036).
We did observe one order reversal between the two
conditions (cf. Figs. 4a and 6), which is a minor violation
of the voting theory rule known as Limited Independence of
Irrelevant Alternatives (see Methods). However, because the
reversal occurred for two non-target faces (F2 and F4) that
were the least confusable with the perpetrator, we believe
that it does not invalidate our use of the simulated target-
absent condition to compute individual ROCs.

(3) Though impossible for individual subjects, our signal
detection analysis can be performed using population data
collected from both actual and simulated TA conditions in
the PAR experiment. We found that the resulting recogni-
tion ROCs are similar: AUC values were 0.77 and 0.70 for
actual and simulated TA conditions, respectively. This
means that, on average, the probability of identifying a
target relative to the probability of identifying a non-target
is nearly the same for actual and simulated TA conditions.
This population-level discovery supports our use of the
simulated TA condition in the analysis of individual subject
data. It furthermore suggests that the actual TA condition,
which is a necessary feature of traditional SIM and SEQ
lineup experiments, can be dispensed with when using the
PAR procedure.

Results for individual subjects obtained using the simulated TA
condition are illustrated in the form of recognition ROCs (Fig. 8)
for the three subjects whose voting functions appear in Fig. 5.
Each ROC curve summarizes the best possible discriminability of
the target in our lineup relative to the average of all non-target
faces. The area under the ROC curve (AUC) for each subject
(displayed in each panel of Fig. 8) is thus a criterion-independent
measure of individual subject performance. The confidence
intervals associated with each curve can be used to statistically
evaluate the relative certainty of each subject, and the degree to

which performance differs from chance. For example, discrimi-
nation performance of subject S55 (left panel in Fig. 8) is
extraordinarily good. By contrast performance of subject S44
(right panel in Fig. 8) is barely distinguishable from chance (p=
0.007).

Measures of criterion-independent discriminability are not
obtainable from individual subjects (nor from actual witnesses)
using traditional lineups. Inferences about the correctness of
identification in such lineups are often derived from witness
statements of confidence, based on the observation that a
confident witness is more likely to make an accurate
identification14,15. The PAR lineup, by contrast, yields an
objective quantitative index of performance, based on discrimin-
ability of recognition memory signals elicited by lineup faces. The
PAR lineup can therefore be used to compare performance of
individual eyewitnesses in a criterion-independent fashion. In
particular, the method offers an objective performance criterion
by which witnesses can be triaged based on their certainty.

Discussion
The forgoing analyses suggest several key benefits of the PAR
procedure relative to traditional SIM and SEQ lineups. All of
these benefits are tied to the fact that the PAR procedure is not
limited to a single report of identification, but rather renders rich
quantitative detail about the structure of a witness’ recognition
memory for all lineup faces. Application of signal detection
analysis to the scaled relationship between lineup faces and
memory allows us to circumvent covert decision biases and
render criterion-independent measures of discriminability.
Results of our initial analysis of PAR population data are com-
parable with analyses of population data obtained using tradi-
tional lineups, though we stress the critical role of lineup fairness
in making such comparisons. Indeed, one of the key features of
our perceptual scaling approach is that it provides an immediate
quantitative measure of lineup fairness, which we propose as a
valuable tool for future studies of eyewitness performance.

Another important benefit of the PAR approach is that per-
formance measures can be computed directly from the distribu-
tions of voting scores obtained using a single target-present
lineup. We suggest that this new capability can eliminate the need
(characteristic of traditional lineup procedures) for testing an
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additional group of subjects who view only target-absent lineups
in order to obtain a measure of incorrect identifications. Our
findings support this proposal. Finally, our approach is not lim-
ited to population data analysis, as is the case for traditional
procedures. Rather, the PAR lineup delivers a quantitative mea-
sure of performance based on individual eyewitnesses, which
could be of enormous utility in assessing the value of individual
eyewitness evidence.

For all of these reasons, we suggest that the PAR procedure
may prove useful both as a research tool for evaluating effects of
other variables on eyewitness performance and as a practical tool
for investigation and prosecution of crimes. In a court of law, we
envision that the PAR approach would augment direct testimony
of an eyewitness with expert testimony on the classification of
stimuli, as is routinely done in other forensic disciplines32,33. In
this sense, using signal detection analysis to compare recognition
memory signals is directly analogous, for example, to a forensic
fingerprint examiner’s use of standardized statistical methods for
comparison of fingerprints34.

Despite its many merits, there are potential concerns associated
with the PAR procedure. For one, this procedure requires mul-
tiple viewings of each facial photograph, which could lead to new
face memories that confound or compete with that of the per-
petrator, and thus interfere with comparative judgments over the
course of the lineup test. We believe such effects to be minimal or
nonexistent because all faces appeared equally often in the PAR
lineup and performance was comparable to that seen with tra-
ditional lineups.

A second potentially problematic feature of the PAR lineup is
the fact that the witness never explicitly identifies the perpetrator.
It is easy to imagine defense counsel’s vociferous objection on
these grounds. Rather than a scientific problem, this concern
reflects a deep-seated cultural problem associated with our
criminal justice system. The problem stems from naïveté about
how people make decisions, which has long bedeviled eyewitness
testimony and rules for reporting and testimony by forensic
examiners. In particular, human decisions based on sensory
information are necessarily probabilistic. A witness viewing a
traditional SIM or SEQ lineup always confronts some uncertainty,
but the decision is often rendered and interpreted as certain. Yet
because the decision criterion employed by an eyewitness viewing
a traditional lineup is unknown, and potentially influenced by
undetermined perceptual, social or cultural factors, we have no
immediate knowledge of the amount of uncertainty that the
witness was willing to bear in making an identification. In other
words, the longstanding practice of encouraging witnesses to say
“he’s the one” is where the problem lies.

The PAR lineup offers a practical solution to this cultural
problem. It cannot overcome the limits imposed by uncertainty,
but it acknowledges this uncertainty and offers a quantitative
index of it. A jury presented with this numerical evidence is in a
more informed position to determine guilt, as compared to a jury
presented with the faux certainty of a traditional lineup
identification.

Methods
Experimental design. The experiment consisted of two parts. In the first part,
every subject was presented with the same video recording of a mock crime: a 42-s
fragment from the theatrical film God Bless America (Robert Goldthwait, 2011). In
the second part, conducted on the following day, each subject was presented with
one of three lineup types. Subjects viewed the same six lineup faces, regardless of
lineup type. One of the lineup faces was that of the actor who played the role of
perpetrator in the crime video. This face was designated the target and lineups that
included this face were termed target-present. The other lineup faces were fillers
selected based on certain attributes (race, facial hair, etc.) that matched the
description of the perpetrator. In all three lineup types, subjects were told that the
target may or may not be present in the lineup. As noted below, some subjects in

the PAR lineup condition viewed a target-absent lineup, in which the target face
was replaced with another face that matched the description of the perpetrator.

Lineup types. The simultaneous (SIM) lineup (Fig. 1a) consisted of a single pre-
sentation of six head-and-neck images (face images), with the spatial order of
images randomized between subjects. Subjects used the computer mouse to either
select one of the images, indicating that the face matched their memory of the
perpetrator, or select the option that none of the faces matched their memory.

The sequential (SEQ) lineup (Fig. 1b) consisted of sequential presentation of the
six face images, one image at a time, with the temporal order of images randomized
between subjects. Upon viewing each image, subjects used the computer mouse to
select whether or not this face image matched their memory of the perpetrator.
Subjects were pre-informed that only their first choice was counted as
identification7.

The paired comparison (PAR) lineup (Fig. 1c) consisted of 15 possible pairings
(pairwise combinations) of the six face images. Each pair was presented three
times, for a total of 45 trials. The order of image pairs across trials, and the left/
right order of images within a trial, was randomized between subjects. Upon
viewing a pair of images, subjects were required to use the computer mouse to
select the image that was more similar to their memory of the perpetrator (forced
choice) thus yielding a single vote for the selected image.

Traditional simultaneous and sequential lineups were included in this study
solely for the purpose of comparing the relative frequencies of top-ranked faces
(Fig. 3) across the different lineup conditions (PAR, SIM and SEQ). All subsequent
procedures, including perceptual scaling and ROC analyses, were employed to
characterize the application and utility of the PAR lineup.

Conditions of PAR lineup composition. We applied the PAR lineup procedure in
two experimental conditions: target-present (TP) and target-absent (TA). The TP
lineup was composed of the target face and five fillers that matched the description
of the perpetrator. The TA lineup was identical to the target-present lineup, with
the exception that the target face was replaced with another face that matched the
description of the perpetrator.

Lineup rejection. A lineup was “rejected” when the witness failed to identify a
single face in the lineup. In our study, SIM and SEQ lineups were rejected when the
subject did not explicitly select a face. The PAR lineup was rejected when the voting
scores of two or more face images tied for the top rank.

PAR lineup data analysis. We employed two established experimental techniques
to analyze data from PAR lineups: perceptual scaling and signal detection analysis.
The former allowed us to estimate the recognition memory signals elicited by each
lineup face and the latter enabled us to determine the best possible discriminability
of the perpetrator relative to an innocent suspect.

Perceptual scaling of lineup faces. The complete set of votes collected from each
subject was analyzed as shown in Fig. 2: Responses were first organized into a
voting matrix (Fig. 2a), from which the six voting scores and voting function were
derived (Fig. 2c–e). Linear regression was used to determine the slope of the voting
function. The voting score distribution for each lineup face is represented in Fig. 4
by the medians and interquartile ranges.

To evaluate whether differences between voting scores for different face images
were statistically significant, we performed bootstrap analysis of the voting score
distributions in every subject group (all subjects, correct subjects, incorrect
subjects). The probability of obtaining a difference of voting scores by chance was
estimated by subtracting the higher-scores distribution from the lower-scores
distribution and computing the fraction of negative values of the difference.

Signal detection analysis of discriminability of lineup faces. We assessed dis-
criminability of the perpetrator vs. an innocent suspect using a standard process of
statistical inference. As noted in the main text, voting score distributions serve as
estimates of the recognition memory signals elicited by lineup faces. These dis-
tributions were used to compute the relative probabilities of correctly classifying
the target as target (correct identification rate) and incorrectly classifying a non-
target as target (false identification rate), as a function of decision criterion.

Receiver operating characteristics. The results of our signal detection analyses
are conveyed in the form of receiver operating characteristic (ROC) curves, which
plot as a function of decision criterion the probability of correctly classifying the
perpetrator vs. the probability of incorrectly classifying an innocent suspect. Signal
detection analyses were carried out and ROC curves were produced separately for
population and for individual subject data.

Population ROC analysis of eyewitness data. Using data from the aforemen-
tioned target-present and target-absent conditions, we determined the population
ROC curve by standard methods27,29, which is by moving the decision criterion
along the dimension underlying the voting score distributions and computing
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corresponding classification probabilities for the perpetrator (designated as hit rate
in the signal detection literature) and for innocent suspects (false alarm rate). Hit
rate was estimated by computing the fraction of correct identifications of the target
under each decision criterion in the population distribution of votes in the TP
condition. False alarm rate was estimated by computing the fraction of incorrect
identification of a non-target under each decision criterion in the population
distribution of votes in the TA condition. These classification probabilities are
integrated into the area under the ROC curve (AUC), which thus serves as a
criterion-independent index of the degree to which an optimal classifier can cor-
rectly distinguish target and non-target faces based on the distributions of popu-
lation voting scores.

We determined the error of estimating the population ROC curve using
bootstrap analysis. We resampled the voting scores making up the two
distributions used to derive the ROC: one for the target in the TP condition and the
other for non-targets in the TA condition. On each cycle of resampling, we derived
a new ROC (resampled ROC) and computed its AUC. This way we obtained a
distribution of resampled ROC curves and a distribution of resampled AUC
indices. We used the distribution of resampled ROC curves to determine the 50
and 95% regions of error of ROC marked in Fig. 7. We used the distribution of
resampled AUC indices to evaluate the probability that our results could be
obtained by chance.

Individual ROC analysis of eyewitness data. As described in the main text, the
voting scores for individual subjects can be used to estimate the means of recog-
nition memory signals elicited by lineup faces, and the slope of the voting function
can be used to quantify the variance associated with the recognition signals. From
these statistical moments it is possible to compute classification probabilities for
target and non-target faces.

As noted above, we derived the population ROC using the TP condition to
determine the probability of correctly identifying the target, and using the TA
condition to determine the probability of incorrectly identifying a non-target.
Individual subjects, however, can only participate in either TP or TA conditions.
We therefore derived single-subject ROCs using data from the TP condition to
determine probability of correct identification, as before, but using a simulated TA
condition to determine the probability of incorrect identification. In this simulated
TA condition, the target face was removed from analysis. Removal of the target face
is legitimate for this purpose if it does not alter scaling of the remaining lineup
faces. Statistical decision theory has shown that removal of a voting option (the
target in this case) from consideration is legitimate if it satisfies the stringent
mathematical criterion of local independence of irrelevant alternatives (LIIA), in
which scaling is robust over removal of the top vote-getter35–39. Paired comparison
scaling procedures are among the few methods known to satisfy this LIIA
requirement40,41. In other words, the outcome of a lineup with five non-targets
should be unaffected by the presence or absence of the target (the top vote-getter in
the population average). It follows that voting score distributions obtained from
those five non-targets should enable us to evaluate the probability that a non-target
is wrongly classified as target. This argument, together with supporting results
summarized in the section “Individual subject analysis of eyewitness data” in the
main text, justify our approach to derivation of individual ROC.

This individual subject procedure is analogous to that used for population data,
with two exceptions: first, that a simulated TA condition was used to estimate false
alarm rates (as we explain in the main text); second, that the following procedure
was used to compute mean and variance of voting scores for each face:

Step 1. We set the means of the probability distributions μi, i= {1...6} to the
subject’s six measured voting scores and assumed that (a) the variances σ2 of these
distributions were the same for every face; (b) the distributions were normal, N(μ, σ2).
We estimated each subject’s recognition memory variance (σ2) in the next step.

Step 2. We estimated each subject’s recognition memory variance (σ2) by
matching the slope of the voting function produced by the model (defined in
Step 1) to the slope of the measured voting function, as follows. Using the subject’s
model, we simulated the PAR experiment assuming different values of σ. For every
tested value of σ, we simulated the comparisons among 45 pairs of images. For each
pair, we sampled one response from each of the two simulated distributions that
corresponded to two images in the pair. The image whose sample had a larger value
was judged as more similar to the target. By this process, we derived the simulated
voting matrix and voting function for the subject, following the procedure
described in Fig. 2. We repeated this procedure for multiple values of σ, and found
the value σ* for which the slope of the simulated voting function was most similar
to the slope of the measured voting function for this subject. Hence, σ*2 was an
estimate of the subject’s recognition memory variance.

Step 3. As for population data, the target-present and the (simulated) target-
absent analyses were applied to voting score distributions in order to determine,
respectively, the probability that the target is correctly identified as target and
the probability that a non-target is incorrectly identified as target. (Distributions
for all fillers in the simulated target-absent condition were used to determine the
false identification rate.) These correct and incorrect probabilities were
computed for each decision criterion and plotted as ROC curves. The AUC for
each curve serves as a criterion-independent index of the degree to which the
optimal classifier can correctly discriminate target and innocent faces based on
the voting score distributions obtained from a single witness. As such, the

individual-witness AUC is a quantitative index of individual witness
performance.

Similar to our analysis of population ROC curves, we used the distribution of
individual ROC curves produced at Step 3 of the above procedure to determine the
50 and 95% regions of error of ROC marked in Fig. 8. These regions of error allow
one, first, to evaluate whether performance of individual eyewitnesses is different
from chance and, second, to evaluate the degree to which ROC curves of individual
eyewitnesses are different from one another.

Apparatus. Mock crime and lineup face images were viewed in a quiet light-tight
behavioral testing room. All visual stimuli were rendered in color on a computer
monitor (Sony Trinitron Multiscan 500PS, resolution 1024 × 768 pixels, 60 Hz, 32-
bit True Color) and viewed from a distance of 62 cm using a chin rest. The video
recording had the resolution of 1280 × 720 pixels at the screen size of 40 × 18 cm
(35.8 × 16.5 degrees of visual angle) and rendered at the rate of 25 frames/s. Face
image resolution was 167 × 167 pixels. Each face image had a screen size of 7 ×
7 cm (6.5 × 6.5 degrees of visual angle). Experiments were controlled using the
software platform MATLAB, Release 2017b, The MathWorks, Inc., Natick,
Massachusetts, USA.

Participants. Subjects were primarily (96%) undergraduate students from the
University of California, San Diego, who received course credit for their parti-
cipation. A small number of subjects (4%) were college-age individuals from the
La Jolla community, who received monetary compensation for their participa-
tion. Two hundred and two (202) subjects participated in the experiments (mean
age 20.7 years, standard deviation 2.9 years; 67% female): 62 subjects were
presented with the PAR target-present lineup and 70 subjects were presented
with the PAR target-absent lineup; 33 subjects with the SIM lineup, and
37 subjects with the SEQ lineup. All subjects had normal or corrected-to-normal
visual acuity.

Human subject protection. In accordance with ethical standards set by US laws
and regulations, we protected the welfare, rights, and privacy of human subjects
who participated in these experiments. Subjects were informed of their rights as
experimental participants and they provided written consent. The human subject
protocol was reviewed and approved by the Human Subjects Institutional Review
Board of the Salk Institute for Biological Studies (protocol #17-0002).

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available on the Open Science
Framework in the listing for the following research project: “Enhancing Eyewitness
Performance by Optimizing Context.” In particular, the source data underlying Figs. 2–8
are available under the project component Data at https://osf.io/n7vme/. A reporting
summary for this Article is available as a Supplementary Information file.

Code availability
Data were collected and analyzed using the commercial software platform MATLAB,
Release 2017b, The MathWorks, Inc., Natick, Massachusetts, USA.
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