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The evaluationof scratching behavior is important in experimental animals because

there is significant interest in elucidating mechanisms and developing medications

for itching. The scratching behavior is classically quantified by human observation,

but it is labor-intensive and has low throughput. We previously established an

automated scratching detection method using a convolutional recurrent neural

network (CRNN). TheestablishedCRNNmodelwas trained bywhitemice (BALB/c),

and it could predict their scratching bouts and duration. However, its performance

in blackmice (C57BL/6) is insufficient. Here, we established amodel for blackmice

to increase prediction accuracy. Scratching behavior in black mice was elicited by

serotonin administration, and their behavior was recorded using a video camera.

The videos were carefully observed, and each frame was manually labeled as

scratching or other behavior. The CRNN model was trained using the labels and

predicted the first-look videos. In addition, posterior filters were set to remove

unlikely short predictions. The newly trained CRNN could sufficiently detect

scratching behavior in black mice (sensitivity, 98.1%; positive predictive rate,

94.0%). Thus, our established CRNN and posterior filter successfully predicted

the scratching behavior in blackmice, highlighting that our workflow can be useful,

regardless of the mouse strain.
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Introduction

Over 70 million people suffer from itching worldwide (Institute for Health Metrics and

Evaluation, 2020). Chronic itching is sometimes associated with serious problems, such as

sleep impairments and depression, and decreases the patients’ quality of life (Lee et al., 2021).

Although variousmedications, including antihistamine drugs are typically used for treatments,

detailedmechanisms of refractory cases remain unknown (Yosipovitch et al., 2018). Therefore,

researchers have established various rodent itching models (Hoeck et al., 2016) and have

explored the mechanisms and drug candidates.

Since we cannot directly assess itching sensation in rodents, we usually evaluate itching by

observing scratching. In most laboratories, visual observation is the standard method for

measuring scratching bouts and durations. However, it has low throughput and places physical
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and mental burdens on researchers. Therefore, automated tools are

required to promote research into itching.

Recently, we reported an automated scratching detectionmethod

using a convolutional recurrent neural network (CRNN) (Kobayashi

et al., 2021). This method can detect scratching behavior in white

mice (BALB/c). In addition, only a simple recording environment

was required to use our method: a video camera, a cage, and a GPU-

mounted computer. These characteristics are superior to existing

methods requiring special equipment (Inagaki et al., 2003; Elliott

et al., 2017; Tarrasón et al., 2017). However, in a previous study, the

established method could not sufficiently predict the scratching

behavior in black mice (C57BL/6). Because black mice are also

widely used in research, including for itching (Jin et al., 2009), the

development of an accurate automated prediction method for black

mice, as is the case for white mice, is desired.

This study aimed to improve our workflow and develop an

accurate automated prediction method for black mice. The

CRNN and posterior filter combination successfully detected

scratching behaviors in black mice. Together with previous

works, our proposed workflow can accelerate research on itching.

Materials and methods

Mice

C57BL/6 mice (12–18 weeks old; males, n = 9) were used in

this study. All the experiments were approved by the Institutional

Animal Care and Use Committee of the University of Tokyo

(P19-079). Animal care and treatment were performed in

accordance with the guidelines outlined in the Guide to

Animal Use and Care of the University of Tokyo.

Serotonin treatment and video recording

Serotonin (10 ug in 10 ul saline; Serotonin hydrochloride,

Sigma Aldrich, St. Louis, MO) was intradermally injected into the

backs of C57BL/6 mice to induce scratching behavior. After

treatment, the mice were placed into a white square arena

(37 cm × 25 cm × 22 cm), and their behavior was recorded

for 20–30 min using a video camera (HDR-CX720V, Sony,

Tokyo, Japan). The detailed recording conditions were as

follows: frame rate, 60 Hz; resolution, 1,920 × 1,080 pixels.

We split the recorded videos every about 10.5 min and

selected 21 videos in which several scratching bouts were

observed.

Manual labelling of scratching

We defined scratching behavior as the rapid, repetitive, and

back-and-forth movement of the hind limb toward the injection

site, as previously defined (Kobayashi et al., 2021). The recorded

videos were carefully observed and each frame was labeled as

“scratching”: 1 or “other behaviors”: 0.

Image pre-processing

All the recorded videos were divided into frames. The

frames were pre-processed as previously described (Kobayashi

et al., 2021). Briefly, differential images between successive

frames were generated and cropped around the geometric

center of the mouse into a square shape. They were converted

to gray scale, binarized, and resized to 200 × 200 pixels. The

binarization threshold was set to 15. To consider the temporal

changes before and after the frame at time t, 21 pre-processed

images from t-10 to t+10 were collected. Hereafter, we call

them as “segment”. The label of the frame at time t is assigned

to the label of the segments at time t.

Convolutional recurrent neural network

The architecture and hyperparameters were similar to those

described previously (Kobayashi et al., 2021). Briefly, the CRNN is

composed of three convolution and max pooling layers, two LSTM

layers, and five fully connected layers. One hundred segments were

randomly selected from those labeled as scratching, and

1,500 segments were randomly selected regardless of labels for

every epoch. The images were randomly flipped and rotated by

multiples of 20° for data augmentation. An Adam optimizer with a

3 × 10−5 learning rate and a binary cross-entropy loss function was

used. For the prediction, segments were input into the trained CRNN

without data augmentation. The CRNN outputs a decimal value

between zero and one for the segments.We defined a segment which

value was more than 0.5 as “scratching”.

Prediction of scratching bouts and
duration

A series of continuous predictions were counted as a bout.

Duration was calculated as the time period for each bout. When a

bout observed by humans was predicted to be several bouts, the

duration was predicted as the sum of the time period of predicted

bouts.

Computer hardware and software

Training and prediction of neural networks were conducted

on a desktop computer equipped with an Intel Core i9-9900 KS

CPU, 64 GB RAM, and NVIDIA GeForce RTX 2080 Ti using the

TensorFlow library (version 1.14.0) in Python.
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Results

Dataset preparation of scratching
behavior

Serotonin (10 µg in 10 µL saline) was intradermally injected

into the backs of C57BL/6 mice (n = 9) to induce scratching

behavior. The mice’s behavior was recorded for 20–30 min using

a video camera.We split the recorded videos approximately every

10.5 min and obtained 21 videos in which the mice scratched

several times. These videos were divided into frames, and each

frame was manually labeled as “scratching” or “other behavior.”

In addition, the images were pre-processed as previously

described (Materials and Methods).

The 21 videos were split into three datasets: 12 videos for the

training dataset, four for the validation dataset, and five for the

test dataset. Five mice were used to create the training and

validation datasets, and the other four mice were used to

create the test dataset. The training dataset was used to train

the neural network, the validation dataset was used to tune the

hyperparameters, and the test dataset was used to evaluate the

performance of the trained neural network.

CRNN training

The CRNN model was constructed as previously described

(Kobayashi et al., 2021) and trained with the training dataset. The

losses, an index of the difference between CRNN prediction and

human labels, for the training dataset were surveyed to

understand training progress. The losses gradually decreased

and reached almost plateaued at 800 epochs (Supplementary

Figure S1A), suggesting that the training progress almost

converged at 800 epochs. Thus, we stopped training at that

point. When a neural network excessively learns the training

datasets, the performance to predict the first-look dataset

decreases, which are usually called “overfitting.” We checked

the performance of the trained CRNN every 200 epochs using the

training and validation datasets whose videos were not used for

training. The ratio of mispredicted frames to all frames (error

rate) was calculated for both datasets (Supplementary Figure

S1B). While the error rate gradually decreased as training

progressed for the training dataset, the model at 600 epochs

showed the lowest error rate (0.26%) for the validation dataset.

Therefore, we used this model with 600 epochs.

Performance validation and filter
application

The performance of the trained model was evaluated using

the validation dataset. The sensitivity and specificity were 93.5%

(2,645 of 2,830) and 99.9% (149,331 of 149,546). The positive

predictive and negative predictive values were 92.5% (2,645 of

2,860) and 99.9% (149,331 of 149,516) (Supplementary Table

S1). Besides, we also confirmed that the previous model trained

with BALB/c dataset exhibited lower performance (sensitivity,

50.7%; positive predictive rate, 99.5%; Supplementary Table S3),

consistent with our previous result (Kobayashi et al., 2021).

Next, we counted the number of scratching bouts and

calculated the duration of each bout. The number of

scratching bouts and the duration of each bout predicted by

the CRNN were largely comparable to those counted by humans

(Figures 1A,B; bouts: r = 0.871, duration: r = 0.963). However,

there was a video in which bouts were overestimated compared to

others (indicated by an arrow in Figure 1A).

Mispredicted frames were classified into three categories: 1)

boundary errors, 2) false detections, and 3) oversights to

investigate the error details. “Boundary errors” were assigned

to cases in which the start frame and/or end frame of a series of

continuous predictions were shifted compared with those of

human labeling. “False detections” were assigned to cases in

which the CRNN mislabeled non-scratching behavior as

scratching. Oversights were assigned to cases in which the

CRNN failed to detect scratching behavior labeled by humans.

In the mispredicted frames of the validation dataset, boundary

errors were 84.0% (336 of 400), false detections were 15.8% (63 of

400), and oversights were 0.3% (1 of 400) (Figure 1C). In

addition, we found that false detections occurred for short

periods (one to nine frames) when the mice walked and

groomed themselves. Therefore, a posterior filter that removed

the predictions for nine or fewer frames was set to improve the

predictive performance (Figure 1D).

After the filter was applied, the overestimated bouts were

significantly improved, whereas the prediction of durations

remained highly correlated with human observations (Figures

1E,F; bouts: r = 0.999, duration: r = 0.930). In addition, analyzing

the details of the errors showed that false detections were

completely removed, and oversights remained at low levels

(Figures 1C,G). We also confirmed that there were no

apparent changes in sensitivity (93.1%), specificity (99.9%),

positive predictive rate (94.5%), and negative predictive rate

(99.9%, Supplementary Table S2). These results indicate that

the posterior filter improves the performance in predicting the

number of scratching bouts.

Performance evaluation using the test
dataset

We evaluated the trained CRNN and filter performance using

the test dataset. The test dataset consisted of five videos not used

in the training or validation datasets. The sensitivity and

specificity were 98.1% (7,814 of 7,968) and 99.9% (182,082 of

182,577), respectively. The positive predictive and negative

predictive values were 94.0% (7,814 in 8,309) and 99.9%
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FIGURE 1
Performance validation and filter application. (A,B) The comparison of the number of scratching bouts (A) and duration (B) between human
observation and pre-filtered predictions. (C) Details of mis-predicted frames in pre-filtered predictions. (D) Schematic figure of the posterior filter. (E,F)
The comparison of the number of scratching bouts (E) and duration (F) between human observation and post-filtered predictions. (G) Details of mis-
predicted frames in post-filtered predictions.
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(182,082 in 182,236) (Table 1). The number of bouts and

duration predicted by the CRNN and filter were highly

correlated with those counted by humans (Figures 2A,B;

bouts: r = 0.994, duration: r = 0.991). The most frequent

errors were boundary errors (87.2%, 566 in 612); false

detections and oversights accounted only for 3.2% (21 of 612)

and 9.6% (62 in 612), respectively (Figure 2C). Because boundary

errors can occur among human experimenters, these results

demonstrate the high performance of the method.

Discussion

Evaluation of mouse scratching behavior is indispensable

for itching research. We previously established a model to

automatically detect the scratching behavior of a white

BALB/c strain using CRNN (Kobayashi et al., 2021). In

this study, we improved the method by introducing a

posterior filter and showed that our workflow can be

applied to C57BL/6 mice.

TABLE 1 Confusion matrix of post-filtered CRNN prediction for the test dataset.

Post filtered prediction Predicted label Sensitivity

Scratch Not

Human observation Scratch 7,814 154 98.1%

Not 495 182,082

Positive predictive value 94.0%

FIGURE 2
Performance evaluation using the test dataset (A,B) The comparison of the number of scratching bouts (A) and duration (B) between human
observation and predictions. (C) Details of mis-predicted frames.
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Visual assessment of scratching behavior is a general

method; however, it is time-consuming and exhausts

researchers. Therefore, automated tools have been

developed using magnets (Inagaki et al., 2003), sounds

(Elliott et al., 2017), vibrations (Tarrasón et al., 2017), and

video images (Ishii et al., 2008; Kobayashi et al., 2021). In the

present study, we adopted video-based analysis and used

simple recording setups: a cage and a video camera. Since this

simple setup did not require invasive treatment (Inagaki

et al., 2003), our method places less of a burden on

experimental animals. In addition, the initial introduction

costs into the experimental facilities can be lower, as no

special equipment is necessary. Besides, we can easily check

predictions by observing recorded video files, whereas it is

difficult to make such checks from sounds and vibrations

only. Therefore, our method is superior to the existing

methods.

Because various mouse strains have been used for itching

research (Inagaki et al., 2001; Jin et al., 2009; Hoeck et al., 2016),

automated scratching detection methods are desired to be used

regardless of strain. However, while humans can easily detect the

scratching behavior of any strain, machine learning methods are

often affected by differences such as fur colors and sizes. For

instance, the neural network model trained using the BALB/c

strain dataset did not sufficiently predict the dataset of C57BL/

6 strain (Kobayashi et al., 2021). We considered that this failure

was caused by slight differences between the training and test

datasets and newly created the datasets for C57BL/6 strain.

Consequently, the model trained using the new training

dataset successfully detected the scratch behavior of C57BL/

6 mice. More importantly, we noted that the number of bouts

and duration were highly correlated with those of human

observations, showing feasibility for practical use. These

results suggest that our proposed workflow can operate

regardless of the mouse strains, when a specific, tailor-made

training dataset is created from scratch.

Machine-learning methods sometimes provide unnatural

predictions because they do not consider biological factors. In

the previous study, we did not examine whether the predicted

periods were sufficiently long for mice to exhibit scratching

behavior (Kobayashi et al., 2021). We excluded unlikely short

(<10 frames) scratching predictions by applying a posterior filter.

This post-processing successfully decreased the number of false

detection frames (Figures 1C,G) and improved the prediction of

scratching bouts (Figures 1A,E). Because adjusting filters is easier

than tuning the hyperparameters of CRNN, the present study

showed that the posterior filter could effectively improve the

output of machine-learning methods.

However, our workflow has a weakness: the requirement

of strain-specific models. Recording videos and manual

labeling is laborious work for researchers. For instance, we

spent hours labeling 10-min videos in each study (Kobayashi

et al., 2021). One possible solution is fine-tuning or transfer-

learning, which utilize already trained neural network models.

These techniques can reduce the amount of necessary labeling

as adopted in DeepLabCut, an animal pose estimation

algorithm (Mathis et al., 2018). We are currently

investigating the best way to reduce the amount of

necessary labeling with fine-tuning or transfer-learning.

Another solution is to develop versatile models using a few

strains. Although it is beyond the scope of the present study,

there is great interest in establishing a model that can be used

for any kind of mouse. Creating a mixed dataset for different

strains might help neural networks learn the universal features

of scratching behavior. Further investigations are required to

address these issues.

In conclusion, we established an automated method to detect

scratching behavior in C57BL/6 mice using a CRNN. Combined

with a previous study, this study showed that our workflow could

accelerate itching research.
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