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In recent years, we have witnessed the fast growth of deep learning, which

involves deep neural networks, and the development of the computing capability of

computer devices following the advance of graphics processing units (GPUs). Deep

learning can prototypically and successfully categorize histopathological images, which

involves imaging classification. Various research teams apply deep learning to medical

diagnoses, especially cancer diseases. Convolutional neural networks (CNNs) detect

the conventional visual features of disease diagnoses, e.g., lung, skin, brain, prostate,

and breast cancer. A CNN has a procedure for perfectly investigating medicinal science

images. This study assesses the main deep learning concepts relevant to medicinal

image investigation and surveys several charities in the field. In addition, it covers the

main categories of imaging procedures in medication. The survey comprises the usage

of deep learning for object detection, classification, and human cancer categorization. In

addition, themost popular cancer types have also been introduced. This article discusses

the Vision-Based Deep Learning System among the dissimilar sorts of data mining

techniques and networks. It then introduces the most extensively used DL network

category, which is convolutional neural networks (CNNs) and investigates how CNN

architectures have evolved. Starting with Alex Net and progressing with the Google and

VGG networks, finally, a discussion of the revealed challenges and trends for upcoming

research is held.

Keywords: human cancer, medical imaging, deep learning, convolutional neural network, cancer types

INTRODUCTION

Cancer is considered the foremost cause of death globally (Mattiuzzi and Lippi, 2019). Both doctors
and researchers face the challenges of fighting cancer. The World Health Organization (WHO)
estimates that by 2040, the number of cancer cases may increase to 27.5 million, resulting in about
16.3 million expected deaths.

Early cancer detection is the highest priority for many people to save their lives (Maine et al.,
2011). For the types of cancer diagnosis, visual inspection and manual procedures are typically
used. This interpretation of medical images is error-prone and time-consuming.

As such, starting first in the 1980s, computer-aided diagnosis (CAD) systems were used to
support doctors to enhance medical image interpretation efficiency (Sellars, 2022).
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The leading phase of machine learning implementation is
feature extraction. Different feature extraction methods for
different cancer types have been investigated. However, there are
many weaknesses in these feature extraction-based methods. To
overcome these limitations and improve performance, learning
was proposed in Georgiou et al. (2020). Graphics processing
units (GPUs) were applied in parallel deep learning intended for
image recognition and feature extraction (Gavali and Banu, 2019;
Fan, 2021). For example, cancer detection was achieved through
convolutional neural networks with a promising performance as
in Yoo et al. (2019) and Hassan et al. (2020).

Deep learning (DL) is a novel subfield of machine learning
that was stimulated by the humanoid mind’s construction
(Strauß, 2018; Bhatt et al., 2021). By education from the
bottomless, layered, and hierarchical reproductions of data,
deep learning procedures can outperform old-styled machine
learning reproductions. A few years ago, with the development of
deeper learning procedures, several research teams succeeded in
applying more complex classification models. DL is mostly used
for image analysis of cancer in many applications, such as usual
and unusual tumor classifications (Boyd, 2020).

This study aims to give a comprehensive overview of (almost)
all fields in the application of DL methods for human cancer
detection. Furthermore, it offers a dedicated discussion section
covering ultramodern and open challenges, and an overview
of research directions and technologies that have become
important nowadays.

The contribution of this study is introducing the recent
dramatic change in DL for human cancer diagnosis in medical
imaging. Besides presenting a recent DL technique, research,
medical picture technology, and well-known cancer datasets
were used for multiple DL approaches and training in most
important human cancer types. Furthermore, according to
their structural design and learning approach, this research
has proposed a mild classification for deep networks. The
chief drive of this study is to cover the track for future
researchers to figure out a roadmap for DL contributions in
cancer detection.

The rest of the survey is laid out as follows: Section
VISION-BASED DEEP LEARNING SYSTEM introduces
the main DL algorithms used for medical image analysis,
which are then referenced throughout the survey; the
pathophysiology of most frequent cancer types is discussed
in Section CANCER OVERVIEW; Section CATEGORIES OF
IMAGING PROCEDURES IN MEDICATION goes into the
discovery of medication imaging procedure categories; the article
concludes with a summary, a critical dialogue, and a forecast for
future research.

VISION-BASED DEEP LEARNING SYSTEM

The vision-based deep learning system (VBDLS) is one of the
harvests of human-inspired artificial intelligence (Rasouli, 2020).
It presents an interest in two main research areas: computer
vision and machine learning, where advanced machine learning
techniques solve computer vision tasks more efficiently.

This section is organized to reflect an understanding of deep
learning applications in the development of medical imaging
systems. It consists of three parts: first, spotting the light on
different methodologies of deep learning; second, categorizing
the VBDLS according to its architecture and objective function;
finally, presenting common deep network architectures and
figuring out their potential and limitations.

Learning Methodologies for VBDLS
In the VBDLS, learning is conducted utilizing a dataset that
comprises a massive number of images. The traits of dataset
besides the scope or space of the application judge the learning
process in one of three main methods as follows: supervised,
semi-supervised, and unsupervised.

There are also other approaches to learning, namely,
reinforcement learning (RL) and deep RL (DRL), which
are frequently discussed under semi-supervised or
unsupervised methods.

Supervised
As a rule of thumb, a labeled dataset is used in supervised learning
(Cunningham et al., 2008; Esfahlani et al., 2022), where the case
problem to solve has a set of input xt and corresponding known
output yt .

In such an approach, the deep network predicts
ˇ
yt = f (xt),

for input xt , the network receives a loss value of L(yt ,
ˇ
yt).

Consequently, the trained network will iteratively adjust its
parameters (weights) by itself for a better prediction of the actual
output yt . After completing appropriate training, the network
will be able to get correct responses to right inquiries, i.e., is
the detected cancer from the medical image under examination
benign or malignant?

Semi-supervised
Learning that takes place based on partly labeled datasets is
called semi-supervised learning (Van Engelen and Horqos, 2020;
Umamaheswari and Babu, 2021). DRL and generative adversarial
networks (GANs) are the most well-known networks that exploit
semi-supervised learning scenarios. There are basic distinctions
between semi-supervised and supervised learning. First, users
cannot have full access to the feature they are attempting to
improve. so, they need to question it. Second, communicating
with a state-based environment is through interaction: input xt
depends on earlier acts. In DRL, there is not a straightforward
loss feature, making it harder to learn compared to traditional
approaches under supervision.

Unsupervised
Unsupervised learning systems are those that can predict without
the presence of data labels (Wahid et al., 2022). In this scenario, to
discover unknown relationships, the network learns the internal
representation or significant characteristics in the input data
or structure.

The deep networks utilize unsupervised learning to
accomplish data clustering, reduction of dimensionality,
and augmentation via generative networks. Furthermore,
autoencoders (AEs) and restricted Boltzmann machines (RBMs)
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are two members of the family of DL that are good at clustering
and minimizing non-linear dimensionality.

The volume of training data available in the case of medical
images is not that high. In addition, many labeled images are
often difficult to obtain, as annotation itself is a costly task that
is also scarce in databases for certain diseases (e.g., lesions).

VBDLS Structural Categorization
A deep neural network can be categorized according to its
structure “architecture” and learning method. This section will
address well-known deep learning models; deep belief networks
(DBNs), stacked autoencoders (SAEs), and convolutional neural
networks (CNNs).

Deep Belief Networks (DBN)
A DBN is a generative model that comprises a set of restricted
Boltzmann machine (RBM) layers as shown in Figure 1A. It is a
two-layer (visible and hidden), bipartite, and undirected model
(values can be propagated from visible-to-hidden and hidden-
to-visible directions) that is fully connected (each neuron from
a visible layer is connected to each neuron in the next hidden
layer). If there is any connection in two neurons in the same
layer, then a Boltzmann machine will be applied (rather than
restricted Boltzmann).

The energy function of an RBM is used to infer its probabilistic
meaning where the energy function can be used between
the visible and hidden layer units to infer the conditional
probabilities of inputs and outputs. In the forward and backward
propagations, the probabilities p(output|weighted_input) and
p(input|weighted_output) will be estimated. As such, it is called
the generative model, because it is trained to reconstruct the
input values, i.e., estimates the probability density function (pdf)
of the input.

The RBM input vector x propagates through a weighted
connection W to the output vector h, DBN is a set of
RBMs connected in a sequence in which the training of
DBN is conducted “individually” for each set. The undirected
propagation of the exercise set begins with the first RBM. Then,
for the second RBM, the first RBM will propagate the input
through its trained weight to start undirected training and so
on. As illustrated in Figure 1B, DBN is a joined set of RBMs.
This idea of training individual RBMs in a sequence is to
achieve different non-linear representations of input data at each
DBN layer.

The energy function in vector form between visible neuron v
and hidden neuron is given:

E
(

v, h
)

= −b′v− c′h− h′W (1)

In this equation h′ and v′ are activations of hidden neurons
and input data vectors, respectively. W is the weight matrix
represented by connections between neurons, and b and c are
biased vectors for visible units and hidden units, respectively.

The probability distribution function is given as follows:

p
(

v, h
)

= (e−E(v,h))/Z (2)

Z is a normalization constant defined as the sum of e−E(v,h) over
all possible configurations.

Stacked Autoencoder (SAE)
Autoencoders (AEs) are stacked in sequence to build SAEs for
encoding (mapping) input data to other useful representations
and then to try to decode (reconstruct) this representation again
to the original input data. As a result, the reconstruction error
(loss) between the original and recreated data is minimized. In
other words, how encoded representation is efficient by decoding
it and measuring the loss of data.

Figure 2 illustrates how an SAE is built by combining AEs.
Like a DBN, the training is conducted layer-wise, but here it
is directed from the input layer to the next layer. For the first
decoding step (first AE) using the backpropagation method, the
training is conducted individually with all available training data.
For the second AE, the output layer of the first AE, which is
the input layer of the second AE, is removed. Then, the input
is clamped to the first AE input layer and propagates to the
second AE output layer by all available training instances with
backpropagation, and so on. For any upcoming AE, its input
layer, which is the output layer from the previous AE, will be
removed andwill take the input from the previous AE input layer.

Intuitively, the number of hidden units is decreased as the
decoding process goes more in-depth, because the SAE is forced
to capture the most robust features from input data.

Convolutional Neural Network
Convolutional neural network (CNNs) have been used for more
than two decades. From their name, the elementary image-
processing task (spatial convolution) is conducted in the artificial
neural network framework. At that proposed time, a CNN
was not achieving noticeable efficiency in computer vision
applications. The main reason it has now become the most
successful one is the ability to go deeper with that network
that reflects its great ability of high-level feature extraction.
The hierarchical architecture of a deep network is utilized to
extract distinct levels of features, from primary ones (low-level)
to semantic features (high-level) like multi-level learning and
mapping. In machine vision applications, low-level features, such
as colors and edges, are extracted through previous layers and
then summarized (pooled) and augmented with other low-level
features as going deeper with network layers.

Thus, high-level (abstracted) features can be obtained through
the following layers. Abstracted features have a tremendous
discriminative aptitude that will aid a simple classifier to
achieve better performance in classification and regression tasks.
Moreover, the different feature extraction levels (depicted in
Figure 3) are conducted in an automated hierarchical structure
through the convolutional neural network layers.

As shown in Figure 3 (on the left), shallower features are
more straightforward, and (on the right) deeper ones are
comprehensive and do not need professional manual design
contrast with traditional “handcrafted” features. However, they
require vast and more representative data compared to other
methods and more computing capability of computer hardware
for training them well and fast.
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FIGURE 1 | Key component of building a (B) deep belief network is a (A) restricted Boltzmann machine (A) (Ghosh et al., 2021).

FIGURE 2 | (B) Stacked autoencoders are built by (A) stacked autoencoders in sequence, best viewed in color (Xiang et al., 2016).

As mentioned above, the CNN’s key element is the
convolutional layer; each convolutional layer typically involves
three stages:

• Convolutional stage: using a set of kernels (filters) to convolve
them with an input image or the output from the previous
convolutional layer, the output of the convolving process is
called the feature map. Any filter captures the features by
giving a high response with a similar sub-window to it and
with the response going lower as it differs from the convolved
sub-window. Each filter will produce one feature map, and it
differs from other filters in the same layer. Thus, the number of
output featuremaps for each convolutional layer is equal to the
number of kernels. The shared weight concept coming from
each filter will be convolved with the input to produce a feature
map in the sliding window method, so that a filter parameter
(convolution layer weight) will be shared (convolved) with all
input units.

• Detector stage (non-linearity): the activation function gives
the non-linearity representation for the input and usually a
rectified linear unit (ReLU) is used in a CNN.

• Pooling stage: this is considered the summarization stage
(sub-sampling), which summarizes the output response of the
kernels after mapping in the detector stage to a down-sampled
feature map.

Figure 4 illustrates how a CNN was built by combining
convolutional layers. A CNN deals with spatially correlated
data (e.g., images) where kernels work in the sliding
window technique to capture local features (have spatial
connectivity).

It is worth mentioning that the last layer is often a
fully connected one to achieve a fixed vector dimension
that represents the feature vector of the input data. Then,
it can be used to train a simple classifier like a support
vector machine.
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FIGURE 3 | Different feature maps of a convolutional neural network [CNN, simpler from the left and more semantic (comprehensive) going (deeper) to the right]

(Sarvamangala and Kulkarni, 2021).

FIGURE 4 | Key element of CNN architecture is the convolutional layer that involves convolution, activation, and pooling (Sarvamangala and Kulkarni, 2021).

Table 1 mentions the most flourishing and extensively
used implementing codes for deep network key elements and
architectures.

Common CNN Architectures
One of the first deep networks, the Alex Net (Khan et al., 2020)
architecture, was used to improve the accuracy of ImageNet
classification to a great extent compared to conventional
methodologies. Five convolutional layers were included in
the architecture, followed by three fully connected layers.
By substituting activation parts, such as tanh or sigmoid
functions, the ReLU activation function for the non-linear
portion was presented. A ReLU has fast convergence compared
to activation functions, which suffer from the vanishing
gradient problem.

The visual geometry group (VGG) (Muneeb, 2018) at Oxford
University suggested the VGG 16 architecture. By altering
the size of kernels and introducing several filters, the VGG
improved the Alex Net architecture. Large kernel-sized filters

TABLE 1 | Some of the existing codes online.

Method Name Online Code Link

Restricted Boltzmann

Machine

https://github.com/echen/restricted-

boltzmann-machines

Convolutional https://gist.github.com/JiaxiangZheng/

a60cc8fe1bf6e20c1a41abc98131d518

Neural networks https://github.com/siddharth-agrawal/

Convolutional-Neural-Network

Multi-scale CNN https://github.com/alexhagiopol/multiscale-

CNN-classifier

Learning CNN https://github.com/yanyongluan/MINNs

are replaced with multiple 3-3 kernel-sized filters (i.e., 11-
11 in Conv1 and 5-5 in Conv2) that are placed one after
another. Compared to a larger kernel size, several smaller
kernel filters enhance the receptive field, as multiple non-
linear layers increase the depth of a network. The increased
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depth allows for more complex features to be learned at a
lower cost.

Although the VGG has achieved an exceptionally good
accuracy in classification tasks for the ImageNet dataset both in
terms of storage memory and time, it is computationally costly
and requires enormous computational power. Thus, because of
the large width of convolutional layers, it is inefficient.

Google Net proposed the idea that because of correlations
between them, the vast majority of links between dense
architecture and deep network activations are redundant. This
makes it computationally costly for a network. Google Net,
therefore, implied that a network with sparse connections among
activations was the most efficient.

The initiation module was introduced by Google Net, which
effectively calculates the sparse activation in a CNN with
normal dense construction. The network also uses three different
convolution sizes to increase the receptive field and retrieve
features from extremely tiny levels (i.e., 5-5, 3-3, and 1-1). One
of the significant highlights of the inception module is that it
also has a so-called bottleneck layer (1-1 Conv.) that helps to
massively reduce the computational requirement.

The global average pooling at the latter convolutionary layer
is another change that Google Net introduced, consequently
averaging the channel values across the 2D feature map. This
results in a reduction in the entire sum of parameters. The
accuracy of the network is saturated and consequently reduces
quickly by increasing network depth. This reduction is not
triggered by a problem of overfitting, but the training error also
increases with the addition of more layers, leading to a problem
of degradation.

The reduction problem was resolved by the introduction of
the residual network (ResNet).

To study the training parameters effectively in a deeper
network, the residual module was introduced. In a block-wise
manner, a skip connection in convolutional layers to construct
a residual module was introduced. ResNet performs better than
VGG and Google Net (Khan et al., 2020).

CANCER OVERVIEW

Lung
Lung cancer causes a considerable number of deaths annually,
as illustrated in Figure 5. Patients’ survival time was effectively
expected from their lung cancer pathological images using the
deep network’s detection efficiency. A pre-trained CNN (Singh
et al., 2020), on big-dimension data, was intended for the
classification of lung cancer by extracting features from CT
images. A CNN and a deep belief network (DBN) were used
in the classification lung of the raw image with an end-to-end
model. A set of 2D CT images has been spawned from a patient’s
3D CT image to ingest a multi-view CNN for an end-to-end
training process. The extracted features for each 2D patch are
concatenated to use their discriminative power and ease the
classification task (Han et al., 2021). Consequently, a study was
introduced (Yang et al., 2016) to deal with 3D images directly as

an alternative to representing them in a 2D model based on a 3D
CNN architecture.

A multivariant CNN (Mv-CNN) was presented in Cao et al.
(2020). This prototype was considered to overwhelm the issue
of variable nodule size. In the CNN model, the max-pooling
layer is replaced by the multi-crop pooling layer to create multi-
dimension features. In the non-linear transform, a randomized
leaky rectified linear unit (RReLU) was used. Node-centric visual
features can benefit from a multi-crop pooling method, where
the standard max pool is useful for feature subclass selection and
feature map size reduction. As a result, the pooling procedure
reduces the characteristics by one level. A repeat pooling
strategy is employed in multi-crop pooling, allowing the system
to achieve multi-dimension features. Figure 7A depicts the
accuracy of the most common lung cancer nodule classification
architectures: DCNN, ResNet, optimal deep network, and VGG-
16. An ensemble method for 3D-DCNN could more successfully
capture the features of spherical-shaped nodules. DCNNs were
trained using 62,492 samples from the Lung Image Database
Consortium, including 40,772 nodules and 21,720 non-nodules.
While using the ResNet, the accuracy of malignancy classification
was prejudiced by curriculum learning, transfer learning, and
varying network depths.

Breast
In the last years, in breast cancer, many studies have
been conducted for recognition and diagnosis. The proposed
technique (Elazab et al., 2020) employs deep learning for
recognition of mitosis in histopathological images of the patient’s
breast. Features had been extracted from a trained CNN and then
fed to a support vector machine (SVM) to classify mitosis of the
infected breast. The well-known Alex Net is picked, as it has the
CNN architecture that achieves fair results for pathological image
classification task.

For detection of mitosis from breast histology slides, a deep
cascade network (DCN) was proposed (Zhou et al., 2020).
Mitosis candidates were segmented from histology slides using
a fully convolutional network (FCN) model. Then, a pre-trained
Caffe Net model (Munir et al., 2019) on the ImageNet dataset
was finely tuned for mitosis classification. Then, a network with
various configurations for three networks with fully connected
layers was trained. Then, the results were collected as a shape of
many results of probabilities. Then, the average for these outputs
was taken, and the last results were generated.

A multi-scale CNN architecture was deployed (Rahman et al.,
2020) to analyze breast histopathological images. The network
structural design is based on using an aggression layer (AL)
after every soft max layer (SL) to collect the estimated outcomes
from various members with annotation outcomes. A stacked
sparse autoencoder (SSAE) is deployed to classify breast nuclei
in histological images (Xiang et al., 2016). The proposal applies
the greedy strategy to accomplish SSAE optimization by training
each hidden layer separately.

For recognizing the mass of digital mammograms as in a
proposal (Zhou et al., 2019), a trained CNN alongside the SVM
was introduced. The production of the last fully connected layer
stands for the input of high-level feature representation, and
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FIGURE 5 | Average percentage of annual deaths due to various cancer types, best viewed in color (Munir et al., 2019).

FIGURE 6 | Qualitative difference between the 2D and 3D (tomosynthesis)

mammography for breast cancer diagnosis (Zhou et al., 2019).

mammogram areas were applied for the training of the CNN
model. Then, the classification was conducted using an SVM that
has been trained by high-level feature representation. A transfer
learning strategy was used to train the CNN model. The mass of
obtainable mammograms could be identified by applying a CNN.

Overfitting occurs when a reduced sample is used in
training, which leads to a low bias/high variance model that
cannot generalize well to the test data. In this context, a
proposal (Williams and Rodriguez, 2020) applies procedures
to enhance training data and defeat over-fitting by deploying
statistical self-similarity and non-negative matrix factorization
(NMF). A promising model (Ghosh et al., 2021) that initially
discovers the existence of a mass as a preliminary step for
its detection from mammography was proposed. This model

considers sparsity regularization to realize the features of
mammograms in several ranges using a stacked convolutional
sparse autoencoder (SCAE).

Different potential functions were combined through a
structured SVM for mass segmentation in mammograms and
included a Gaussian mixture model, before location, and a
beep belief network (DBN). From the same perspective, the
proposed model (Dhungel et al., 2015) uses the cascade of
random forest classifiers andDL formammogrammass detection
and recognition.

To learn the bilateral features from the Digital Breast
Tom (DBT) synthesis, there are three-dimensional multi-views
introduced in the model (Kim et al., 2015). A volume of interest
(VOI) was achieved from the source volume, which was managed
in the registered target as an individual input rather than a
VOI. Two individual CNNs were used to extract high-level
characteristics from these two individual VOIs.

Figure 6 illustrates the qualitative difference between the
2D and 3D (tomosynthesis) mammography (Iranmakani
et al., 2020) for breast cancer diagnosis. Figure 7B depicts
the accuracy of many studies that investigated the use of
CAD systems for breast cancer detection, employing a variety
of medical imaging modalities and CNN-based methods.
Using CNNs for a model trained on 540 images, an accuracy
of 95.8 percent was obtained, resulting in a segmentation-
free result. Results with an accuracy of 78.1 percent when
using a 3D-CNN demonstrated that 3D-CNN methods
could be a promising technology without manual feature
extraction. The DCNN architecture was compared to CNN
architectures. CNN and DCNN had AUCs of 0.89 and 0.93,
respectively.
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FIGURE 7 | Various DL approaches’ recent performances in terms of their diagnosing accuracy for (A) lung cancer, (B) breast cancer, (C) prostate cancer, (D) brain

cancer, and (E) skin cancer (Munir et al., 2019).
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Brain
Brain cancer is the uncontrolled growth of cells in any part of the
brain. Detection of which area of the brain holds cancer is quite
difficult. Therefore, segmentation of the brain from the healthful
part is the major challenge for brain cancer.

Two algorithms built on 2D CNN and 3D CNN were
introduced (Gao et al., 2017) starting with 2D sliced images and
3D images. The output from these two models was fused to the
result. The 2D/3D scale-invariant features (SIFTs) and Kaze are
outperformed by this hybrid deep model.

The adjacent patches for the brain picture were connected
using a dense training technique in the CNN (Sarvamangala and
Kulkarni, 2021). The false positives were eliminated using a 3D
fully linked random field, and the images were then segmented
in 3D using the CNN. The proposed approach combines multi-
modality data from T1, T1C, T2, and fluid-attenuated inversion
recovery (FLAIR) images and usess this information to train the
suggested CNN. The system suggested 3D voxel categorization
based on a well-trained CNN. Various-sized 2D patches were
created by splitting the 3D dataset into 2D slices. For the
learning procedure, the sliced 2D patches were fed to numerous
CNNs. Figure 7D depicts a variety of ML-based brain cancer
classification system barograph of sensitivities. The obtained
accuracy for ANN-based classifier on features extracted from
100 T2 weighted MRI images using Discrete Wavelet Transform
(DWT) was 98 percent. While SVM achieved a sensitivity of
91.84 percent when applied to 14 DWI, (B), fluid-attenuated
inversion recovery (FLAIR), T1, and GAD images. Using an
NL-SVM on SVM-RFE features, a 97.8 percent accuracy was
obtained from 102 T1, 2 FLAIR, and relative cerebral blood
volume (RCBV) images. FP-ANN and KNN were applied to
features extracted using discrete wavelet transform from 70 MR
images and achieved a maximum accuracy of 98 percent. Gray
level co-occurrence matrix (GLCM) features extracted from 42
diffusion-weighted images, apparent diffusion coefficient images,
using entropy histogram techniques yielded an accuracy of 84.4
percent. An accuracy of 95 patients’ standard deviations from 95
T1W, T2, and FLAIR images was accomplished in the range of
84.4 percent. A summary of well-known datasets for cancer types
is given in Table 2.

Skin
Several variables can raise a person’s risk of acquiring melanoma.
UVRs, sunburns, blisters, tanning, tanning salons, and sunlamps
are all causes that occur before the age of thirty. Furthermore,
there are risk factors that are not related to age, such as having two
or more cases of melanoma in the family, having easily burned
skin, and so on. Manymethods, including the best-known ABCD
rule, seven-point checklist technique, Menzies technique, and
pattern analysis, have been applied.

A total of 399 images have been used to classify benign
melanoma naevi in a proposed study (Khatib et al., 2020). Pre-
processing and data increase were initially performed. High-
level skin lesion characteristics have been extracted using a
pre-trained CNN and Alex Net. K-Nearest Neighbor was used
for lesion classification, achieving an accuracy of 93.62%. The
binary classification model (Boman and Volminger, 2020) uses

TABLE 2 | Summary of well-known cancer datasets that are used for deep

learning (DL) approach training.

Cancer type Dataset name Cases

Breast Cancer

Classification

BreakHis (Zhou et al., 2020) 9,109 microscopic images

were collected from 82

patients

Lesion recognition DDSM (Martin et al., 2018) 2,620 scanned film

mammography

Lung nodule JSRT (Yang et al., 2016) 247 images each: 154

cases with lung nodules and

93 cases without lung

nodules

Lung

nodule-Dishonesty

classification

LIDC (Cao et al., 2020) 1,018 instances

Melanoma

detection

MED-NODE (Mohan et al.,

2020)

170 images, 100 naevi, and

70 melanomas

Prostate

Segmentation

PROMISE12 (Jia et al.,

2018)

7,040 pictures

Brain cancer

Segmentation

BraTS (Gao et al., 2017) 220 HGG and 54 LGG

129 and 450 images, the first classification distinguishes benign
naevi from malignant melanoma: and the second classification
distinguishes benign seborrheic keratosis from keratinocytes
carcinomas. A total of 2,032 pictures of skin cases and the
remaining images from dermatoscopic instruments were used
for the retraining of the CNN. Transfer learning had been
applied to the classification. The area under the curve (AUC)
achieved was 0.96 for carcinomas and melanomas. For deeper
extraction and classification of lesions, a pre-trained CNN with
Alex Net and VGG 16 has been used. Through 19,398 images
for training a Res Net model, the authors introduced a classifier
model for classifying 12 distinct kinds of skin diseases. The
AUC for squamous cell carcinoma was achieved through the
Asan data set at 0.83 for intraepithelial melanomas and basal
cell carcinomas, and 0.82 for intraepithelial carcinoma. Although
pre-trained CNNs are present, efforts have been made to develop
new CNN algorithms.

From the same perspective, a research study (Mohan
et al., 2020) achieved an accuracy of 89.5% for skin cancer
classification using 900 images and applying a backward-
propagation technique in an eight-layer CNN model.

Three datasets were implemented for training the neural
network model, with 888, 2,750, and 16,691 images. The authors
in Tschandl et al. (2018) suggested a system built on content-
based image retrieval (CBIR) in comparison with CNN applying
SoftMax and using two performance measures and the AUC and
(multi class-accuracy and mean average prediction, MAP). The
third dataset results were superior, achieving an AUC value of
0.852 and an MAP value of 0.847.

For the classification of lesions with the CNN model together
with ANN, the data set given by ISIC in the 2016 challenge
was used. First, segmentation of images was performed using
the intensity threshold, and then the CNN extracted the
properties. To conduct the classification, the ANN classifier
applied these features.
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An improved classification technique using a CNN was
proposed with the method of data enhancement (Mikolajczyk
and Grochowski, 2018). Furthermore, there were tries to
overwhelm the data limitation problem and its consequence
on the performance of the classifier. Six hundred test pictures
and 6,162 for training were included in the dataset. The AUC
value was 89.2%, ACC value was 89%, and AP value was73.9%.
Analyzing the effect of image augmentation on three classifiers
leads to better results compared to the typical techniques used
in advance. DL methods have been applied to diagnose four skin
diseases. A hierarchical structure was built to produce a summary
of classification and diagnosis criteria. An accuracy of 87.25%was
achieved with a probability error of 2.24%.

A study that uses a convolutional neural network for
recognition of esophageal cancer, squamous cell carcinoma
(SCC), and adenocarcinoma was introduced (Syed et al., 2020).
A total of 8,428 images from 384 Japanese patients were used in
the training pictures used in this study. The test data included
1,118 images for 47 patients suffering from esophageal cancer and
fifty patients who do not have esophageal cancer. The precision
achieved was 98%. Forty percent of every image was positive,
while 95% was negative because of the presence of shadows,
which was the cause of misdiagnosis. A study has been submitted
to detect rose-shaded, flat leg lesions in elderly people (Martin
et al., 2018). With the clinical diagnostic system, a precision of
49.1% was achieved. Figure 7E depicts a comparison score of the
accuracies of skin cancer DL architectures. The result (95 percent
accuracy) obtained on the PH2 database is better than the result
(81 percent accuracy) obtained on the same database.

Prostate
A combination of sparse patch matching and deep feature
learning prostate segmentation was used to obtain a feature
representation in MR images from the SSAE approach. The SAE
classifier was used for the recognition of prostate cancer. By
checking the way to fine-tune the SSAE model, the collected
features were improved.

The reconnaissance map was refined using the neighbor
pixel relationship energy minimization procedure. For prostate
segmentation, the author (Tian et al., 2018) used a full CN. The
authors segmented the prostate with images of 3D MR through
volumetric CN. To enable the volume-to-voltage prediction, the
FCN was extended with residual blocks. A patch-based CNN
method was introduced in Jia et al. (2018) for using the region of
focus and prostate cancer detection. By multi-atlas label fusion,
the final segmentation result was achieved. Figure 7C compares
the statistical sensitivity score of various CNN architectures on
a prostate cancer dataset. The R-CNN framework for multi-task
prediction with an epithelial network head and a grading network
head achieved a 99.07 percent accuracy and an average AUC of
0.998. On ImageNet, AUCs of 0.81 and 0.83 were obtained using
V3 and VGG-16, respectively. Two prostate cancer diagnostic
tasks are handled with a multimodal CNN. The proposed
network was used in the first phase to classify cancerous and
non-cancerous tissues, and in the second phase to differentiate
clinically significant prostate cancer and indolent prostate cancer.
The results show that prostate tissue classification has a sensitivity

of 89.85 percent and a specificity of 95.83 percent, and that the
prostate cancer characterization has a sensitivity of 100 percent
and a specificity of 76.92 percent.

CATEGORIES OF IMAGING PROCEDURES
IN MEDICATION

In the analysis of cancer images, imaging is the first step
for abnormality detection. There are numerous methods for
detecting anomalies, decomposing, classifying, denoising, and
diagnosing diseases from medical images. The most often
utilized techniques are CT scans, radiography/funds (e.g., X-
ray and CFI), microscopy, ultrasound, magnetic resonance [(f/s)
MRI], and positron emission tomography (PET). DL and RL
architectures have shown to be more successful than others.
Image denoising is a key factor for the success of several medical
image analysis approaches, so in image analysis, a CNN has
been the communal architecture of DL and easing structure.
A CNN was used in many image classifications like different
neuroimages and mammograms (MMM). Because of colonic
polyps and lymph nodes (LNs) in the spine, a CNN was used
to detect clerotic metastases and anatomical structures by CT
scan. Various medical images aid in the recognition of esophageal
carcinoma and the forecasting of neoadjuvant chemical responses
in patients with thoracoabdominal LN, interstitial lung disease
(ILD), pulmonary nodules on (f)MRI, while diffusion tensor
images to extract deep characteristics for brain tumor patients.
PET images help to recognize esophagus carcinoma and
forecast neoadjuvant chemical reactions. Furthermore, a DBN
was positively useful to recognize care shortage hyperactivity
disorder, while a DNN-based technique was suggested to
positively recognize the fetal abdominal standard plane in
ultrasound imaging.

Medical Image Pre-processing
Conventional image processing tasks are conducted for acquired
medical images before diagnoses, such as grayscale conversion
and normalization. Grayscale conversion of medical images
supplies only a gray tone, and the brightness for each pixel stands
for its value in all channels. The dynamic range of all pixels
is normalized by mapping it to another proper range for the
next processing. Furthermore, various noises and artifacts may
superimpose a medical image during acquisition and formation.
The pre-processing task in this context is conducted to ease
the diagnosing process by purifying the relevant features of the
desired symptom from the irrelevant ones.

Magnetic Resonance Imagining
MRI is applied in many areas like checking for breast cancer,
clinical analysis, and the situation rise risk of patients. Many cases
were proposed in earlier studies for MRI using CAD systems
like breast abnormality classification, and MRI was dependent
on breast division and breast abnormality detection. DCE-MRI
(active contrast-improved MRI), a technically advanced form
of MRI, has provided a cutting-edge volumetric resolution for
cxwell lesion imaging and lesion temporal pattern improvement
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to cutting-edge information for well cancer organization. DCE-
MRI has been shown in studies to be a useful tool for breast
cancer diagnosis, prognosis, and linkage with genomes. In
comparison to mammography and ultrasound, MRI has revealed
a high level of sensitivity in detection of breast cancer. CE-
MRI is a type of enhanced MRI that has been shown to have
high sensitivity for cancer detection, even in dense breast tissues.
Figure 8 shows a typical flow graph for the pre-processing tasks
of well-known medical images: MRI, computed tomography
(CT), mammogram, and transrectal ultrasound (TRUS).

Ultrasound
In differentiation and breast lesion detection, ultrasound is
applied because it is an imaging modality, but it is operator-
reliant. Because of an operator who can utilize an ultrasound
scanner to appropriately locate the case. As an alternative
to DM, ultrasound imaging is used performed to detect and
diagnose anomalies in breast cancer. Ultrasound was found
to be quite accurate in detecting and distinguishing between
benign and malignant crowds. This allowed imaging techniques
in the United States to reduce the number of needless biopsies.
Ultrasound was originally coupled with magnetic resonance
imaging, digital mammography, and digital breast tomosynthesis
imaging modalities because it was benign, precise, low-cost, and
widely used. To interpret any specific lesion type, a thorough
understanding of picture features is required, which makes
ultrasound image interpretation difficult. Ultrasound is better
suggested to be applied as an enhancement to DM due to its
accessibility and affordability, likened to additional modalities, in
addition, it is better tolerated by patients.

Screen Film Mammograms
In the previous five decades, the standard imaging technique
for detecting worrisome lesions in the early stages has been
screen film mammography (SFM). SFM has a high sensitivity
(100%) for detecting suspicious cases in breasts with fatty tissues
(Selvi, 2015), and the reduction in lesion complicity could be
due to the film itself, as it aids in image acquisition, display, and
storage. Further augmentation is unlikely after the film ismolded,
and parts of the image may be exhibited with lower contrast.
If image enhancements for photos with lower contrast are
not possible, patients may request an additional mammogram,
exposing them to extra radiation. Another drawback of the film is
that different parts of the breast picture are classified according to
the mammography film’s characteristic response. Between active
range (latitude) and contrast resolution, there is a compromise
(gradient) (Henriksen et al., 2018).

Digital Mammograms
It was the most valuable and standard method for breast imaging
in the detection and diagnosis of breast problems. It does,
however, have certain limitations, including low specificity. As a
result, there may be a higher number of unnecessary biopsies,
increasing expenditures and putting more burden on patients.
Because of the lack of positioning of a deep tissue in cases
when there is a lapping breast tissue, there is a high probability
of missing some malignancies in the thereto-mammary area.
The CAD system has found positive mammographic findings

and is utilized in clinical routine to improve the radiologist’s
sensitivity. The CAD system, however, has three restrictions: high
false-positive outcomes that suggest greater recall taxes, greater
false-negative results, and great radiation exposure (Henriksen
et al., 2018). A summary of DL publications for cancer diagnosis,
detection, and prognosis is shown in Table 3.

HUMAN CANCER CATEGORIZATIONS

Cancers are categorized according to their primary site of genesis
and their histologic and tissue types (Bou Zerdan et al., 2022; Kim
et al., 2022; Siegel et al., 2022).

Categorization Based on Origin Position
Cancers could be categorized as per themain point of action, such
as breast, lung, prostate, liver, kidney, and brain (Divate et al.,
2022).

Tissue Form Categorization
This categorization is depending on the International
Classification of Diseases for Oncology, which divides
malignancies into six categories depending on different tissues:

Carcinoma
The epithelial layer of cells that forms the covering of different
exterior areas of the body or the interior linings of organs
in the body gives rise to this type of cancer. Carcinomas,
or malignancies of epithelial, account for 80–90% of all cases
of cancer, because epithelial cells are found throughout the
body, from the skin to the coating and covering of organs
and inner passages like the intestinal system. Carcinomas
most commonly affect secreting organs or glands, like the
breasts, lungs, bladder, colon, and prostate. Adenocarcinoma
and squamous cell carcinoma are two forms of carcinomas.
Squamous cell carcinoma arises from a simple squamous, and
carcinoma occurs in an organ or a gland. Mucus membrane
adenocarcinomas are the most public sort of adenocarcinoma.

Sarcoma
Tumors of the connective and supporting tissues, such as
muscles, bones, cartilage, and fat, are the source of these cancers.
Osteosarcoma is a type of sarcoma that affects the bones. The
young are the ones who are most affected. Sarcomas take
on the appearance of the tissue, in which they develop into
chondrosarcoma (cartilage cancer), leiomyosarcoma (smooth
muscle cancer), rhabdomyosarcoma (skeletal muscle cancer),
mesothelial sarcoma or mesothelioma (membranous lining
of body cavities), fibrosarcoma (fibrous tissue), angiosarcoma
(blood vessel cancer), or glioma (mixed connective tissue types).

Myeloma
Myeloma is produced in the bone marrow’s plasma cells. In
response to infections, plasma cells can produce a variety of
antibodies. Myeloma is a form of cancer that affects the blood.

Leukemia
This is a type of tumor that falls under the category of
blood cancer. This malignancy attacks the bone tissue, which
is responsible for the generation of blood cells. When the
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FIGURE 8 | Typical flow graphs for the pre-processing tasks of well-known medical images: MRI, computed tomography (CT), mammogram, and transrectal

ultrasound (TRUS) are illustrated from top to bottom, best viewed in color (Elazab et al., 2020).

bone tissue becomes malignant, it results in overabundance of
immature white blood cells that are unable to perform their
functions, leaving patients vulnerable to infection.

Lymphoma
Lymphocytic malignancies are tumors of the lymphatic system,
as opposed to leukemia, which is a “liquid tumor” that affects the
blood. Lymphocytic cancers are “hard malignancies.” They can
affect lymph nodes in specific locations like the abdomen, brain,
and intestines. Extranodal lymphomas are a type of lymphoma
that occurs outside of lymph nodes.

Hodgkin’s lymphoma and non-Hodgkin’s lymphoma are
the forms of lymphomas. Reed-Sternberg cells are found in
hematological tissue samples; however, they are not seen in
non-Hodgkin lymphoma tissue samples.

Mixed Types
There are two or many cancer components in these. Mixed
mesodermal tumor, carcinosarcoma, adenosquamous carcinoma,
and teratocarcinoma are only a few examples. Another form that
incorporates embryonic tissues is blastoma.

Categorization by Grade
Types of cancer can be categorized by their grade. Cancer
is defined by abnormalities of tissues in relation to normal
external tissues. The grade rises from one to four as the level of
abnormality rises.

Well-differentiated cells are like normal specialized cells and
are found in low-grade malignancies. Undifferentiated cells are
severely aberrant in comparison to deeper structures. These are
tumors with a high grade.

Categorization by Stage
Individual cancers are also categorized based on their stage.
Staging can be performed in a variety of ways. The most often
used technique divides tumors into three categories: tumor
size (T), regional dissemination or nodal involvement (N), and
distant metastasis (D) (M). The TNM staging is what it is called.

T0 denotes no indication of tumor, T 1–4 denotes growing
tumor size and involvement, and Tis denotes carcinoma (limited
to surface cells). Similarly, N0 denotes no lymphadenopathy
involvement, while N 1–4 denotes varying degrees of lymph
node involvement. Nx denotes that node involvement cannot
be determined. Metastasis has been further categorized into two
kinds: M0 indicates that there is no indication of distant spread,
and M1 indicates that there really is evidence of distant spread.

DISCUSSION

In the literature, gaps and limits in measurements are well-
documented, highlighting a disconnect between DL researchers
who create algorithms and physicians who make decisions.
DL algorithms are mentioned as “black boxes.” Attempts to
mitigate the algorithms’ black box characteristics are required
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TABLE 3 | Summary of the most recent deep learning publications for cancer diagnosis, detection, and prognosis.

Publication Neural Network Cancer type No of

patients/Images

Type of data Reported Accuracy

or AUC

Limitations

Melekoodappattu et al.

(2022)

CNN Ensemble

system

Breast 644 individuals 1MIAS dataset. 98.00% The model is limited to classify

only two classes.

2,620 images 2DDSM dataset 97.7%

Li et al. (2022) Multi class CNN Lung 506 patients Gansu Provincial Tumor

Hospital dataset

83% Did not compare the simulation

results with other machine

learning algorithms.

Elmarakeby et al.

(2021)

DNN Prostate 3,007 patients Reactome pathway

datasets

83% The classification technique’s

performance was improved,

however the confusion matrix

and its performance measures

were not estimated.

Ranpreet et al. (2021) DCNN Skin 10,070 samples ISIC 2020 90.42% The methodology requires

real-time interfacing with medical

images so that it can improve the

medical field.

Lu et al. (2021) CNN Marine

Predators

Algorithm

Lung 15,419 images 3RIDER dataset 93.4% Did not measure other

performances, e.g., precision,

recall, Also execution time is not

mentioned which can increase

the value of the results.

Irmak (2021) CNN Brain 70,220 images RIDER 99.33% However, the method achieved a

good result but results may vary

for a different dataset.

110,020 images REMBRANDT

241,183 images TCGA-LGG

1MIAS, Mammographic Image Analysis Society.
2DDSM, Digital Database for Screening Mammography.
3RIDER, Reference Image Database to Evaluate Therapy Response.
4 ISIC, e International Skin Imaging Collaboration datastores.

for a number of reasons. For starters, there are legal and
ethical standards, as well as rules and regulations, that must
be met before DL cancer detection systems may be used in
clinical settings. The European Union’s General Data Protection
Regulation (GDPR), for example, requires enterprises that utilize
patient data for classifications and recommendations to offer
on-demand explanations. If organizations are unable to offer
such explanations on demand, they might face severe penalties.
DL models that can be explained are also linked to monetary
incentives. Clinicians and patients must be able to trust the
classifications provided by these systems, in addition to ethical
and legal problems. An explanation is also essential for trust
and openness. The goal of explanation techniques is to show the
logic behind the model’s classification, building trust between
the system, clinicians, and patients. This can help to decrease
the amount of inexact results that non-explainable systems
can produce. Conclusively, explainable DL algorithms will
provide clinicians with additional benefits like lesion detection
and segmentation.

Besides, there are a quantity of limitations compared to
outcomes that can help decision-makers. The first point to
consider is taxonomy. Various taxonomies have been proposed
to categorize explanation methodologies (Adadi and Berrada,
2018; Arrieta et al., 2020). Because the classification systems

are task-dependent, there is no universally accepted taxonomy
for clarification approaches. Clarification measures fall into the
second type. The criteria for evaluating clarifying methods
for cancer diagnosis may differ from those used for election
prediction. As a result, it is necessary to evaluate the context of
potential applications, in addition to basic testing of clarification
methods. This is especially important for cancer-clarifying
techniques because of the high-risk nature of predictions.

More study is needed to define what clinicians consider
explainable, so that DL cancer detection systems may be
compared to these findings. Another important possibility is to
use findings to construct quantitative clarity metrics. The bulk
of standards used to measure the superiority of clarifications
is developed without the involvement of clinicians. It is vital
to measure clarification strategies in a way that is led by end-
user criteria to generate clarification approaches that are suitable
for clinician integration. Clinically important features can also
be extracted using clarification approaches. Although there have
been research studies that use explanatory techniques to locate
lesions, these models do not extract information, such as shape,
volume, area, and other significant properties.

A future opportunity is to extract these features without
computationally expensive segmentation. With this, clinicians
do not need to extract these features manually. If clarification
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techniques are implemented in clinical settings, the system can
automatically extract these characteristics for clinicians, thus
aiding in the diagnosis process. The common approach to
providing clarification for image classification is to produce a
heatmap showing the most discriminative region. More studies
are needed to be carried out to provide greater insights than using
this direct approach. For example, it would provide more insights
if clarification methods could explain why a classification was not
made and quantify the uncertainty of the clarification. Being able
to reason for and against is also important to provide greater
insights and explainability.

Additional studies ought to be directed on where current
methods fail and why. This would provide the community more
insights on how to create more robust clarification methods. It
would also provide greater confidence in the methods that are
currently used.

CONCLUSION

This study has discussed the recent significant shift in DL
for human cancer diagnosis in medical images. The study
has shed light on recent DL methodologies, research, medical
image technologies, and well-known cancer datasets used for

various DL approaches and training in most crucial human
cancer types. Furthermore, this research has presented a gentle
categorization of deep, according to their structural design and
learning method. The main goal of this study is to pave the
way for future researchers to create a roadmap that facilities
contribute to the field of DL for cancer diagnosis. As the field
progresses, the upcoming practical DL in cancer will revolve
around the incorporation of medicinal imaging and data to
uncover biologically significant biomarkers. This mixture can
offer unexpected insights, which is exciting. The availability of
ironic data for exercise models and medical confirmation of
the biological significance of DL-produced visions are important
conditions for the widespread deployment of DL in medical
settings. When new machineries, such as multiplexed imagery,
become widely available, more emphasis will be placed on
increasing the quantity and quality of medical statistics labeling
and annotation.
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