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Abstract

Genetic studies have revealed that autoimmune susceptibility variants are over-represented in 

memory CD4+ T cell regulatory elements1–3. Understanding how genetic variation affects gene 

expression in different T cell physiological states is essential for deciphering genetic mechanisms 

of autoimmunity4,5. Here we characterized the dynamics of genetic regulatory effects at eight time 

points during memory CD4+ T cell activation with high depth RNA-seq in healthy individuals. We 

discovered widespread dynamic allele-specific expression across the genome, where the balance of 

alleles changes over time. These genes were four-fold enriched within autoimmune loci. We found 

pervasive dynamic regulatory effects within six HLA genes. HLA-DQB1 alleles had one of three 

distinct transcriptional regulatory programs. Using CRISPR/Cas9 genomic editing we 

demonstrated that a promoter variant is causal for T cell-specific control of HLA-DQB1 
expression. Our study shows that genetic variation in cis regulatory elements affects gene 

expression in a lymphocyte activation status-dependent manner contributing to the inter-individual 

complexity of immune responses.

Memory CD4+ T cells are essential orchestrators of immune response. Hence, it is crucial to 

study how genetic variation affects their gene expression patterns to unravel the complex 

dynamics of regulation. Previous T cell studies analyzed a limited number of cell states and 

genes6–12, and an understanding of how the transcriptome is influenced by genetic 

regulatory variation in multiple physiological states is lacking. Allele-specific expression 

(ASE) of genes can detect context-specific cis regulatory effects13,14, here we applied this in 

a high resolution time series.

We stimulated memory CD4+ T cells from 24 genotyped individuals of European ancestry 

(Supplementary Fig. 1) with anti-CD3/CD28 beads. We performed RNA-seq at 0, 2, 4, 8, 12, 

24, 48 and 72 hours after stimulation (Fig. 1a). Gene expression principal component 

analysis showed that the 200 samples separated by time (Fig. 1b, Supplementary Fig. 2), and 

gene clustering identified activation and repression clusters (Supplementary Fig. 3). Using a 

logistic regression framework, we identified dynamic ASE (dynASE) events at heterozygous 

SNPs. At these dynASE sites, the imbalance of the two expressed alleles is time dependent. 

First, for each heterozygous site in an individual, we merged counts from all time points and 

identified significant ASE. We queried a total of 207,519 sites, representing 38,890 unique 

SNPs in 8,322 genes and some in transcribed intergenic regions (3%) (Supplementary Fig. 
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4). We observed a total of 15,268 ASE (intercept P<2.4×10−7=0.05/207,519 tests) events 

within 2,147 genes. Next, we checked ASE sites for dynASE events by fitting a second order 

polynomial model, thus modeling linear and non-linear ASE effects with respect to time. To 

account for over-dispersion of allelic counts15,16, we incorporated sample-to-sample 

variability with a random intercepts effect. We observed 561 significant dynASE events 

across the genome (P<3.2×10−3, <5% FDR), representing 356 SNPs in 186 genes and seven 

intergenic sites (Fig. 1c, Supplementary Table 1). These dynASE events show high 

reproducibility and expanded upon known cis regulatory genetic effects in T cells6,8,9 

(Supplementary Fig. 5–6, Extended Data Fig. 1–4, Supplementary Note). For example, we 

observed dynASE in F11R and CXCR5 (Fig. 1d), where the reference and alternative alleles 

were dynamically regulated in time.

It is possible that differences in regulatory complex activity over time influences both 

expression of a gene and results in differential binding of alleles in regulatory elements. If 

so, we would expect to see an association between changes in level of expression of the gene 

and changes in allelic imbalance (i.e. the absolute difference between the observed allelic 

fraction and 0.5) over time. As expected, when we calculated Spearman rank correlation at 

each dynASE site between its allelic imbalance and expression over time, we observed a 

bimodal distribution of positive and negative associations (Fig. 2a). For example, SNP 

rs6021:A>G in gene F5 has a negative correlation between allelic imbalance and gene 

expression, with allelic imbalance starting high at 0 hours (red circle in Fig. 2b), going down 

as expression increases, and going back up as expression decreases. In contrast, SNP 

rs41306241:A>G in the gene CTSL1 has a positive correlation between allelic imbalance 

and gene expression (Fig. 2b). Hence, dynamic ASE suggests complex differential usage of 

cis regulatory elements during T cell activation affected by genetic variation.

We found that 31 of our dynASE genes were within autoimmune disease loci outside of the 

MHC, including UBASH3A and IL10 (Fig. 2c,d). DynASE genes are significantly enriched 

for risk loci for ankylosing spondylitis (OR = 5.7, P = 0.008), celiac disease (OR = 5.4, P = 

0.004), vitiligo (OR = 5, P = 0.004), type 1 diabetes (T1D, OR = 4.5, P = 0.002), 

inflammatory bowel disease (OR = 3.7, P = 0.001), rheumatoid arthritis (OR = 3.6, P = 

0.005), and multiple sclerosis (OR = 3.1, P = 0.003), but not for non-immune mediated 

diseases (Fig. 2e, Methods, Supplementary Note, Supplementary Fig. 7). We compared these 

enrichments to genes with ASE at 0 hours only and with published eQTLs in resting CD4+ 

naïve T cells9. We observed that our dynASE genes, spanning up to 8 different cellular 

states, had the highest enrichment for autoimmune loci (Fig. 2e).

We observed 182 dynASE events within the MHC locus (Fig. 1c), with 15 events in HLA-
DQB1 (examples in Supplementary Fig. 8, Supplementary Table 1), which harbors most of 

the genetic risk for T1D and celiac disease17,18. HLA-DQB1 is part of HLA class II, which 

codes for antigen presenting proteins typically expressed by professional antigen presenting 

cells. In human T cells, these genes are recognized as activation markers, and are expressed 

by T cell subsets expanded in patients with autoimmune disorders19–23. Literature suggests 

that T cells may present antigens to alter immune responses24–26. However, the function of 

HLA class II in T cells remains controversial.

Gutierrez-Arcelus et al. Page 3

Nat Genet. Author manuscript; available in PMC 2020 August 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



To define the relationship between HLA classical alleles (a combination of multiple coding 

variants) and regulatory variation, we performed high resolution typing of HLA-DQB1, 

HLA-DRB1, HLA-DQA1, HLA-A, HLA-B, and HLA-C, for all 24 individuals. To robustly 

identify dynASE in this highly polymorphic region, we built an HLA-personalized genome 

for each individual (Extended Data Fig. 5) and quantified the number of uniquely mapped 

reads to each HLA allele per individual. Among the 48 HLA-DQB1 ~780bp sequences, 

there were 14 HLA-DQB1 4-digit classical alleles. Our HLA-personalized genome strategy 

quantified expression of HLA-DQB1 alleles by taking advantage of >20 SNPs in four exons 

(Fig. 3a-b, replication in Extended Data Fig. 6). With this strategy, we determined that most 

(15/24) individuals have significant dynASE for HLA-DQB1 (P<0.002=0.05/24 tests; 

examples in Fig. 3c).

Allelic expression profiles of HLA-DQB1 4-digit classical alleles clustered together more 

than expected by chance (permutation P<0.001, Supplementary Fig. 9), suggesting that cis 
regulatory effects segregate with HLA-DQB1 classical coding alleles. We observed three 

transcriptional cis regulatory programs: Late-Spike, Constant-Low, and Fluctuating (Fig. 3d, 

Extended Data Fig. 7). To our knowledge, the identification of three distinct transcriptional 

profiles in HLA-DQB1 expression over time is the first description of such complex and 

variable regulation in any gene.

We wanted to confirm that the drastic mRNA up-regulation in the Late-Spike cis regulatory 

program affected cell-surface protein expression levels. We recruited five independent 

homozygous individuals with HLA-DQB1 classical alleles with the Late-Spike cis 
regulatory program, and five homozygous individuals for HLA-DQB1 classical alleles with 

Constant-Low or Fluctuating cis regulatory programs (Supplementary Fig. 10). After seven 

days of activating memory CD4+ T cells, we observed that the fold change increase in HLA-

DQ cell surface expression was significantly higher in Late-Spike homozygotes (P=0.03, 

Wilcoxon test, Fig. 3e, Supplementary Fig. 11).

We then sought to identify the genetic variant driving the Late-Spike cis regulatory program 

with genetic and epigenetic fine-mapping tools. We called SNP genotypes and 4-digit 

classical HLA alleles in 2,198 fully sequenced whole genomes from Estonia27. We identified 

SNPs in tight linkage disequilibrium (LD) with the Late-Spike HLA-DQB1 classical alleles, 

that together represent what we henceforth call the Late-Spike haplotype. While most of the 

SNPs in highest LD with this haplotype (r2 ≥ 0.96) were within the HLA-DQB1 gene (89%), 

only six were intergenic (Fig. 4a, Extended Data Fig. 8a). The same six variants emerged in 

an eQTL analysis in our 24 individual cohort and in an independent analysis in another 

European descent cohort from United States28 (N = 1,603) (Supplementary Note, Extended 

Data Fig. 8b-d). We applied ATAC-seq in memory CD4+ T cells after 72 hours of 

stimulation to identify open chromatin regions. Among these six SNPs, we observed that the 

rs71542466:C>G SNP overlapped the highest ATAC-seq peak. We also observed in public 

data that this SNP overlapped other regulatory element marks and peaks for HLA class II 

regulators29–31 (Fig. 4a, Supplementary Fig. 12).

We hypothesized that one of the 6 intergenic SNPs in phase with the Late-Spike haplotype 

were causal and influenced gene regulation. If so, (1) the causal SNP should be in regions 
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that have regulatory activity and (2) that editing the allele of the causal SNP itself should 

influence gene expression. To this end, we used CRISPR/Cas9 editing in HH, an HLA class 

II expressing T cell line, to test the regions around all 6 candidate SNPs for regulatory 

activity (Supplementary Fig. 13). After cutting near the 6 SNPs, only editing near 

rs71542466, located 39bp upstream of the transcription start site, caused significant decrease 

in HLA-DQ expression (Fig. 4b, Extended Data Fig. 9). Next, we applied targeted homology 

directed repair with CRISRPR-Cas9 to rs71542466 in order to convert the reference C allele 

to the alternative G allele. We predicted that HH T cell line clones homozygous for the 

rs71542466 reference allele should have lower HLA-DQB1 expression than base-edited 

clones homozygous for the alternative allele. We identified 7 clones homozygous for the 

alternative G allele, 7 clones homozygous for the reference C allele, and one clone with a 

104bp deletion (Extended Data Fig. 10). As predicted, HLA-DQB1 was higher in alternative 

allele clones by real-time PCR (P = 0.003, Fig. 4c). After extended culture, surviving 

alternative allele clones had also higher expression of HLA-DQ protein by flow cytometry 

(P = 0.03, Fig. 4c). These results confirmed that the rs71542466 promoter SNP changes 

HLA-DQB1 expression and that it accounts for the Late-Spike cis regulatory program. We 

cannot rule out, however, that additional variants inside HLA-DQB1 (such as those within 

the UTR or intragenic enhancers) may also contribute.

After identifying rs71542466 as an HLA-DQB1 condition-specific regulatory variant, we 

considered whether its effect is T cell-specific. Notably, rs71542466 SNP was not in LD 

with reported eQTL SNPs for HLA-DQB1 in B cell derived lymphoblastoid cell lines 

(LCLs), monocytes, and resting and infected macrophages (Supplementary Table 2, 

r2≤0.27))8,9,32–34. Luciferase assays, Electrophoretic Mobility Shift Assays (EMSA) in cell 

lines and flow cytometry data in primary B cells further confirmed the activation-dependent 

regulatory effect is T cell specific (Fig. 4d,e; Supplementary Figs. 15,16; Supplementary 

Note, Source Data Fig. 4, Source Data Supplementary Fig. 15).

We observed dynASE in 5 HLA genes besides HLA-DQB1. Within HLA class II genes, 

HLA-DRB1 had significant dynASE in 9 individuals (P< 2.1 ×10−3=0.05/24 tests), and 

HLA-DQA1 in 6 (P< 2.2×10−3=0.05/23 tests). Within HLA class I genes, HLA-B and HLA-
C had significant dynASE in 12 individuals (P<2.3 ×10−3=0.05/22 tests and P<2.4 

×10−3=0.05/21 tests) and HLA-A in 6 (P < 2.3 ×10−3=0.05/22). However, for these 5 genes, 

the magnitude of change in allelic fraction across time was more modest than for HLA-
DQB1 (Supplementary Fig. 17). We noticed that individuals with a Late-Spike HLA-DQB1 
allele often have a similar pattern of expression over time for the HLA-DRB1 allele on the 

same chromosome (based on phasing), with upregulation of expression at 48 and 72 hours 

(examples in Supplementary Fig. 18a). This suggests that cis co-regulation between these 

two genes could be mediated through promoter-promoter interactions between HLA-DQB1 
and HLA-DRB1, consistent with promoter capture HiC data (Supplementary Fig. 18b)35,36.

Here, we observed that allelic imbalance in expression is highly dependent on time after 

stimulation of memory CD4+ T cells. In most cases, one of the two alleles over time 

gradually increased expression over the other allele (e.g. UBASH3A, CXCR5). We suspect 

these cases are a consequence of a regulatory complex interacting with a single genetic 

variant altering gene expression; where the status of the regulatory complex may vary 
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depending on the environmental context over time. However, in many instances, we 

observed that the dominant expressed allele switched as stimulation progressed (e.g. HLA-
DQB1, F11R), raising the possibility of multiple regulatory variants or complexes. For 

example, we identified distinct driving variants for HLA-DQB1 at 0 and 72 hours after 

stimulation (LD r2=0.01, Supplementary Table 2). Overall, this widespread dynamic allelic 

imbalance across the genome illustrates the continuously changing regulatory landscape of 

genes during T cell activation. We predict that future studies with larger samples sizes 

ascertaining additional cellular states will reveal that dynamic ASE is even more widespread 

than what we conservatively identified in this study.

We found that dynASE genes were highly enriched in autoimmune disease loci, suggesting 

that autoimmune risk alleles may affect the expression of its target gene under very specific 

conditions. Indeed, an autoimmune risk variant in an IL2RA enhancer has already been 

shown to act in a time-dependent manner, and influencing polarization of T cells into an 

inflammatory subtype (Th17) instead of the regulatory population (Treg)4. These results 

may explain why investigators have found limited shared genetic effects between 

autoimmune susceptibility variants and eQTL variants at resting state3,12,37 , despite the 

presence of autoimmune susceptibility variants in regulatory elements1–3,38 .

Intriguingly, we identified the most dramatic T cell and condition dependent cis regulatory 

variation within a major autoimmune disease gene: HLA-DQB1. This raises the question of 

whether, and to what extent, genetic regulatory variation controlling HLA gene expression 

could affect disease susceptibility or disease penetrance, as has been highlighted for other 

loci and traits39. For most autoimmune diseases, the MHC region is the major contributing 

locus to disease risk. In this study, three of the four Late-Spike HLA-DQB1 classical alleles 

are protective for T1D (OR 0.045–0.732), while the other two regulatory programs represent 

a mixture of risk and protective alleles17. While amino acid changes causing differential 

antigen display may be the primary autoimmune mechanism at the HLA locus17,40, our data 

underscores the possibility that expression levels of HLA class II may also play a crucial and 

unappreciated role41,42. Over the past several decades, there has been literature suggesting 

variation in expression among different HLA alleles34,43–45 – but to date the idea that this 

regulation changes with cell-state has not been established.

Broadly, class II expression has been well characterized as a marker for both late activation 

in CD4+ T cells and suppressive capacity in T regulatory cells46–48. However, the exact 

mechanisms and functional implications remain to be defined. Our work shows that not only 

do CD4+ T cells express high levels of HLA class II, but that its expression is regulated in a 

cell-type specific manner and varies between individuals. This suggests that during immune 

responses, expression of HLA II on CD4+ T cells is dynamically controlled and may be 

important to modulating function.

Methods

Study design

The goal of this study was to characterize cell state-dependent regulatory effects in memory 

CD4+ T cells to obtain new insights into autoimmune disease mechanisms. In initial 
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experiments, we observed the most dramatic dynamic allele-specific expression effects in 

HLA-DQB1. To investigate this phenomenon in an optimal way, we recruited individuals 

heterozygous for common HLA-DQB1 classical alleles (characterized by a combination of 

coding single nucleotide alleles), with highly divergent alleles (at least a 20 mismatch 

differences between the two alleles). We used the de-identified genome-wide genotypes 

available from the individuals at the Genotype and Phenotype (GaP) Registry at The 

Feinstein Institute for Medical Research, to impute HLA classical alleles with SNP2HLA49 

and select individuals. The GaP Registry provided de-identified cryopreserved PBMCs from 

24 donors with no autoimmune disease, 20–50 years old, and of European ancestry. Donors 

provided fresh, de-identified human peripheral blood mononuclear cells (PBMCs); blood 

was collected from subjects under an IRB-approved protocol (IRB# 09–081) and processed 

to isolate PBMCs. The GaP is a sub-protocol of the Tissue Donation Program (TDP) at 

Northwell Health and a national resource for genotype-phenotype studies50. HLA classical 

alleles were subsequently experimentally confirmed with HLA typing (see below).

Similarly, for the protein level validation experiments, we recruited through the GaP 

Registry individuals homozygous for HLA-DQB1 classical alleles pertaining to the Late-
Spike regulatory program (N = 5) or other programs (N = 5). These individuals were also 

between 20 to 50 years old, with no reported autoimmune disease, and of European ancestry.

Additional details can be found in the Life Sciences Reporting Summary form associated 

with this article.

Memory CD4+ T cell stimulation time course

PBMCs were thawed and resuspended in pre-warmed complete RPMI (cRPMI) (RPMI 

1640, supplemented with 10% heat inactivated FBS, and 1% non-essential amino acids, 

sodium pyruvate, HEPES, L-Glutamine, Penicillin & Streptomycin, and 0.1% β-

mercaptoethanol). Memory CD4+ T cells were isolated by magnetic selection (Miltenyi, 

Memory CD4+ T cell Isolation Kit human). One million cells per well were plated in sterile 

48 well plates (Corning) and rested at 37°C overnight. Twelve hours after the beginning of 

the rest marked the first time point (0 hours). At this time, cells were spun down and 

resuspended in 350 μL of RLT lysis buffer (Qiagen) containing β-mercaptoethanol and 

stored at −80°C. To the remaining wells, 500 μL cRPMI with human T-Activator CD3/CD28 

Dynabeads (Gibco) were added to each well at a ratio of 2 cells : 1 bead. Cells were 

collected at 2, 4, 8, 12, 24, 48, and 72 hours after stimulation. Once all cell pellets were 

collected, resuspended in RLT and frozen, the RNA was isolated using an RNeasy mini kit 

(Qiagen) and stored at −80°C until submitted for sequencing at the Broad Institute in 

Cambridge, MA.

Library construction and RNA sequencing

RNA-seq library preparations were performed with Illumina TruSeq stranded mRNA sample 

preparation kit, and 101bp paired-end reads were sequenced at a mean depth of 41 million 

fragments (read pairs). Additional details found in Supplementary Note.
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Gene expression analyses

We mapped reads to the hg19 reference genome with subread v1.5.151 (with parameters: -u -

Q -D 100000 -t 0 -T 4) and quantified expression levels using featureCounts (with 

parameters: -T 4 -Q 20 -C -s 2 -p -P -D 100000) and GENCODE52 v19 annotation. For PCA 

we took 1,070 genes with standard deviation > 1 and mean expression > 3 log2(tpm+1), we 

scaled gene to mean zero and variance one and performed PCA with the R53 function 

prcomp. For gene clustering, we used k-means. Enrichment of MsigDB hallmarks v6.254,55 

was performed with the enricher function of the R package clusterProfiler56.

In all boxplots in the manuscript, boxes show the first to third quartile with median, whiskers 

encompass 1.5× the interquartile range, and data beyond that threshold are indicated as 

outliers.

Variant genotyping, imputation and filtering

Individuals were genotyped genome-wide using the Global Screening Array (GSA) assaying 

647K SNPs. For pre-imputation QC, we used plink v1.90b3w57 to filter out variants with 

missing call frequencies greater than 0.05, Hardy Weinberg Equilibrium (HWE) threshold P 

< 1e-05, MAF 0.03, keeping a total of 339,333 variants. We imputed variants into the 1000 

Genomes reference panel58 using SHAPEIT v2.r83759 and IMPUTE2 v2.3.260. We filtered 

out variants with info score < 0.9, multi-allelic, HWE threshold P < 1e-05, non-polymorphic 

within our 24 individuals, and with MAF <1% in Europeans of the 1000 Genomes reference 

panel, and indels. This yielded a total of 5,144,453 SNPs. When selecting heterozygous 

SNPs per individual, we further required a genotype probability > 0.9; a total of ~1.5M 

heterozygous SNPs per individual remained.

Dynamic allele-specific expression analysis

We used subread v1.5.1 to align reads to the hg19 reference genome and filtered out reads 

with mapping quality < 10. We used WASP15 to filter out reads that had mapping bias at 

heterozygous sites and to remove duplicates. For quantifying allele counts at heterozygous 

sites, we used GATK61 v3.8 ASEReadCounter requiring a minimum read mapping quality 

of 10 and a minimum base quality of 10 for the site in question (with parameters --

minMappingQuality 10, --minBaseQuality 10, -U ALLOW_N_CIGAR_READS), and 

followed recommended best practices62. For initial QC (Supplementary Fig. 4), for each 

sample we took all heterozygous sites with at least 10 reads (6,496–44,864 sites per sample). 

The mean coverage across sites per sample ranged from 50–127. All samples had >95% of 

both alleles observed at included heterozygous sites. The mean reference fraction was close 

to 0.5 for all samples (mean 0.5098, range from 0.5045 to 0.5159). For a given heterozygous 

site, the reference fraction refers to the number of reads with the reference allele divided by 

the total number of reads overlapping the site. Allelic imbalance is the distance to 0.5 

reference fraction (i.e. absolute value of: the reference fraction minus 0.5).

To identify sites with dynamic ASE, we used a nested approach using a logistic regression 

framework on a per individual, per heterozygous site basis, with the lme463 R package. 

Each read is encoded according to the following: 1 if it contains a reference allele or 0 if it 

contains the alternative allele. For each time course per individual, we included sites with at 
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least 20 reads in at least 4 time points and required that both reference and alternative alleles 

are seen in all included samples. First, we identified sites with evidence of ASE by merging 

data from all time points and testing if the intercept is significantly different from zero 

(assuming a standard normal distribution and using a z-test, two-sided) and used a 

Bonferroni threshold to determine significance (0.05 divided by the number of tests). Then, 

we tested which of these sites had ASE that changes with time by fitting a second order 

polynomial model, which allowed to model non-linear ASE effects with respect to time. 

Time was coded as time points 1 through 8 (or maximum number of time points) and scaling 

to mean zero variance one. We controlled for overdispersion of allelic counts due to 

technical or biological sample to sample variability64 by incorporating a random intercept 

effect, coding sample ID as a factor. We tested for the effects of time by performing a 

likelihood ratio test between the two nested models using R anova function (two-sided). The 

null model H0 and alternative model H1 for a given SNP i in a given individual j are detailed 

below:

H0: ln( p
1 − p )i, j = α + μi, j

H1: ln( p
1 − p )i, j = α + μi, j + β1t + β2t2

Where is the probability of observing the reference allele, α is the intercept, μ is the random 

intercept effect across samples, t is time, and β is the effect of time on the log-odds of 

observing the reference allele. We calculated the FDR per test using the qvalue R package65, 

and called significant all events with q<0.05 (<5% FDR), unless otherwise stated. Using a 

quadratic function identified twice as many events as a linear function, while capturing most 

of the linear events (87%).

HLA typing

Purified DNA from the 24 individuals was sent to the NHS Blood and Transplant, UK, 

where HLA typing was performed. Next generation sequencing was done for HLA-DQB1, 

HLA-A, HLA-B, HLA-C, and for HLA-DRB1. PCR-SSOP was done for HLA-DQA1 in all 

individuals, and for HLA-DRB1 in 6 individuals for which limited DNA was available. 

These typing methods yielded classical allele calls for the six genes at 4 to 8-digit resolution.

Allele-specific expression in HLA genes

To prepare an HLA personalized genome for each individual we first took the HLA 6-digit 

classical allele calls for each of the 6 HLA genes (12 alleles total per individual) and 

downloaded the corresponding cDNA sequence from the IPD-IMGT/HLA database66. Next, 

we added the 12 HLA allele cDNA sequences to the hg19 reference genome, each encoded 

as a separate chromosome. We masked the exonic regions of the 6 HLA genes on 

chromosome 6 in the original hg19 reference (by replacing the A, T, C and G bases with 

Ns), to remove redundancy with the added cDNA sequences (so that reads will map to only 

the cDNA sequences and not the original reference genome sequences). For each individual, 

we aligned per sample the reads to the HLA-personalized genome with subread requiring 

uniquely mapped reads. We removed PCR duplicates with Picard Tools v1.119. We counted 

the number of uniquely mapped reads to each HLA allele with featureCounts, requiring a 
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minimum mapping quality of 40, using a personalized gtf annotation file per individual. This 

way, we got quantifications of each of the 6 HLA alleles, as though each was a separate 

gene.

To identify dynASE for each HLA gene, we used the same statistical approach mentioned 

above. Instead of using allele counts for a single SNP, we used counts for the whole cDNA 

per HLA allele (usually encompassing 3–4 exons, 552–1119 bp). To compare HLA allelic 

expression levels between samples, we normalized the HLA allele counts by library size and 

cDNA size (FPKM). For the two individuals for which we had full time course replicates, 

we used the mean of the FPKM values.

For testing whether allelic profiles of HLA-DQB1 4-digit classical allele groups are more 

similar to each other than expected by chance, we calculated the sum of squares within 4-

digit allele groups, and total sum of squares (observed values). Then, we permuted the 4-

digit allele groups 10,000 times, and repeated the sum of squares calculations 

(Supplementary Fig. 9). For this analysis, we excluded four allelic profiles with 4-digit 

alleles that were present only once in our 48 allelic profiles (DQB1*04:02, DQB1*06:01, 

DQB1*06:09 and DQB1*05:03).

For HLA-DQB1 allelic profile grouping with k-means clustering and PCA, we removed the 

12 hour time point due to its high number of missing values (caused by an insufficient 

number of cells obtained for some individuals), and further excluded another 2 individuals 

with missing values, resulting in a total of 44 allelic profiles (2×22 individuals). For both of 

these analyses we used log2(FPKM+1) values. Three clusters captured 64% of the variation 

in our data, defined by the ratio of between group sum of squares and total sum of squares. 

Two clusters captured a significantly lower amount of between group variability (37%), and 

four clusters (70%) had a modest increase from three. PCA was performed on allelic 

expression profiles with prcomp with center = TRUE, and independently showed that the 

three clusters identified with k-means separate well (Extended Data Fig. 7).

HLA-DQ protein level validations on memory CD4+ T cells

Ten additional individuals were recruited through the GaP Registry (see Study Design). Five 

individuals were homozygous for Late-Spike alleles: one for DQB1*05:03 and four for 

DQB1*05:01. Five individuals were homozygous for alleles in the other two cis regulatory 

programs (Constant-Low, and Fluctuating): one for DQB1*03:02, one for DQB1*02:01, one 

for DQB1*02:02 and two for DQB1*03:01. Memory CD4+ T were isolated and stimulated 

as explained above. T cells were assayed for expression of HLA-DQ by flow cytometry on 

day 0 (unstimulated) and days 1, 3, and 7. Additional details for protein quantifications in T 

cells and B cells in Supplementary Note.

Regulatory variant fine-mapping

To look for genetic variants in LD with the Late-Spike haplotype, we called Single 

Nucleotide Variants (SNVs), small INsertions and DELetions (INDELs) and classical HLA 

variants using whole genome sequences of 2,244 healthy volunteers recruited from the 

Estonian Genome Project27 sequenced at 25X coverage. We performed high-resolution (G-

group) HLA calling of three class-I HLA genes (HLA-A, -B and -C) and three class-II HLA 
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genes (HLA-DRB1, -DQA1 and -DQB1) using the HLA*PRG algorithm67. We called SNVs 

and INDELs using GATK version 3.6 according to the best practices for variant discovery68. 

In total we called 246,505 variants in the extended MHC region (29–34 Mb on chromosome 

6, NCBI Build 37).

To check if any SNVs are in high LD with the Late-Spike haplotype, we first used the 

Estonian reference panel and restricted our analyses to individuals who carried the alleles 

present in our 24 individuals (N = 2,198). Namely, there were 58 individuals with two HLA-
DQB1 alleles (at 4-digit resolution) pertaining to the Late-Spike haplotype (i.e. 

DQB1*05:01, 05:02, 05:03 or 06:01), 616 with one Late-Spike haplotype allele, and 1,524 

individuals with zero Late-Spike haplotype alleles. To filter out possible false-positive 

variants, we next restricted the analyses to SNPs with minor allele frequency (MAF) ≥ 0.05 

and within 1 Mb region of the HLA-DQB1 gene (N = 27,210). Next, we computed the r2 

between Late-Spike haplotype dosage (0, 1 or 2) and individual SNP genotypes. Refseq 

gene annotations were used to determine start and end of HLA-DQB1, HLA-DRB1 and 

HLA-DQA1.

ATAC-seq experiments and data processing

Memory CD4+ T cells from one new PBMC donor from the GaP Registry were purified and 

cultured as described above for 72 hours with anti-CD3/CD28 stimulation beads. Open 

chromatin was assessed with ATAC-seq69,70 as detailed in Supplementary Note.

Cell lines

HH cutaneous T cell lines (ATCC: CRL-2105), Jurkat E6–1 (ATCC: TIB-152), and Daudi 

(ATCC: CCL-213, provided by Dr. Michael Brenner), were cultured in complete RPMI as 

previously described. The HH cell line was chosen for CRISPR/Cas9 experiments because it 

is a T cell line that expressed HLA class II and has a transcriptome similar to the 72-hour 

time point in our dataset, at which the largest effect of the Late-Spike haplotype occurs 

(Supplementary Fig. 13).

Bulk CRISPR/Cas9 editing

To investigate regulatory regions around HLA-DQ, the nearest sgRNA to the SNP of interest 

was selected using Deskgen online tools (www.deskgen.com). Distances of designed sgRNA 

to the nearest SNP are shown in Extended Data Fig. 9. To confirm the sequence of the 

region, genomic DNA around HLA-DQB1 was PCR amplified and Sanger sequenced. 

CRISPR/Cas9 RNP complexes were assembled as previously described71. Briefly, 40 μM 

Cas9 protein (QB3 Mircolabs) was mixed with equal volumes of 40 μM modified sgRNA 

(Synthego) and incubated at 37°C for 15 minutes to form ribonuclear protein (RNP) 

complexes. HH cells were nucleofected with 2μL of RNPs in an Amaxa 4D nucleofector 

(SE protocol: CL-120). Cells were immediately transferred to 24 well plates with pre-

warmed media and cultured. After 7–10 days, HLA-DQ expression was assessed by flow 

cytometry. Editing was confirmed by PCR amplifying genomic DNA around HLA-DQB1 
and sequences analyzed by Tracking of Indels by Decompostiion (TIDE) analysis 

(tide.deskgen.com). All primer and sgRNA sequences are in Supplementary Table.
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CRISPR/Cas9 base-editing of rs71542466 in HH cells

For generation of base-edited cell lines, HH cells were nucleofected with RNPs using 

sgRNA targeting near rs71542466 and asymmetrical ssDNA donors as previously 

described72. Modified cells were grown for 7–10 days then single cell sorted using a BD 

Aria II into 96 well U bottom plates. After 2–3 months of outgrowth, DNA from surviving 

clones (194/1200) was isolated using DNA quick extract solution (Lucigen) following a 

modified protocol. Briefly, 100 μL of cell culture was spun down, washed once with PBS, 

and then re-suspended in 20 μL of DNA extraction solution. Solution was heated in a 

thermocycler to 65°C for 15 minutes, 68°C for 15 minutes, 98°C for 10 minutes, and stored 

at 4 degrees. After DNA extraction, solution was diluted 1:20 and 5 μL used in a standard 50 

μL PCR reaction using Q5 enzyme (NEB). PCR products were Sanger sequenced and 

analyzed using SnapGene to identify SNP corrected clones (7/192), wild type HH clones 

(7/192), and a single (1/194) insertion / deletions clone. Sequences are shown in Extended 

Data Fig. 10. All sgRNA and HDR donor sequences are found in Supplementary Table.

Real-time PCR and flow cytometry analysis of HH clones

For analysis of HLA-DQB1 expression on HH WT (C/C) and ALT (G/G) clones, RNA was 

extracted from clones using a Monarch Total RNA extraction kit (NEB). cDNA was 

synthesized using MaximaH RT (NEB) enzyme following manufacturer’s protocol and 

oligoDT primers. cDNA was diluted 1 in 4 with HLA-DQB1 (Assay ID:Hs00409790) and 

actinB (Assay ID:Hs01060665) probes and Taqman MasterMix (Thermofisher). Samples 

were run on an ARIAmx qPCR machine (Agilent) and data analyzed with Aria 1.5 (Agilent) 

software. Expression is represented as 2-delta(HLA-DQB1 Ct - ActinB Ct). For analysis of protein 

expression, clones that survived after 3–4 months of culture were washed with PBS and 

stained with FITC anti-HLA-DQ (Biolegend, Clone: HLADQ1) for 30 minutes on ice and 

cell surface expression assessed by flow cytometry. Data was analyzed using Flowjo and 

Graphpad PRISM.

Electrophoretic Mobility Shift Assays

EMSAs were performed using the LightShift Chemiluminescent EMSA Kit (Thermo 

Scientific) and single-stranded biotinylated oligonucleotides and complementary sequences 

corresponding to 31 nucleotides (15 nucleotides flanking the SNP of interest). Nuclear 

extract from Jurkat, HH, and Daudi cells was isolated using the NE-PER nuclear and 

cytoplasmic extraction kit (Thermofisher Scientific) with slight modification. Binding 

reactions were incubated at room temperature for 30 min and loaded onto a 6% 

polyacrylamide 0.5× Criterion precast TBE gel (Biorad). After sample electrophoresis and 

transfer to a nylon membrane, DNA was crosslinked for 10 min, and biotinylated probes 

detected by chemiluminescence followed by film exposure. Details in Supplementary Note, 

Supplementary Figures, Supplementary Table and Source Data files.

Luciferase assay

A double-stranded oligonucleotide containing the SNP of interest (31nt + restriction enzyme 

sites) was ordered and annealed as described above. See Supplementary Note for vector 

preparation details. 3 × 105 Jurkat, HH, and Daudi cells were nucleofected with 0.9 μg of 
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pGL3-Promoter vector along with 0.1 μg of pRL-TK Renilla luciferase vector (Promega) in 

16 well strips in a 4D nucleofector with the following protocols and buffers in 20 μL of total 

volume: Jurkat, SE buffer, CL-120 protocol; HH, SE buffer, CL-120 protocol; Daudi SF 

buffer, CA-137 protocol. After nucleofection, 180 μL of complete RPMI was added and 

cells cultured in 96 well flat bottom plates (Falcon). After 48 hours, cells were spun down, 

resuspended in 75 of fresh complete media, and luciferase/renilla activity measured using 

the Dual-Glo Luciferase Assay System (Promega). Firefly luciferase activity was expressed 

as relative luciferase units (RLU) after correction for Renilla luciferase activity. Data were 

normalized to those cells transfected with empty pGL3-Promoter vector. Each dot represents 

an independent nucleofection reaction.

Autoimmune disease enrichment analyses

We downloaded SNPs from the GWAS catalogue on July 17, 2018. We selected SNPs with 

P < 5e-08 for 11 autoimmune diseases and 3 non-immune mediated diseases that served as a 

negative control (schizophrenia, type 2 diabetes, coronary heart disease). We used SNPsea to 

capture genes within disease loci based on LD and recombination interval information73. We 

then assessed how many of the dynASE genes overlap genes in disease loci for each disease 

(observed overlap). To assess whether this overlap represented a significant enrichment, for 

each disease we created 1000 null sets of N random regions in the genome (N = number of 

disease loci), which were matched by the number of genes per locus (within 15% of each 

disease locus). We then calculated the ratio of observed overlap with the mean overlap of our 

1000 null sets (fold enrichment). We calculated the P-value as: (number of null overlaps 

larger than observed overlap + 1)/100174. We took the same approach for genes with 

significant ASE at 0 hours (N = 501), and eQTL genes of naïve T cells reported by the 

Blueprint Consortium (N = 5,688)9.

Extended Data
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Extended Data Fig. 1. Replication of dynamic ASE in two pilot individuals.
For two individuals, we performed full time-course replicates (from the same CD4+ memory 

T cell isolation batch, but independent stimulation experiment and RNA-seq library 

preparation). From the dynamic ASE events called significant in replicate A at 5% FDR (as 

explained in main text and Methods), we asked how do the P-values and betas look in 

replicate B. Left plots show distribution of P-values in replicate B, middle plots show 

correlation of betas for time, right plots show correlation of betas for time squared. (a) 

Individual TB03072560. (b) Individual TB03073798.
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Extended Data Fig. 2. Replication examples of dynamic ASE in two pilot individuals.
Examples of a dynamic ASE event significant in individual TB03072560 (a) and 

TB03073798 (b). Shown are allelic counts for heterozygous SNP (left) and reference 

fraction over time (right) for replicate A (top panels) and replicate B (bottom panels).
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Extended Data Fig. 3. Reproducibility of dynASE across heterozygous individuals for the same 
SNP.
Here we wanted to assess whether dynamic ASE replicates well in different heterozygous 

individuals for the same SNP. First, from the 561 dynASE events at 5% FDR we took the top 

356 unique SNPs (ensuring one heterozygous individual per SNP), and then asked how do 

the P-values look in other heterozygous individuals for those 356 SNPs. (a) Qqplot depicting 

the observed P-values in the other heterozygous individuals (y-axis), compared to the 

expected uniform distribution of P-values (x-axis). (b) Next, within all 561 significant events 

at 5% FDR, we evaluated the correlation of betas for time (left) and time squared (right) for 

all pairwise combinations of heterozygous individuals for the same SNP, i.e. het1 and het2 in 

x and y axis labels.
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Extended Data Fig. 4. DynASE examples for SNPs with two or more heterozygous individuals.
(a-c) Shown are gene expression levels across 24 individuals (left), and allele counts (SNP 

and individual indicated) and reference fraction (P-value and FDR for dynASE indicated) 

for heterozygous SNPs in corresponding gene.
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Extended Data Fig. 5. Scheme depicting HLA allelic expression quantification with HLA-
personalized genome.
In order to quantify robustly allele-specific expression in the highly polymorphic HLA 

genes, we first create an HLA-personalized genome per individual. We do this by inserting 

into the reference genome the cDNA sequences of each HLA allele as separate sequences 

(12 in total given that we sequenced or typed 6 HLA genes), and masking the exonic 

sequences corresponding to those cDNAs in chromosome 6 of the reference genome. Next, 

we map the RNA-seq reads to this HLA-personalized genome, we remove PCR duplicates 

and we count the number of uniquely mapped reads to each HLA cDNA allele.
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Extended Data Fig. 6. Allelic fraction replication in HLA gene quantifications.
Allelic fraction over time for the 3 HLA class II genes (a) and 3 HLA class I genes (b), for 

the two pilot individuals with full time course replicates. Replicate A in black, replicate B in 

blue.
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Extended Data Fig. 7. Principal component analysis of HLA-DQB1 allelic profiles over time.
PCA performed for 48 HLA-DQB1 allelic expression profiles of 24 individuals (log2(FPKM

+1) values over time. Allelic profiles are colored by 4-digit classical HLA-DQB1 allele (a), 

and by the k-means cluster to which they belong (b). Average allelic expression was 

computed for samples with replicates. Twelve hour time point was removed because of high 

number of missing values. These plots depict how 4-digit alleles group near each other (a), 

and how PCA also captures the three distinct cis regulatory programs (Fluctuating, 

Constant-Low and Late-Spike) (b).
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Extended Data Fig. 8. Mapping variants associated with Late-Spike haplotype.
(a) r2 between Late-Spike haplotype dosage and SNPs within 1Mb of HLA-DQB1 in 

Estonian cohort. Orange vertical lines indicate location of HLA-DQB1. Dots that are colored 

pink are intragenic SNPs in HLA-DQB1, HLA-DRB1, and HLA-DQA1. Right plot is 

zoomed in on HLA-DQB1 region to show top SNPs (reference genome hg19). (b) HLA-
DQB1 gene expression levels (log2(FPKM+1)) at 72 hours after stimulation for individuals 

separated by their rs71542466 genotype. (c) Same as in (a) but in European MESA cohort 

(reference genome GRCh38). (d) r2 comparison between Estonian and European MESA 

cohort, for all SNPs in the region (left) or the subset of SNPs in the regions that do not 

overlap HLA-DQB1, HLA-DRB1 or HLA-DQA1 start-end genomic coordinates (right). 

The 6 intergenic SNPs with top r2 in Estonians are highlighted, with 3 of them having top r2 

in the European MESA cohort too. Identity line marked. These results show that our top 

candidate SNP rs71542466 (and the other candidate SNPs) tracks well with the Late-Spike 
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haplotype in both the Estonian and the MESA cohort of individuals of European ancestry 

recruited in the United States.

Gutierrez-Arcelus et al. Page 22

Nat Genet. Author manuscript; available in PMC 2020 August 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Extended Data Fig. 9. Genomic location of nearest gRNAs to tested causal SNPs and 
representative flow cytometry plot of CRISPR-Cas9 edited HH cells.
(a) Location of SNPs (red) is shown in reference to the nearest exon (blue) both upstream 

and downstream of HLA-DQB1. The nearest gRNA sequences used for targeting the regions 

are highlighted with their corresponding colors (rs71542466 - dark green, rs71542467 - light 

purple, rs71542468 - purple, rs72844401 - beige/orange, rs4279477 - blue, rs28451423 - 

light green). Alignments were plotted using SnapGene(v3.2.1). (b) Representative staining 

of HLA-DQ on CRISPR-Cas9 modified HH cells. Cells were modified with proximal gRNA 

as shown in (a) and labelled accordingly. Cells stained 7–10 days after modification with 

HLA-DQ antibodies as a bulk population.
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Extended Data Fig. 10. Sanger sequencing alignment of HH reference and base-edited clones 
reveal seamless editing.
Genomic DNA from expanded clones was sequenced and aligned to the reference (hg38) 

and visualized using SnapGene(v3.2.1). Red colored nucleotide indicates the location of the 

rs71542466 SNP in the reference. Highlighted red nucleotides indicate mismatches from the 

reference and yellow colored nucleotides indicate unresolved/heterozygous sequences.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

We are indebted to Gila Klein RN for her outstanding management of the Genotype and Phenotype (GaP) registry 
at the Feinstein Institute, to the Raychaudhuri laboratory members for critical discussions and feedback, and to 
Henry Long and Paloma Cejas for support on primary T cell ATAC-seq experiments. This work was supported by 
the National Institutes of Health (U19AI111224, U01GM092691, U01HG009379 and R01AR063759 to S.R., 
NHGRI T32 HG002295 to T.A.), the Swiss National Science Foundation (Early Postdoc Mobility Fellowship to 
M.G.-A.), the Broad Institute through the SPARC mechanism (S.R.), the Estonian Research Council (PUT1660 to 
T.E.), the European Union Horizon 2020 (MP1GI18418R to T.E.). Whole genome sequencing (WGS) for the 
Trans-Omics in Precision Medicine (TOPMed) program was supported by the National Heart, Lung and Blood 
Institute (NHLBI). WGS for “NHLBI TOPMed: Multi-Ethnic Study of Atherosclerosis (MESA)” 
(phs001416.v1.p1) was performed at the Broad Institute of MIT and Harvard (3U54HG003067-13S1). Centralized 
read mapping and genotype calling, along with variant quality metrics and filtering were provided by the TOPMed 
Informatics Research Center (3R01HL-117626-02S1; contract HHSN268201800002I). Phenotype harmonization, 
data management, sample-identity QC, and general study coordination were provided by the TOPMed Data 
Coordinating Center (3R01HL-120393-02S1; contract HHSN268201800001I). We gratefully acknowledge the 
studies and participants who provided biological samples and data for TOPMed. MESA and the MESA SHARe 
project are conducted and supported by the National Heart, Lung, and Blood Institute (NHLBI) in collaboration 
with MESA investigators. Support for MESA is provided by contracts HHSN268201500003I, N01-HC-95159, 
N01-HC-95160, N01-HC-95161, N01-HC-95162, N01-HC-95163, N01-HC-95164, N01-HC-95165, N01-
HC-95166, N01-HC-95167, N01-HC-95168, N01-HC-95169, UL1-TR-000040, UL1-TR-001079, UL1-
TR-001420. The provision of genotyping data was supported in part by the National Center for Advancing 
Translational Sciences, CTSI grant UL1TR001881, and the National Institute of Diabetes and Digestive and Kidney 
Disease Diabetes Research Center (DRC) grant DK063491 to the Southern California Diabetes Endocrinology 
Research Center. The full authorship list for the NHLBI TOPMed consortium can be found in https://
www.nhlbiwgs.org/topmed-banner-authorship.

Gutierrez-Arcelus et al. Page 24

Nat Genet. Author manuscript; available in PMC 2020 August 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.nhlbiwgs.org/topmed-banner-authorship
https://www.nhlbiwgs.org/topmed-banner-authorship


References

1. Trynka G. et al. Chromatin marks identify critical cell types for fine mapping complex trait variants. 
Nat. Genet 45, 124–130 (2013). [PubMed: 23263488] 

2. Onengut-Gumuscu S. et al. Fine mapping of type 1 diabetes susceptibility loci and evidence for 
colocalization of causal variants with lymphoid gene enhancers. Nat. Genet 47, 381–386 (2015). 
[PubMed: 25751624] 

3. Farh KK-H et al. Genetic and epigenetic fine mapping of causal autoimmune disease variants. 
Nature 518, 337–343 (2015). [PubMed: 25363779] 

4. Simeonov DR et al. Discovery of stimulation-responsive immune enhancers with CRISPR 
activation. Nature 549, 111–115 (2017). [PubMed: 28854172] 

5. Gutierrez-Arcelus M, Rich SS & Raychaudhuri S. Autoimmune diseases [mdash] connecting risk 
alleles with molecular traits of the immune system. Nat. Rev. Genet 17, 160–174 (2016). [PubMed: 
26907721] 

6. Raj T. et al. Polarization of the effects of autoimmune and neurodegenerative risk alleles in 
leukocytes. Science 344, 519–523 (2014). [PubMed: 24786080] 

7. Dimas AS et al. Common regulatory variation impacts gene expression in a cell type-dependent 
manner. Science 325, 1246–1250 (2009). [PubMed: 19644074] 

8. Gutierrez-Arcelus M. et al. Passive and active DNA methylation and the interplay with genetic 
variation in gene regulation. Elife 2, e00523 (2013).

9. Chen L. et al. Genetic Drivers of Epigenetic and Transcriptional Variation in Human Immune Cells. 
Cell 167, 1398–1414.e24 (2016). [PubMed: 27863251] 

10. Ishigaki K. et al. Polygenic burdens on cell-specific pathways underlie the risk of rheumatoid 
arthritis. Nat. Genet 49, 1120–1125 (2017). [PubMed: 28553958] 

11. Ye CJ et al. Intersection of population variation and autoimmunity genetics in human T cell 
activation. Science 345, 1254665 (2014).

12. Hu X. et al. Regulation of gene expression in autoimmune disease loci and the genetic basis of 
proliferation in CD4+ effector memory T cells. PLoS Genet. 10, e1004404 (2014).

13. Buil A. et al. Gene-gene and gene-environment interactions detected by transcriptome sequence 
analysis in twins. Nat. Genet 47, 88–91 (2015). [PubMed: 25436857] 

14. Hauff N, Zhou X, Wen X, Pique-Regi R. & Luca F. High-throughput allele-specific expression 
across 250 environmental conditions. Genome (2016).

15. van de Geijn B, McVicker G, Gilad Y. & Pritchard JK WASP: allele-specific software for robust 
molecular quantitative trait locus discovery. Nat. Methods 12, 1061–1063 (2015). [PubMed: 
26366987] 

16. Moyerbrailean GA et al. High-throughput allele-specific expression across 250 environmental 
conditions. Genome Res. 26, 1627–1638 (2016). [PubMed: 27934696] 

17. Hu X. et al. Additive and interaction effects at three amino acid positions in HLA-DQ and HLA-
DR molecules drive type 1 diabetes risk. Nat. Genet 47, 898–905 (2015). [PubMed: 26168013] 

18. Sollid LM et al. Evidence for a primary association of celiac disease to a particular HLA-DQ 
alpha/beta heterodimer. J. Exp. Med 169, 345–350 (1989). [PubMed: 2909659] 

19. Burmester GR, Yu DT, Irani AM, Kunkel HG & Winchester RJ Ia+ T cells in synovial fluid and 
tissues of patients with rheumatoid arthritis. Arthritis Rheum. 24, 1370–1376 (1981). [PubMed: 
6459096] 

20. Yu DT et al. Peripheral blood Ia-positive T cells. Increases in certain diseases and after 
immunization. J. Exp. Med 151, 91–100 (1980). [PubMed: 6985649] 

21. Ko HS Ia determinants on stimulated human T lymphocytes. Occurrence on mitogen- and antigen-
activated T cells. Journal of Experimental Medicine 150, 246–255 (1979). [PubMed: 88499] 

22. Rao DA et al. Pathologically expanded peripheral T helper cell subset drives B cells in rheumatoid 
arthritis. Nature 542, 110–114 (2017). [PubMed: 28150777] 

23. Fonseka CY et al. Mixed-effects association of single cells identifies an expanded effector CD4+ T 
cell subset in rheumatoid arthritis. Sci. Transl. Med 10, (2018).

Gutierrez-Arcelus et al. Page 25

Nat Genet. Author manuscript; available in PMC 2020 August 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



24. Lanzavecchia A, Roosnek E, Gregory T, Berman P. & Abrignani S. T cells can present antigens 
such as HIV gp120 targeted to their own surface molecules. Nature 334, 530–532 (1988). 
[PubMed: 2841610] 

25. LaSalle JM, Tolentino PJ, Freeman GJ, Nadler LM & Hafler DA Early signaling defects in human 
T cells anergized by T cell presentation of autoantigen. J. Exp. Med 176, 177–186 (1992). 
[PubMed: 1535366] 

26. Brandes M, Willimann K. & Moser B. Professional antigen-presentation function by human 
gammadelta T Cells. Science 309, 264–268 (2005). [PubMed: 15933162] 

27. Guo MH et al. Comprehensive population-based genome sequencing provides insight into 
hematopoietic regulatory mechanisms. Proc. Natl. Acad. Sci. U. S. A 114, E327–E336 (2017). 
[PubMed: 28031487] 

28. Bild DE et al. Multi-Ethnic Study of Atherosclerosis: objectives and design. Am. J. Epidemiol 156, 
871–881 (2002). [PubMed: 12397006] 

29. Roadmap Epigenomics Consortium et al. Integrative analysis of 111 reference human epigenomes. 
Nature 518, 317–330 (2015). [PubMed: 25693563] 

30. ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human 
genome. Nature 489, 57–74 (2012). [PubMed: 22955616] 

31. Wong D. et al. Genomic mapping of the MHC transactivator CIITA using an integrated ChIP-seq 
and genetical genomics approach. Genome Biol. 15, 494 (2014). [PubMed: 25366989] 

32. GTEx Consortium. Genetic effects on gene expression across human tissues. Nature 550, 204–213 
(2017). [PubMed: 29022597] 

33. Nédélec Y. et al. Genetic Ancestry and Natural Selection Drive Population Differences in Immune 
Responses to Pathogens. Cell 167, 657–669.e21 (2016). [PubMed: 27768889] 

34. Aguiar VRC, César J, Delaneau O, Dermitzakis ET. & Meyer D. Expression estimation and eQTL 
mapping for HLA genes with a personalized pipeline. PLoS Genet. 15, e1008091 (2019).

35. Javierre BM et al. Lineage-Specific Genome Architecture Links Enhancers and Non-coding 
Disease Variants to Target Gene Promoters. Cell 167, 1369–1384.e19 (2016). [PubMed: 
27863249] 

36. Schofield EC et al. CHiCP: a web-based tool for the integrative and interactive visualization of 
promoter capture Hi-C datasets. Bioinformatics 32, 2511–2513 (2016). [PubMed: 27153610] 

37. Chun S. et al. Limited statistical evidence for shared genetic effects of eQTLs and autoimmune-
disease-associated loci in three major immune-cell types. Nat. Genet 49, 600 (2017). [PubMed: 
28218759] 

38. Finucane HK et al. Partitioning heritability by functional annotation using genome-wide 
association summary statistics. Nat. Genet 47, 1228–1235 (2015). [PubMed: 26414678] 

39. Castel SE et al. Modified penetrance of coding variants by cis-regulatory variation contributes to 
disease risk. Nat. Genet 50, 1327–1334 (2018). [PubMed: 30127527] 

40. Raychaudhuri S. et al. Five amino acids in three HLA proteins explain most of the association 
between MHC and seropositive rheumatoid arthritis. Nat. Genet 44, 291–296 (2012). [PubMed: 
22286218] 

41. Raj P. et al. Regulatory polymorphisms modulate the expression of HLA class II molecules and 
promote autoimmunity. Elife 5, (2016).

42. Cavalli G. et al. MHC class II super-enhancer increases surface expression of HLA-DR and HLA-
DQ and affects cytokine production in autoimmune vitiligo. Proc. Natl. Acad. Sci. U. S. A 113, 
1363–1368 (2016). [PubMed: 26787888] 

43. Vandiedonck C. et al. Pervasive haplotypic variation in the spliceo-transcriptome of the human 
major histocompatibility complex. Genome Res. 21, 1042–1054 (2011). [PubMed: 21628452] 

44. Pelikan RC et al. Enhancer histone-QTLs are enriched on autoimmune risk haplotypes and 
influence gene expression within chromatin networks. Nat. Commun 9, 2905 (2018). [PubMed: 
30046115] 

45. Senju S. et al. Allele-specific expression of the cytoplasmic exon of HLA-DQB1 gene. 
Immunogenetics 36, (1992).

Gutierrez-Arcelus et al. Page 26

Nat Genet. Author manuscript; available in PMC 2020 August 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



46. Baecher-Allan C, Wolf E. & Hafler DA MHC class II expression identifies functionally distinct 
human regulatory T cells. J. Immunol 176, 4622–4631 (2006). [PubMed: 16585553] 

47. Reinherz EL et al. Ia determinants on human T-cell subsets defined by monoclonal antibody. 
Activation stimuli required for expression. J. Exp. Med 150, 1472–1482 (1979). [PubMed: 92523] 

48. Engleman EG, Benike CJ & Charron DJ Ia antigen on peripheral blood mononuclear leukocytes in 
man. II. Functional studies of HLA-DR-positive T cells activated in mixed lymphocyte reactions. 
J. Exp. Med 152, 114s–126s (1980). [PubMed: 6447741] 

Methods-only References

49. Jia X. et al. Imputing amino acid polymorphisms in human leukocyte antigens. PLoS One 8, 
e64683 (2013).

50. GAP Registry | The Feinstein Institute for Medical Research. The Feinstein Institute for Medical 
Research Available at: https://www.feinsteininstitute.org/robert-s-boas-center-for-genomics-and-
human-genetics/gap-registry/ (Accessed: 27th February 2019)

51. Liao Y, Smyth GK & Shi W. The Subread aligner: fast, accurate and scalable read mapping by 
seed-and-vote. Nucleic Acids Res. 41, e108 (2013).

52. Frankish A. et al. GENCODE reference annotation for the human and mouse genomes. Nucleic 
Acids Res. 47, D766–D773 (2019). [PubMed: 30357393] 

53. R Core Team, R. & Others. R: A language and environment for statistical computing. (2013).

54. Subramanian A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting 
genome-wide expression profiles. Proc. Natl. Acad. Sci. U. S. A 102, 15545–15550 (2005). 
[PubMed: 16199517] 

55. Liberzon A. et al. Molecular signatures database (MSigDB) 3.0. Bioinformatics 27, 1739–1740 
(2011). [PubMed: 21546393] 

56. Yu G, Wang L-G, Han Y. & He Q-Y clusterProfiler: an R package for comparing biological themes 
among gene clusters. OMICS 16, 284–287 (2012). [PubMed: 22455463] 

57. Purcell S. et al. PLINK: a tool set for whole-genome association and population-based linkage 
analyses. Am. J. Hum. Genet 81, 559–575 (2007). [PubMed: 17701901] 

58. 1000 Genomes Project Consortium et al. A global reference for human genetic variation. Nature 
526, 68–74 (2015). [PubMed: 26432245] 

59. Delaneau O, Marchini J. & Zagury J-F A linear complexity phasing method for thousands of 
genomes. Nat. Methods 9, 179–181 (2011). [PubMed: 22138821] 

60. Howie BN, Donnelly P. & Marchini J. A flexible and accurate genotype imputation method for the 
next generation of genome-wide association studies. PLoS Genet. 5, e1000529 (2009).

61. McKenna A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-
generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010). [PubMed: 20644199] 

62. Castel SE, Levy-Moonshine A, Mohammadi P, Banks E. & Lappalainen T. Tools and best practices 
for data processing in allelic expression analysis. Genome Biol. 16, 195 (2015). [PubMed: 
26381377] 

63. Bates D, Mächler M, Bolker B. & Walker S. Fitting Linear Mixed-Effects Models Using lme4. 
Journal of Statistical Software, Articles 67, 1–48 (2015).

64. Knowles DA et al. Allele-specific expression reveals interactions between genetic variation and 
environment. Nat. Methods 14, 699–702 (2017). [PubMed: 28530654] 

65. Storey JD & Tibshirani R. Statistical significance for genomewide studies. Proc. Natl. Acad. Sci. 
U. S. A 100, 9440–9445 (2003). [PubMed: 12883005] 

66. Robinson J. et al. The IPD and IMGT/HLA database: allele variant databases. Nucleic Acids Res. 
43, D423–31 (2015).

67. Dilthey A, Cox C, Iqbal Z, Nelson MR & McVean G. Improved genome inference in the MHC 
using a population reference graph. Nat. Genet 47, 682–688 (2015). [PubMed: 25915597] 

68. Poplin R. et al. Scaling accurate genetic variant discovery to tens of thousands of samples. bioRxiv 
201178 (2017). doi:10.1101/201178

Gutierrez-Arcelus et al. Page 27

Nat Genet. Author manuscript; available in PMC 2020 August 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.feinsteininstitute.org/robert-s-boas-center-for-genomics-and-human-genetics/gap-registry/
https://www.feinsteininstitute.org/robert-s-boas-center-for-genomics-and-human-genetics/gap-registry/


69. Corces MR et al. An improved ATAC-seq protocol reduces background and enables interrogation 
of frozen tissues. Nat. Methods 14, 959–962 (2017). [PubMed: 28846090] 

70. Buenrostro JD, Wu B, Chang HY. & Greenleaf WJ ATAC-seq: A Method for Assaying Chromatin 
Accessibility Genome-Wide. Current Protocols in Molecular Biology 2129.1–21.29.9 (2015). 
doi:10.1002/0471142727.mb2129s109

71. Schumann K. et al. Generation of knock-in primary human T cells using Cas9 ribonucleoproteins. 
Proceedings of the National Academy of Sciences 112, 10437–10442 (2015).

72. Richardson CD, Ray GJ, DeWitt MA, Curie GL & Corn JE Enhancing homology-directed genome 
editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA. Nat. 
Biotechnol 34, 339–344 (2016). [PubMed: 26789497] 

73. Slowikowski K, Hu X. & Raychaudhuri S. SNPsea: an algorithm to identify cell types, tissues and 
pathways affected by risk loci. Bioinformatics 30, 2496–2497 (2014). [PubMed: 24813542] 

74. Phipson B. & Smyth GK Permutation P-values should never be zero: calculating exact P-values 
when permutations are randomly drawn. Stat. Appl. Genet. Mol. Biol 9, Article39 (2010).

Gutierrez-Arcelus et al. Page 28

Nat Genet. Author manuscript; available in PMC 2020 August 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. Dynamic allele-specific expression during T cell activation.
(a) Study design. (b) Principal Component Analysis on top 1,070 most variable genes. 

Shown are PC1 and PC2 scores for the 200 samples colored by time point. (c) Plot showing 

position across the genome of dynamic allele-specific expression (ASE) events, with y-axis 

indicating FDR (N = 24 individuals). In red, highlighted examples. (d) Examples of dynamic 

ASE events in two genes, each in a different individual. For each time point, we show allele 

counts for the SNP (top) and fraction of reads with the reference allele (bottom).
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Fig. 2. Dynamic allele-specific expression patterns and enrichment in autoimmune disease loci.
(a) Spearman correlation coefficient between gene expression levels (log2(tpm +1)) and 

SNP allelic imbalance (distance to 0.5 reference fraction) across time for all dynASE events 

at 5% FDR. (b) Specific examples of allelic imbalance for a heterozygous SNP in an 

individual, associated with the expression levels log2(tpm+1) of its gene. Red dot indicates 0 

hour time point. Consecutive time points are connected by solid lines, arrows indicate 

direction of time. (c-d) DynASE examples for two autoimmune disease genes. N = 24 for 

gene expression, 1 for ASE. (e) Fold enrichment of dynASE genes (blue) in risk loci for 
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autoimmune diseases and 3 non-immune mediated diseases, using 1000 null sets of loci 

matched by number of loci per disease and number of genes per locus. Same for genes with 

significant ASE at 0 hours (green), and naive T cell eQTL genes (pink). Filled circles mark 

permutation P < 0.01, empty circles mark permutation P > 0.01.
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Fig. 3. HLA-DQB1 dynamic allele-specific expression at mRNA and protein levels.
(a) Scheme of HLA-DQB1 alleles: their properties (highly divergent within each individual) 

and their expression quantification. (b) HLA-DQB1 allele counts for an individual over time. 

(c) Normalized allelic expression for HLA-DQB1 (top, in log2 scale), and allelic fraction 

(bottom) for three individuals. (d) Heatplot shows normalized allelic expression levels (in 

log2 scale) for each of the 48 HLA-DQB1 alleles in our cohort. Allelic profiles were 

clustered into three cis Regulatory Programs, for which the average expression profile is 

shown on the right with a black line, and total expression area occupied by all alleles in that 

cluster is shown with the colored ribbon. (e) Left panel shows normalized allelic mRNA 

expression levels (in log2 scale, values from (d), for alleles present in protein validation 

cohort). Middle panel shows protein levels (median fluorescence intensity of HLA-DQ+ 

CD4+ memory T cells) for 5 homozygous individuals for alleles within the Late-Spike 
regulatory program (blue) and 5 homozygous individuals for alleles in Constant-Low or 

Fluctuating programs (yellow). Right panel shows log2 fold change in HLA-DQ MFI 

between day 0 and day 7. P-value from Wilcoxon one-tailed test.
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Fig. 4. Validation of causal variant for Late-Spike cis regulatory program.
(a) Location of 6 fine-mapped non-coding SNPs around HLA-DQB1. Tracks showing open 

chromatin regions (ATAC-seq) or regions marked by histone modifications (ChIP-seq). (b) 

CRISPR/Cas9 cuts at or near six fine-mapped SNPs in HH T cell lines. Left, experiment 

scheme. Middle, representative example of HLA-DQ expression levels. Right, HLA-DQ 

median fluorescence intensity relative to control, for each of the 6 SNPs, in triplicate. (c) 

Validation of causal SNP rs71542466 with CRISPR/Ca9 and ssDNA oligo HDR template. 

Left, experiment scheme. Middle, mRNA HLA-DQB1 quantification with qPCR Taqman 
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assay for 7 wild type (WT, homozygous for C allele), and 7 SNP edited (ALT, homozygous 

for G allele) expanded clones for rs71542466, as well as a cell line clone with an indel at the 

same target position. Right, HLA-DQ protein levels measured with flow cytometry. N = 5 

WT and 4 ALT clones. (d) Electrophoretic Mobility Shift Assay using nuclear extract of 

three cell lines, with biotin labeled probes with reference (REF) or alternative (ALT) alleles 

for rs71542466. Blots were cropped from original shown in Supplementary Figures. (e) 

Luciferase assay in three cell lines. Cntrl, control. REF, reference allele. ALT, alternative 

allele. All P-values from Mann-Whitney one-tailed test. Error bars are S.E.M.
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