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Abstract
On-road transportation is one of the largest contributors to air pollution in the United States. The COVID-19 pandemic provided the 
unintended experiment of reduced on-road emissions’ impacts on air pollution due to lockdowns across the United States. Studies 
have quantified on-road transportation's impact on fine particulate matter (PM2.5)–attributable and ozone (O3)–attributable adverse 
health outcomes in the United States, and other studies have quantified air pollution–attributable health outcome reductions due to 
COVID-19-related lockdowns. We aim to quantify the PM2.5-attributable, O3-attributable, and nitrogen dioxide (NO2)–attributable 
adverse health outcomes from traffic emissions as well as the air pollution benefits due to reduced on-road activity during the 
pandemic in 2020. We estimate 79,400 (95% CI 46,100–121,000) premature mortalities each year due to on-road-attributable PM2.5, O3, 
and NO2. We further break down the impacts by pollutant and vehicle types (passenger [PAS] vs. freight [FRT] vehicles). We estimate 
PAS vehicles to be responsible for 63% of total impacts and FRT vehicles 37%. Nitrogen oxide (NOX) emissions from these vehicles are 
responsible for 78% of total impacts as it is a precursor for PM2.5 and O3. Utilizing annual vehicle miles traveled reductions in 2020, we 
estimate that 9,300 (5,500–14,000) deaths from air pollution were avoided in 2020 due to the state-specific reductions in on-road 
activity across the continental United States. By quantifying the air pollution public health benefits from lockdown-related reductions 
in on-road emissions, the results from this study stress the need for continued emission mitigation policies, like the U.S. 
Environmental Protection Agency's (EPA) recently proposed NOX standards for heavy-duty vehicles, to mitigate on-road 
transportation's public health impact.
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Significance Statement

On-road transportation emissions are one of the largest contributors to air quality–related health outcomes in the United States. Most 
studies quantifying their impacts have only considered exposure to fine particulate matter (PM2.5) and ozone (O3). We assess exposure 
to on-road-attributable PM2.5, O3, and nitrogen dioxide and estimate 79,400 (46,100 to 121,000) premature mortalities that occur each 
year. We also assess the air quality–related health impacts from reduced on-road transportation during the COVID-19 pandemic in 
2020 and estimate that 9,300 (5,500 to 14,000) deaths from air pollution were avoided due to pandemic-related lockdowns. The 
pandemic-related reductions show the continued importance of on-road emission mitigation strategies for improving public health 
in the United States.
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Introduction
In the United States, road transportation emissions have been es-

timated to be the largest source of fine particulate matter–related 

(PM2.5) and ozone-related (O3) premature mortalities (1). Recent 

studies estimate that roughly 17,000 to 20,000 deaths occur each 

year from road transportation pollution (2–6). Recently, the 

transportation-related health burden attributable to nitrogen di-

oxide (NO2) has been gaining attention (7–12). While evidence 

from toxicological studies is still growing (7–9, 13, 14) to support 

the causality of mortality to long-term exposure to ambient 

NO2, the World Health Organization recently updated its targets 
for annual NO2 concentrations (15), and the US Environmental 
Protection Agency is currently updating its Integrated Science 
Assessment for Oxides of Nitrogen-Health Criteria (16).

Road transportation emissions were reduced as a result of lock-
downs due to the COVID-19 pandemic in 2020 with significant re-
ductions measured in the United States (17, 18), China (19), India 
(20), Japan (21), and Western Europe (22). These reductions in 
emissions led to pronounced reductions in ambient air pollutant 
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concentrations of NO2 (20, 23–32), PM2.5 (20, 23, 25, 29–31, 33), and 
a mixed response for O3 (27, 29, 31, 34).

Impacts from road transportation in the United States vary by 
vehicle and fuel types, emitted pollutants, and source regions 
(3, 35). As a result of state-specific lockdown protocols and altered 
vehicle usage during the COVID-19 pandemic, emission changes 
from vehicle types and regions of the country varied (17, 26, 36). 
While studies have attempted to quantify the impact of air pollu-
tion changes due to the pandemic from ambient measurement 
and remote-sensing data (37–39), quantifying the impacts due to 
road transportation reductions through modeling efforts is diffi-
cult as official emission inventories representative of those varied 
responses in 2020 are not yet available.

This study estimates the total health burden in the United 
States from exposure to road transportation–attributable concen-
trations of PM2.5, O3, and NO2. We break down the impacts by ve-
hicle classes, emissions precursors, and source states. We utilize 
chemistry transport model–derived sensitivities of PM2.5, O3, and 
NO2 to passenger (PAS) and freight (FRT) vehicles’ emissions of ni-
trogen oxides (NOX), volatile organic compounds (VOCs), sulfur di-
oxide (SO2), ammonia (NH3), and primary fine particulate matter 
(PPM) from each state. Sensitivities are at a 12-km resolution for 
the entire continental United States, and emissions are from the 
2016 National Emissions Inventory (NEI). Health impacts are esti-
mated by combining county-level mortality data and pollutant- 
specific concentration response functions (CRFs). We utilize the 
sensitivities to scale emissions by each vehicle class from each 
state by the activity changes observed during 2020 to estimate 
the changes to pollutant concentrations and attributable health 
burdens as a result of those activity changes. By utilizing one of 
the most recent emission inventories (the 2017 NEI was released 
after the modeling for this study had been performed), we are es-
timating how COVID-19 lockdowns in the United States impacted 
air quality and related health outcomes in 2020.

Results
US health impacts
We estimate the total on-road-attributable air pollution health 
burden—the sum of mortalities from exposure to on-road- 
attributable PM2.5, O3, and NO2—to be 79,400 (95% CI 46,100– 
121,000) in the United States in 2016. This equates to monetary 
damages of $820 billion ($280–1,800). We estimate 24% of the 
$820 billion is from PM2.5 exposure, 20% from O3, and 56% from 
NO2. With regard to vehicle class, we estimate PAS vehicles to 
be responsible for 63% of total damages and FRT vehicles 37%. 
NOX emissions from these vehicles are responsible for most dam-
ages (78%) as it is a precursor for PM2.5 and O3. PPM emissions are 
responsible for the second most damage (12%). VOC, NH3, and SO2 

make up the remaining 10%. Figure 1 shows the total premature 
mortalities in the United States from on-road transportation by 
vehicle class, emission precursor, and pollutant (Table S3 shows 
the valuation amounts). We can also quantify the contributions 
to the US totals from each of these variables by source state. We 
estimate that on-road emissions from California, Florida, 
Illinois, New Jersey, New York, Ohio, Pennsylvania, and Texas 
are responsible for ∼50% of total damages in the United States.

We also quantify the on-road-attributable premature mortal-
ities occurring in each state. Figure 2 shows the total (PM2.5 + O3  

+ NO2) premature mortalities in each state. We estimate 
California to be the most impacted by on-road-attributable air 
pollution with 11,000 (6,800–16,000) premature mortalities. 
New York (6,100 [3,600–9,100]) and Florida (5,700 [3,200–8,600]) 

experience the second and third most impacts, respectively 
(Table S4 shows the values for all states).

Impacts in each state can be further broken down by pollutant, 
vehicle class, and emission precursor. Figure 3A (Table S5) shows 
the percentage of premature mortalities in each state due to 
on-road-attributable PM2.5, O3, and NO2. Western states such as 
California, Oregon, Nevada, Utah, and Washington have >70% 
of their total impacts from NO2 due to the lack of regional down-
wind transport of emissions that contribute to PM2.5 and O3. Half 
of the states considered have >50% of their total impacts from 
NO2. Impacts from PM2.5 ranged from 13 to 34% and impacts 
from O3 ranged from 1 to 47% of the total impacts in each state.

Figure 3B (Table S7) shows the percentage of premature mortal-
ities in each state due to emissions from the two vehicle classes we 
considered, PAS and FRT vehicles. North Dakota and Utah are the 
only two states to have a majority of their impacts from FRT emis-
sions. Colorado, Oregon, North Carolina, Connecticut, Virginia, 
and Montana have >70% of their total impacts from PAS emis-
sions. The remaining states’ impacts from PAS emissions range 
from 52 to 69%.

Last, Figure 3C (Table S6) shows the percentage of premature 
mortalities in each state due to precursor emissions of NOX, 
PPM, VOCs, NH3, and SO2. Similar to total damages in the United 
States, NOX emissions are responsible for the most impact with 
>70% of impacts in each state. PPM emissions are responsible 
for the second most impact in each state except for Arkansas, 
Iowa, Mississippi, Vermont, and West Virginia, where VOC emis-
sions are responsible for the second most impact.

Impacts due to COVID-19
The pandemic in 2020 resulted in significant decreases in on-road 
transportation activity in the United States. We utilize vehicle 
miles traveled (VMT) data representative of the reductions ob-
served during 2020 when compared with “prepandemic levels” 
for each state and vehicle class. Figure S1 shows the annual per-
cent changes in VMT for PAS and FRT vehicles in each state. 
With regard to PAS activity, average VMT reductions in the 
United States were ∼17%. Approximately 39% of states experi-
enced >20% reductions in PAS VMT. Michigan, Rhode Island, 
Maine, Massachusetts, North Dakota, Montana, and the District 
of Columbia experienced >25% reductions. US average FRT VMT 
reductions were smaller than PAS at ∼5%. Only Maine, Vermont, 
and North Dakota saw reductions >10%, while Delaware and the 
District of Columbia experienced a 2 and 8% increase in FRT 
VMT, respectively. Vermont was the only state to experience lar-
ger reductions in FRT VMT than PAS VMT.

Those percent changes are used to scale the air pollutant sen-
sitivities with respect to source state, vehicle class, and precursor 
emissions. For this analysis, we assume VMT changes to be 
equivalent to emission changes. We estimate that 9,300 (5,500– 
14,000) deaths from air pollution were avoided in 2020 due to 
the reductions in on-road activity across the continental United 
States. This equates to an economic benefit of $96 billion ($34– 
200). We estimate that changes in PAS activity resulted in 8,100 
(4,700–12,000) deaths avoided (86% of total benefits), and changes 
in FRT activity resulted in 1,300 (730–1,900) deaths avoided (14% of 
total benefits). NO2 reductions were responsible for 55% of bene-
fits, PM2.5 for 25%, and O3 for 20%.

Figure 4 (Tables S8 and S9) shows the PM2.5-related, O3-related, 
and NO2-related premature mortalities due to annual PAS and 
FRT VMT changes as a result of the pandemic in each state. For 
PAS activity changes, premature mortalities avoided due to NO2 

2 | PNAS Nexus, 2024, Vol. 3, No. 1

http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgae017#supplementary-data
http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgae017#supplementary-data
http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgae017#supplementary-data
http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgae017#supplementary-data
http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgae017#supplementary-data
http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgae017#supplementary-data
http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgae017#supplementary-data


and PM2.5 changes are greatest in California; for premature mor-
talities due to O3 changes, New York has the most reductions. 
For FRT activity changes, premature mortalities avoided due to 
NO2 changes are greatest in Texas, to PM2.5 in California, and to 
O3 in Pennsylvania. For the case of FRT changes, California and 
Washington experienced a small increase (four and one prema-
ture deaths incurred, respectively) from O3 changes likely from 
NO titration effects commonly observed in VOC-limited photo-
chemical regimes (40).

Figure S2 shows the percentages of premature mortalities 
avoided due to changes in activity from the state itself. 
Percentages of source states’ impact for PM2.5 changes range 
from 7 to 98% in the cases of PAS and FRT activity changes, except 
for the District of Columbia and Delaware where an increase in 

FRT activity leads to the source state's impact inversely affecting 
the overall change in premature mortalities in the state. 
Percentages for O3 changes range from 1 to 78% in the case of 
PAS activity changes, except for the District of Columbia's, 
Nevada's, and Utah's PAS reductions inversely impacting O3 

through NO titrations. In the case of FRT activity changes, percen-
tages for O3 changes range from 0.4 to 73%. O3 titration effects 
were seen for source state FRT changes in Utah, Nevada, 
Oregon, Colorado, Rhode Island, Delaware, Washington, and 
California. Percentages for NO2 changes range from 21 to 100% 
in the cases of PAS and FRT activity changes, except for FRT 
changes in the District of Columbia and Delaware similar to the 
PM2.5 source state impacts.

Figure S3 shows the distribution of the percentages of prema-
ture mortalities avoided due to changes in activity from the state 
itself for the three pollutants. The distributions can tell us 
whether changes in a source state tend to impact pollutant con-
centrations regionally (impacts are largely outside the source 
state) or locally (impacts are largely inside the source state). We 
can see that changes in a source state tend to impact O3 concen-
trations regionally and NO2 concentrations locally. PM2.5 distribu-
tions are wider, which indicates both regional and local impacts 
due to source state changes.

Discussion
Here, we estimate the on-road-attributable PM2.5, O3, and NO2 

premature mortalities in the United States by vehicle class, 
precursor, and pollutant. We also estimate the reductions in air 
pollution mortalities from road transportation activity changes 
due to lockdowns from the COVID-19 pandemic. To the authors’ 
knowledge, this is the only study to (i) quantify the 
on-road-attributable NO2 health impacts in the United States 

Fig. 1. Total on-road-attributable premature mortalities in the United States by vehicle class, emission precursor, and pollutant.

Fig. 2. Total on-road-attributable premature mortalities in each state.
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and (ii) quantify the air pollution benefits from annual decreased 
road transportation due to the pandemic in the United States.

Comparing baseline PM2.5 health impacts, our estimate of 
18,500 premature mortalities in 2016 compares well with other 

modeling studies for similar years. Choma et al. (2) estimated 
19,800 premature mortalities in 2017, Dedoussi et al. (3) estimated 
∼16,000 premature mortalities in 2018 (projected emissions in-
ventory), and Fann et al. (6) estimated 17,000 premature 

Fig. 3. Percentage of premature mortalities in each state due to (A) pollutant, (B) vehicle class, and (C) precursor.

4 | PNAS Nexus, 2024, Vol. 3, No. 1



mortalities in 2016 (projected emissions inventory). Thakrar et al. 
(5) estimated 8,200–9,700 premature mortalities (estimates 
ranged from three reduced complexity models) from PAS vehicle 
use and 3,200–7,700 from truck use. We estimate 11,900 from 
PAS and 6,670 from FRT. Each of these studies listed has utilized 
different reduced complexity models or chemical transport mod-
els as well as varying CRFs used for the health impact assess-
ments. Additionally, source classification code (SCC) groupings 
for PAS and truck use in Thakrar et al. (5) vary from our groupings 
of PAS and FRT.

We can compare our estimates of COVID-19-related road trans-
portation activity/emission decrease with emissions estimates de-
rived from a fuel-based inventory (17). Figures S4 and S5 show the 
ratio of state-level VMT to prepandemic levels for each month for 
PAS and FRT, respectively. We observe similar trends for gasoline 
sales and urban/rural traffic estimates as those in Harkins et al. 
(17), with most states experiencing the largest decreases in PAS 
VMT in April and mostly returning to prepandemic levels by the 
summer. It is important to note though that not all states experi-
ence a return to full prepandemic levels by summer, which be-
comes important when evaluating the annual impacts. FRT 
VMT does not have as pronounced of a decrease in April similar 
to what was observed for diesel sales (17). We estimate states ex-
perience a 29–62% decrease in PAS VMT and a 2–35% in FRT VMT 
in April 2020 compared with prepandemic levels. Harkins et al. 
(17) estimated a 25–51% decrease in gasoline sales in April 2020 
and a 4–17% decrease in diesel sales. However, when using the 
fuel sales estimates to derive mobile source emissions for the 
month of April, Harkins et al. (17) estimated that state-level re-
ductions to NOX emissions vary between 6 and 39%. Hence, by 
equating changes in VMT to changes in emissions, we may be 
overestimating the reductions experienced during the pandemic 

when compared with fuel-based-derived emissions inventories. 
Yet, our estimates of US average VMT/emissions reductions in 
April 2020 of ∼47 and ∼9% for PAS and FRT, respectively, are in 
line with other studies that utilized mobility-based estimates of 
US on-road emissions reductions that found reductions of 40% 
(41), 45% (42), and 50% (22). Additionally, our upper estimates 
for PAS VMT changes by state (62% decrease during April 2020) 
compare well with road transportation emission reduction esti-
mates (60% decrease from 2020 March 22 to May 2) for four large 
Canadian cities (43). Hence, emissions estimates can vary by 
whether they are mobility based or fuel based, designated by ur-
ban vs. rural and by vehicle type.

Two studies estimate the PM2.5 concentration decreases due to 
on-road activity decreases in Southern California. Yang et al. (44) 
estimated a 17.5% decrease in PM2.5 during the strictest lockdown 
period in April and a 6% decrease from May to June. Jiang et al. (45) 
estimated a 15% decrease in PM2.5 from the end of February to the 
end of April 2020. We estimate a decrease in on-road-attributable 
PM2.5 impacts of 13% over the year in the state of California, which 
seems more substantial than the peak 15–18% in April and the 
much more modest reductions of 6% by July. Yang et al. (44) uti-
lized a machine-learned model to predict concentration reduc-
tions in a shorter lockdown period (2020 April 6 to 12) and a 
later recovery period (2020 May 8 to June 30) due to traffic changes 
in the Los Angeles Basin, and Jiang et al. (45) performed a chemical 
transport model assessment for Southern California for a hypo-
thetical lockdown emissions scenario (average on-road emissions 
reductions of 45% in the region compared with our PAS reductions 
of 51% and FRT reductions of 2% in April 2020 in California). Our 
annual estimates take into account the relative lack of recovery 
in VMT after the greatest decreases in April in California, with 
the average VMT reduction from May to December 2020 being 

Fig. 3. Continued
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21%. Additionally, we are not designating urban vs. rural changes 
across the state resulting in a possible misalignment with the 
largely urban areas studied by Yang et al. (44) and Jiang et al. 
(45), which can lead to differing trends (17, 46).

Additional studies have examined the health impacts of 
COVID-19 lockdowns’ impacts on air pollution across the world. 
In China, Chen et al. (47) estimated ∼8,900 and ∼3,200 premature 
deaths were avoided from reductions in NO2 and PM2.5, respect-
ively, in January through March 2020; Giani et al. (37) estimated 
∼24,000 premature deaths were avoided from reductions in 
PM2.5 in February through March 2020; and Chossière et al. (38) es-
timated ∼21,000 and ∼54,000 premature deaths were avoided 
from reductions in NO2 and PM2.5, respectively, in January 
through July 2020. In Europe, Giani et al. (37) estimated ∼2,200 pre-
mature deaths were avoided from reductions in PM2.5 in February 
through March 2020, and Chossière et al. (38) estimated ∼6,600 
and ∼6,100 premature deaths were avoided from reductions in 
NO2 and PM2.5, respectively, in January through July 2020. 
Globally, Liu et al. (39) estimated between 99,000 and 147,000 pre-
mature mortalities were avoided, and Chossière et al. (38) esti-
mated 95,000 were avoided due to lockdowns from January to 
July. While we find 9,300 deaths were avoided in 2020 due to the 
reductions in on-road activity across the continental United 
States, it is difficult to directly compare our results with these 
studies. These studies relied on observation data (monitor and 
remote-sensing datasets) to quantify ambient air quality concen-
trations and lockdown stringency metrics to determine the effects 
of lockdown restrictions on regional/global levels of air pollutants 
for short-term impacts. And unless confounding variables, like 
seasonal variation and interannual trends, are accounted for, 
the relation of pollution reductions to COVID-19 lockdowns could 
be mischaracterized (38). This study aims to isolate the impacts of 
transportation through lockdown restrictions by using annual re-
ductions in on-road activity in each US state in 2020 to quantify 
the long-term air quality–related health impacts with all else 
being held equal.

There are some important caveats to this study. We estimate 
“prepandemic” on-road-attributable air pollution levels from 

2016 emissions and meteorology data as that was the most recent 
NEI available at the time. We utilize relative VMT changes to “pre-
pandemic” levels to scale our air pollution sensitivities assuming 
VMT changes to be equivalent to emissions changes. This differs 
from some studies that utilize mobility or fuel-based data com-
bined with emission factors to then derive updated mobile source 
emissions for multiple emissions precursors, often only for a sin-
gle month or shorter to represent the impacts from lockdowns. 
The benefit of our modeling choice allows for our precursor- 
specific sensitivities to be used for other mobility-derived or 
fuel-based-derived state-specific annual inventories, rather than 
creating entirely new emissions inventories and having to run 
the model again. Since the largest VMT reductions occurred dur-
ing the March to June period, a chemical environment might not 
be well represented by the January or July setup in Community 
Multiscale Air Quality (CMAQ)-Decoupled Direct Method (DDM) 
simulations. However, we modeled two different representative 
months to capture seasonality and compute annual averages 
similar to what has been done in at least two other DDM 
sensitivity-based studies (35, 48). The shorter modeling periods al-
lowed us to model the reductions observed in each state individu-
ally, something that would be prohibitively computationally 
expensive for the entire year. Future work aimed at annual aver-
ages can explicitly model the entire year when emissions inven-
tories are available for 2020. We also make use of baseline 
mortality prevalence datasets that do not include the impacts of 
COVID-19. As air pollution and COVID-19 both impact respiratory 
systems, future work should look to incorporate updated back-
ground prevalence data in order to determine possible relation-
ships between elevated levels of air pollution and COVID-19 
susceptibility (49–53) and their impact on emission reduction 
strategies. Additionally, we assumed exposure to PM2.5, O3, and 
NO2 individually when it is true that people are invariably exposed 
to multipollutant exposures, which may exhibit varied concentra-
tion responses (54–57). This study did not explicitly account for 
multipollutant exposures, but the CRFs utilized did adjust for co-
exposures, allowing for assurance in quantifying independent re-
sults. Last, we recognize that the EPA's Integrated Science 

Fig. 4. Premature mortalities were avoided due to VMT reductions from COVID-19.
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Assessment for Oxides of Nitrogen-Health Criteria (from 2016, 
which is currently being updated) found NO2 exposures are 
causal/likely for respiratory effects, and there is still uncertainty 
regarding the possibility that NO2 is just a marker of traffic-related 
pollutants and want to stress caution when interpreting our NO2 

mortality estimates. Canada has quantified mortalities from 
acute exposure to NO2 from all sources and found estimates to 
be on the order of those from PM2.5 and O3 (58). This study adds 
to the growing literature surrounding certain emission sources 
having outsized influences with regard to pollutant-specific ad-
verse health outcomes, such as NO2-related health impacts being 
larger than those from PM2.5 and O3 from commercial aviation 
emissions (12) and oil and gas production emissions in the 
United States (59).

There were ∼385,000 deaths in the United States from 
COVID-19 in 2020 (60). Hence, reductions in air pollution–related 
premature mortalities from reductions in on-road activity are 
2.4% (1.4–3.6%) of total deaths from COVID-19. This compares 
well with the study by Chossière et al. (38) who found that reduc-
tions in air pollution–related deaths per capita represent <2.8% of 
deaths per capita from COVID-19 in the United States and 6.4% in 
Europe using ambient pollutant concentrations from January to 
July in 2020. One of the unintended consequences of the 
COVID-19 pandemic was the unplanned experiment of reduced 
anthropogenic emissions impacting air quality. The results of 
this study highlight the importance of even relatively small reduc-
tions in road transportation emissions leading to public health 
benefits. Additionally, local strategies aimed at reducing VMT 
from PAS vehicles such as promoting shifts to walking and cycling, 
and national strategies for reducing emissions from FRT through 
alternative fuel use can have further public health benefits (61). 
The EPA's recent proposal for stronger NOX standards for 
heavy-duty gasoline and diesel engines aims to reduce NOX emis-
sions from trucks by as much as by 60% in 2045 (62). While miti-
gating on-road NOX emissions’ impacts on PM2.5-attributable 
and O3-attributable health outcomes has been found to be an ef-
fective target for improving public health, the results from our 
study stress the need for stronger NOX controls.

Materials and methods
In this study, we utilized CMAQ-DDM-based sensitivity coeffi-
cients for PAS and FRT vehicles from each state to estimate the 
air pollution–related adverse health outcomes attributable to 
PM2.5, O3, and NO2 exposures across the United States. The sensi-
tivities were used to scale PAS and FRT emissions from each state 
by VMT changes observed in 2020 (when compared with “prepan-
demic” levels) to estimate the air pollution changes and the subse-
quent related adverse health outcomes. Air pollution changes 
were related to corresponding health outcome changes through 
BenMAPR—a geospatial air pollution health impact assessment 
tool inspired by the Environmental Benefits Mapping and 
Analysis Program (BenMAP). Further details are provided in the 
following sections.

Air quality modeling
Details regarding our air quality modeling setup and performance 
(Normalized Mean Bias [NMB] and Normalized Mean Error [NME] 
were <25 and <50%, respectively) can be found in Arter et al. (12), 
and details regarding the sensitivity analyses as implemented for 
this study can be found in Arter et al. (35). Our air quality modeling 
was performed with on-road vehicle emissions from the US EPA's 

2016v1 modeling platform based on the NEI (63, 64). In the NEI, on- 
road vehicle emissions are generated using hourly meteorological 
data, emission factors representative of all national fuel economy 
and greenhouse gas (GHG) emission standards as of October 2015, 
and county-specific vehicle activity data submitted by each state 
for 2016 (63). In this study, we generated two emission inventories 
for each of the 48 contiguous US states representing PAS and FRT 
vehicles using the Sparse Matrix Operator Kernel Emissions (65) 
modeling system. Table S1 shows the SCC values used to group 
the MOtor Vehicle Emission Simulator (66) vehicle types into the 
PAS and FRT classes.

The DDM sensitivity analysis (67–70) as implemented in CMAQ 
model version 5.2 (71) with the carbon bond 6 revision 3 mechan-
ism (72) was used to calculate first-order sensitivities of PM2.5, O3, 
and NO2 concentrations in each model grid cell to precursor emis-
sions from PAS and FRT in each source state. Our modeling do-
main encompasses the continental United States with 12 km ×  
12 km horizontal grid resolution. To decrease computational 
load, CMAQ-DDM simulations were run for January and July 
2016 with a week of the spin-up period to represent the winter 
and summer seasons, respectively, similar to what has been 
done in at least two other DDM sensitivity-based studies (35, 48). 
The results are then averaged to represent the annual contribu-
tion of emissions from PAS and FRT in each state to PM2.5, O3 (an-
nual average of the daily 8 h maximum), and NO2 concentrations. 
Details regarding model evaluation against observations can be 
found in Arter et al. (12). To calculate the changes in air pollutant 
concentrations due to changes in on-road activity as a result of the 
pandemic, percent changes in the annually averaged VMT are 
multiplied by the annual average air pollutant sensitivities to pre-
cursor emissions from each vehicle class and source state.

VMT changes
The on-road activity analysis was performed with data from the 
INRIX Analytics big data assessment platform (73). The INRIX 
Analytics platform analyzes hundreds of millions of anonymized 
daily trips in the United States and Europe and provides trip trends 
data including trip volumes, duration, total distance traveled, and 
average trip distance. INRIX combines data from various sources 
(e.g. historical traffic data, fleet data, road sensors, mobile data, 
incident data, consumer vehicle GPS data) to create vehicle trip re-
ports by vehicle type. The fundamental source data included >100 
million trips per day from multiple sources, all GPS based. The 
data included device/trip ID, location, heading, and speed. Each 
data provider specified the type of fleet or vehicles in their report. 
Since INRIX Trip Trends covers the entire network (when com-
pared with traditional volume counters), it is supposed to capture 
all trips (100%) in the United States broken down by three vehicle 
classes: PAS, fleet, and long-haul trucks (using the data provider 
classification to create these three vehicle classes). In our study, 
we used VMT, a common measure of roadway use to adjust the 
on-road mobile emissions for CMAQ-DDM simulations. We used 
a daily time series of VMT reduction ratios from INRIX during 
2020. The VMT reduction ratio is defined as a ratio of VMT for a 
given day and VMT for the same day of the week prior to the pre-
lockdown control period. The control period is defined as nonholi-
day days from 2020 January 20 to February 28, prior to the 
COVID-19 lockdown period. The VMT ratios are broken down by 
vehicle type: light-duty trucks (PAS vehicles) from 0 to 14,000 lb, 
and heavy-duty trucks (long-haul trucks)—>26,000 lb. Since traf-
fic data tend to be highly seasonal (typically low in fall and winter, 
rise in spring, continue to rise through the summer, and decline in 
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fall), we used seasonally adjusted VMT ratios from INRIX 
Analytics (74), so the data from 1 month can be compared with 
data from any other month, and the entire series can be ranked 
to find highs and lows. Figures S4 and S5 show the ratios of month-
ly PAS and FRT VMT in 2020 when compared with “prepandemic” 
levels in each state. Figure S1 shows the annually averaged per-
cent change in VMT in each state.

Health impact analyses
Health impact assessments were carried out using BenMAPR. 
BenMAPR is a geospatial air pollution health impact assessment 
platform written in the statistical computing language R, which 
quantifies the air quality–related adverse health outcomes to ex-
posed populations. BenMAPR (code available on GitHub at: 
https://github.com/jjbuonocore/BenMAPR) has been used in other 
health impact analyses (12, 35, 59) and relies on similar calcula-
tions and datasets used in BenMAP (75). Mortality CRFs were chos-
en that best represent our study domain, with a focus on CRFs 
from studies that were either meta-analyses of many studies or 
studies with large multiyear, multilocation cohorts. For quantify-
ing PM2.5-attributable premature mortalities, we make use of a 
concentration response function (CRF) from a recently published 
meta-analysis (76) that found a 1.29% (95% CI 1.09–1.5) increase in 
all-cause mortality per 10 μg/m3 increase in PM2.5. For 
O3-attributable premature mortalities, we use a CRF associating 
all-cause mortality to long-term O3 exposure with a hazard ratio 
of 1.02 (95% CI 1.01–1.04) per 10 ppb increase in O3 (77). For 
NO2-attributable premature mortalities, we use a CRF from a 
meta-analysis that found a pooled effect on mortality to be 1.04 
(95% CI 1.02–1.06) with an increase in 10 μg/m3 in NO2 (78). A value 
of statistical life approach was used to monetize the value of the 
change in mortalities by multiplying the number of 
PM2.5-attributable, O3-attributable, and NO2-attributable mortal-
ities by a 2016 USD ($) income-adjusted value of $10.3 million as 
recommended by the EPA (79). Details regarding the CRFs and 
underlying background prevalence/incidence data can be found 
in Table S2 and in Arter et al. (12).
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