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Abstract
Background: The p53 protein is a master regulator that controls the transcription of many genes
in various pathways in response to a variety of stress signals. The extent of this regulation depends
in part on the binding affinity of p53 to its response elements (REs). Traditional profile scores for
p53 based on position weight matrices (PWM) are only a weak indicator of binding affinity because
the level of binding also depends on various other factors such as interaction between the
nucleotides and, in case of p53-REs, the extent of the spacer between the dimers.

Results: In the current study we introduce a novel in-silico predictor for p53-RE transactivation
capability based on a combination of multidimensional scaling and multinomial logistic regression.
Experimentally validated known p53-REs along with their transactivation capabilities are used for
training. Through cross-validation studies we show that our method outperforms other existing
methods. To demonstrate the utility of this method we (a) rank putative p53-REs of target genes
and target microRNAs based on the predicted transactivation capability and (b) study the
implication of polymorphisms overlapping p53-RE on its transactivation capability.

Conclusion: Taking into account both nucleotide interactions and the spacer length of p53-RE,
we have created a novel in-silico regression-based transactivation capability predictor for p53-REs
and used it to analyze validated and novel p53-REs and to predict the impact of SNPs overlapping
these elements.

Background
More than half of human cancers have a mutation in the
tumor suppressor protein p53 or one of its target genes
[1]. The p53 gene has been implicated as a master regula-
tor of genomic stability, cell cycle, apoptosis, and DNA
repair [2-5]. p53 regulates its target genes through binding
specifically to a palindromic consensus sequence,
RRRCWWGYYY-(spacer of 0–13 bp)-RRRCWWGYYY [6].
Since the consensus-binding site for p53 has been estab-
lished [6], many p53 target genes have been identified
experimentally [7-10]. Computational algorithms were

also developed to explore the potential p53-response ele-
ments (p53-REs) on a genomic scale [10,11]. Currently,
there are > 150 experimentally verified p53-RE sequences,
with > 1500 high-probability p53 loci [11,12]. One fea-
ture of p53, however, confounds the discovery of novel
transregulated genes; while some binding sites match the
expected consensus sequence quite well, others can be
consensus-poor and yet are both necessary, and sufficient,
to transactivate a gene [13]. Not surprisingly, nearly all
known REs are reported to contain at least one mismatch
in the decamer [6,11]. A recent study noted that although
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the spacer region between half sites for p53-REs can range
from zero to 13 bases, smaller spacer lengths are preferred
[11,12].

Computational approaches for identifying putative p53-
REs from the target genes are based on position weight
matrices (PWMs). These PWMs are matrices with expecta-
tion frequency defined for each nucleotide at each posi-
tion of the REs. Though commonly used, PWMs in general
have their own limitations (see [14] for details), and two
of these limitations are applicable to p53-REs: i) PWMs
cannot define motifs of variable lengths, and ii) PWMs
cannot model interactions between nucleotides. In the
case of p53-REs, even though the two constituent half-site
length is fixed (10 bp long), the RE length itself varies
because of the variable length of the spacer separating the
two half-sites. Additionally, the nucleotide interactions
within the p53-RE define its binding affinity [9,15]. Build-
ing on these rudimentary profile scores, more sophisti-
cated methods like p53MH have been developed [16].
However, these methods are based on REs known either
to bind or not bind p53 and not on their activity and
impact on p53 transactivation itself. In general, the degree
of responsiveness depends on various factors including
the state of the p53 protein [17], its cofactors [18], and the
sequence composition of the p53-RE itself [19]. Although
a recent prediction method takes into account experimen-
tally derived protein saturation levels for various p53-REs
mutated systematically [20], it does not take into account
the spacer length or composition in p53-REs. Instead it
considers the effect of individual nucleotides on binding
affinity as additive.

Extending on an earlier methodology [21], in the current
study, we developed a two-step procedure for quantitative
prediction of the p53-RE transactivation capability. In the
first step, we used multidimensional scaling to map all the
training p53-REs into a Euclidean space. In the second
step, we used multinomial logistic regression to regress
the distance between the p53-REs in the Euclidean space
against their known binding affinities. The training data
for relative transactivation of p53-REs were obtained from
our recent study [8], wherein, using a combination of cus-
tom bioinformatics and multispecies alignment of pro-
moter regions, we investigated the functional evolution of
p53-REs in terms of responsiveness to the p53. We identi-
fied REs orthologous to known p53 targets in human and
rodent cells or, alternatively, REs related to the established
p53 consensus. The orthologous REs were assigned p53
transactivation capabilities (in terms of "on" or "off" and
level of response) based on rules determined from model
systems [22]. The underlying hypothesis for the current
study is that p53-REs with similar binding site composi-
tion and spacer length have similar transactivation capa-
bility. Our goal is to predict the transactivation score of a
novel p53-RE based mostly on the dissimilarity or dis-

tance from existing known p53-REs with known transacti-
vation capability. We demonstrate the utility of our model
by (a) ranking putative p53 target genes based on their
predicted transactivation; (b) comparing the performance
of our approach with a previously reported method [20];
(c) identifying and ranking putative p53-target microRNA
promoters; and (d) predicting the implications of single
nucleotide polymorphisms (SNPs) within p53-REs on
p53 transactivation.

Results and discussion
Regression-based transactivation capability predictor for 
p53
We used 353 previously validated p53-REs along with
their transactivation capabilities from 14 different species
[8] for training and testing a regression-based p53 binding
predictor. Briefly, we used multidimensional scaling to
map all the training p53-REs into a Euclidean space fol-
lowed by multinomial logistic regression to regress the
distance between the p53-REs in the Euclidean space
against their known binding affinities. We used the dis-
tance between the validated p53-REs and their spacer
lengths as features for training a multinomial logistic
regression model (see Methods for additional details).
Our method was based on a similar affinity predictor
designed for NF-Kappa B [21]. However, contrary to NF-
Kappa B, p53-REs are not of fixed length primarily
because of the varied spacer lengths separating the two
half-sites. Earlier publications [6,11] on p53-REs point
out that the binding affinity of the RE depends on the
sequence of the dimer and the length of the spacer. Hence,
for training purposes we ignored the sequence of the
spacer and formed 20-mer sequences from the training
data. Overall there were 263 unique p53-REs having
spacer lengths ranging from 0 to 13 bp.

We used multidimensional scaling [23] to project these
263 sequences onto a multidimensional Euclidean space
such that the distance between any two sequences was
approximately equal to their dissimilarity. We were able
to transform these sequences into a 116-dimensional sub-
space. Though 90% of the variance in the data could be
captured by just 50 dimensions, we decided to retain all
the 116 dimensions for accuracy and also because these
dimensions would be automatically obtained for a novel
p53-RE. It is therefore reasonable to conclude that 50
dimensions capture the complex nucleotide interactions
that are ignored by earlier additive models. Figure 1 shows
the percentage of variance captured as a function of
number of dimensions (see methods for calculating vari-
ance from number of dimensions). In addition to the
Euclidean space dimensions, we also obtained the spacer
associated with each 20-mer p53-RE in the training set.
On the whole, we used 116 (Dimensions) + 1 (spacer) =
117 features as input to the regression analysis.
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Performance and usability of the model – Cross validation
We used ten-fold and leave-one-out cross validations to
test the performance and usability of our model. Pearson
correlation coefficients were calculated between observed
and predicted transactivation capabilities. For ten-fold
cross-validation we obtained correlations of 0.71 and
0.73 (0.71 ± 0.06 and 0.73 ± 0.05 respectively if correla-
tion is calculated for each fold separately) for models
without and with spacers, respectively. In the case of
leave-one-out cross-validation, we obtained correlations
of 0.71 and 0.70 for models without and with spacers,
respectively. We were unable to find correlation for each
fold separately as each has only one test case in leave-one-
out cross-validation. Surprisingly, we did not observe a
significant difference between training with and without
spacers. This could probably be because the training data
spacer distribution is highly skewed toward the lower val-
ues. In other words, only 12 of the 263 p53-REs had a
spacer of length 8 bp or higher. Nevertheless, we noted
some improvement in the performance (ten-fold cross-
validation) when spacers was used as a feature, although
it is not statistically significant. To test whether the corre-
lation results are skewed toward a specific transactivation
capability value, we obtained the average predicted capa-
bility for each level of true capability. Figure 2 shows the
"predicted" and "observed" transactivation capabilities
for leave-one-out cross-validation. Both the models –
without and with spacers – performed similarly. However,
toward the lower levels of observed capability, we noticed
a slight increase in the average predicted capability levels,

though not statistically significant. This was especially
apparent for levels 0 and 1, which correspond to "Non-
responsive" and "Poor" transactivation capabilities,
respectively. Both models performed well in predicting
the higher capability values.

In addition to the five different levels of binding, the
model can also be used simply to test if a specific p53-RE
could be functional or not. For this, we considered the
capability levels "Non-responsive" and "Poor" to be non-
functional, while the categories "Slight", "Moderate", and
"High" were classified as functional. A leave-one-out
cross-validation with this assumption resulted in a sensi-
tivity of 0.84 and specificity of 0.79.

Comparison with other methods
To compare the performance of Veprintsev's model [20]
with our approach, we ran their algorithm on the same set
of 263 REs we used for training. The correlation was only
-0.23 between the predicted and observed output. Since a
comparison between categorical observed transactivation
capability and continuous predicted binding affinity is
not really intuitive, we divided the input test set into func-
tional and non-functional REs as described in the previ-
ous sections. We also divided the predicted affinity into
functional and non-functional based on a default cut-off
of -6.0 as provided by the software. We noticed that while
the sensitivity of the predictor was a high 0.91, the specif-
icity was only 0.27, suggesting that the predictor inaccu-

Graph showing the variance of the model captured with respect to the number of input dimensions (Eigen values)Figure 1
Graph showing the variance of the model captured 
with respect to the number of input dimensions 
(Eigen values). At 50 dimensions, 90% of the variance or 
complexity of the model is captured.

Leave-one-out cross-validation results showing a straight line between the actual and observed transactivation capabilitiesFigure 2
Leave-one-out cross-validation results showing a 
straight line between the actual and observed trans-
activation capabilities. The average predicted values for 
lower levels of transactivation do not exactly follow the 
observed levels.
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rately overestimates a non-functional RE as functional
about 63% of the time. On the contrary, this estimate was
only 21% using our model. To further confirm this we
divided the input test set as non-functional if capability
level was "Non-responsive" and functional for other capa-
bility levels. Using Veprintsev's model, we obtained a sen-
sitivity and specificity of 0.90 and 0.35, respectively, while
for our model it was 0.90 and 0.66, respectively. Although
we observed a moderately decreased specificity for our
model, it is still better than the 0.5 cut-off for a random
predictor. In spite of the high false positive rate the sim-
plistic additive basics of the Veprintsev p53 algorithm
make it a good complementary tool for affinity predic-
tion.

Transactivation capability prediction of known validated 
p53-REs
A total of 199 unique known validated human p53-REs of
at least 20 bp length were obtained from four publica-
tions, namely, Jegga et al. [8], Horvath et al. [7], Riley et
al. [10], and Ma et al. [9]. We obtained the predicted tra-
nasactivation capability and binding affinity from our
model and the algorithm from Veprintsev et al. [20],
respectively. Figures 3A and 3B show the frequency distri-
bution of the predictor output of Veprintsev and our
model, respectively. The frequency distributions highlight
two important aspects. First, most of the validated p53

binding sites are predicted positive by both of the algo-
rithms, 80.9% by Veprintsev and 85.4% by our model.
Second, the distributions follow normality skewed toward
the higher binding affinity/transactivation capability
levels. These results confirm the veracity of the algorithms
and their conformity with each other in terms of sensitiv-
ity.

To further analyze the relationship between predicted
transactivation capability levels obtained through our
method and the validated p53-RE sequence features, we
first separated the p53-REs by their capability levels. Using
WebLogo [24] we obtained the consensus sequence logos
representing the frequency of each nucleotide at each
position for each of the capability levels (Figure 4). Not
surprisingly, the consensus (sequence logo in Figure 4a)
obtained by including REs corresponding to all capability
levels revealed an enrichment of nucleotides ''C'' and ''G''
in the CWWG core of the p53-RE. This was in fact irrespec-
tive of all capability levels. Figure 4b shows the consensus
logo formed by sequences including only p53-REs catego-
rized under transactivation capability level of ''4''. We
observed that several REs had ''AT'' in the CWWG consen-
sus, including the lower capability categories. However, it
is worth noting that the sequences with predicted transac-
tivation level ''0'' (Figure 4f), had a weak CWWG consen-
sus. Additionally, many purines (A/G) were observed in

(A) Frequency distribution of protein saturation level scores from Veprintsev's algorithm for detecting p53 RE binding affinity applied on validated p53 for detecti REsFigure 3
(A) Frequency distribution of protein saturation level scores from Veprintsev's algorithm for detecting p53 RE 
binding affinity applied on validated p53 for detecti REs. (B) Frequency distribution of categorical transactivation level 
prediction scores from our algorithm applied on validated p53 REs.
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the "YYY" consensus of the second dimer. All these results
highlight the differences between the predicted lower
capability p53-REs and the p53 consensus.

Since it is well known that the transactivation capability of
the p53-RE depends both on the sequence composition of
the dimers and the spacer length, we next analyzed the
variation in the p53-RE sequence from the consensus, and
the variation in the spacer length with respect to the trans-
activation capability (Figure 5). Both the average sequence
dissimilarity and the spacer length showed a decreasing

trend with respect to the transactivation capability. How-
ever, there was a slight increase in the average spacer
length for capability value "2" compared to capability
value "0." Considering that transactivation capability is
affected by both dimer sequence dissimilarity from con-
sensus and the spacer length, we fitted a curve on these
variables. We noticed a distinct pattern wherein there was
a decreasing pattern of the curve with increasing transacti-
vation capability. However, we still noticed some devia-
tion from the decreasing pattern. There could be several
reasons for this: i) when measuring the p53-RE sequence
dissimilarity, the consensus sequence was taken to be that
with the highest transactivation capability (i.e., GGGCAT-
GCCC)2); ii) previous studies reported a bimodal induc-
tion of transactivation capability, especially with spacer
length [15]; and iii) several other features like interaction
between nucleotides that are captured by our predictor
could affect the transactivation capability to deviate from
the expected value (See Additional File 1 for a complete
set of predictions for each validated p53 binding site).

Transactivation capability prediction of non-validated 
p53-REs
After initial testing that our algorithm is capable of pre-
dicting a significant number of validated p53-REs as func-
tional, we sought to rank the known human p53-REs (not
necessarily experimentally validated) reported in the liter-
ature based on their putative transactivation capability

Sequence logos separated by categorical transactivation pre-diction levels from our algorithm applied on validated p53 REsFigure 4
Sequence logos separated by categorical transactiva-
tion prediction levels from our algorithm applied on 
validated p53 REs. (A) Sequence logo formed using all vali-
dated p53 REs score. (B) Logo formed using predicted trans-
activation level of 4 (High), (C) using level 3 (Moderate), (D) 
using level 2 (Slight), (E) using level 1 (Poor), and (F) using 
level 0 (Non-responsive).

Correspondence between predicted transactivation levels obtained from validated p53 REs with its dimer sequence dis-similarity and spacer lengthsFigure 5
Correspondence between predicted transactivation 
levels obtained from validated p53 REs with its dimer 
sequence dissimilarity and spacer lengths. Dimer 
sequence dissimilarity is calculated as the distance from the 
best p53 RE, (GGGCATGCCC)2. Also shown is a local 
regression curve fit on dimer dissimilarity and spacer length. 
All the three measurements are in general negatively corre-
lated to the predicted transactivation scores.
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predicted by our approach. To do this, we compiled 2026
REs from the literature [11,25,26]. These literature-com-
piled p53-REs represent a collection of high-confidence
putative p53 binding sites obtained using ChIP-Chip and
in-silico methods. In order to further prioritize or rank
these p53-REs based on their predicted transactivation
capability, we used p53MH [16] to obtain the p53-RE
scores and then applied our predictor. Although several of
these p53-REs were predicted positive by both p53MH
and our algorithm, only 23 of them had a p53MH score
of 100 and a high capability score of "4" by our algorithm
(Table 1) and of these only 3 p53-REs (of genes PPM1J,
DDB2 and PLK2) have been experimentally validated.
Additional file 2 shows the scores for all the known p53-
REs (sorted by p53MH score and transactivation capabil-
ity predictions).

Prediction of transactivation capability for putative p53-
REs in microRNA promoters
We used the "high confidence" microRNA promoters (59
promoters directing transcription of 79 microRNAs) from
Fujita and Iba [27] and in the first step ran the p53MH
algorithm [16] to obtain putative high-scoring p53 bind-
ing sites in these miRNA promoter regions. The p53MH
parameters were set to obtain only the top 3 high-scoring
p53-RE matches. In the second step, we used our transac-
tivation scoring model to predict the transactivation capa-
bility of each of the p53-RE matches. Out of 180 putative

p53-REs occurring in 60 microRNAs, 51 p53-REs (corre-
sponding to 30 microRNAs) were predicted with high
scores (> 70) by p53MH. Out of these 40 REs (25 micro-
RNAs) were predicted with a transactivation score of at
least "1" by our model. We intersected our results with a
list of miRNAs that have been reported to be either
induced or suppressed following p53-activation [28]. We
found that 6 induced (mir-106a, mir-128a, mir-191, mir-
21, miPPR-23b, and mir-34a), and 3 repressed (mir-671,
mir-125b, and mir-100) microRNAs had high-scoring
putative p53-REs (see Additional file 3). The fact that mir-
34a, the known p53-regulated miRNA, was identified by
our model as a high affinity target (apart from a p53MH
score of 100) supports the ability of our model's potential
in predicting p53-REs' transactivation capability.

Performance of regression model with varying spacer 
length
Although variable p53-RE spacer lengths are known to
affect transactivation capacity [29], to the best of our
knowledge none of the current algorithms consider spac-
ers as one of the parameters when predicting the transac-
tivation capability of p53-RE. Thus, for the first time, we
have incorporated spacer length as one of the features in
our regression model for predicting the transactivation
capability of p53-RE. To test specifically the performance
of our model in predicting the transactivation capability
of REs with different spacer lengths, we compiled litera-

Table 1: Twenty-three p53-REs predicted positive by both p53MH and our algorithm

Gene chr p53-RE Start p53-RE End p53-RE_Dimer 1 p53-RE_Spacer p53-RE_Dimer 2 Spacer Length Ref.

PLK2 5 57793857 57793877 GGGCAAGTCC AGGCATGTTT 0 [11]
PPM1J 1 113048061 113048081 GGGCTTGCTC AGGCATGTTC 0 [25]
DDB2 11 47193105 47193126 GAACAAGCCC T GGGCATGTTT 1 [11]
KIAA1486 2 226209743 226209763 GAACATGCCT GGGCTAGCCT 0 [11]
MTHFD1L 6 151220175 151220195 GGACATGCCT GGGCATGTCC 0 [11]
PRKAG2 7 151016282 151016302 GAGCATGTCT GAACATGTTC 0 [11]
AKAP6 14 31884451 31884471 AGACATGTTT GGGCATGTCT 0 [25]
BIRC8 19 58490331 58490351 GGACATGCCT GGGCATGTCT 0 [25]
APBB2 4 40721763 40721784 AAACTTGTTT C AGGCTAGCCC 1 [26]
TSHR 14 80618516 80618537 AAACTTGCTT C AAGCTAGCCC 1 [25]
DMD X 31592231 31592252 AAACATGCTC T GGACTAGCCT 1 [25]
SLCO2B1 11 74540123 74540146 GAGCAAGCCT GGG GGACATGTTC 3 [26]
ATF3 1 210865885 210865908 AGGCAAGTCC TCA GAGCATGTTT 3 [11]
FRMD4A 10 14167552 14167577 AAGCTTGCTT TCAGA GGGCTTGCCT 5 [11]
EGFR 7 55176461 55176487 AAACATGCCT TTCAAA GAACTAGTTC 6 [25]
MMP2 16 54067700 54067729 AGGCAAGTCC ATAAAGTGA AAGCAAGTTT 9 [11]
KRT15 17 36930241 36930270 GAACATGCCC TGTGAGCCT GAGCATGTTC 9 [25]
DLG2 11 83032605 83032636 GAACATGTCC ATGGCTGTCTC AGACTTGTTT 11 [25]
NRXN3 14 78316130 78316162 AGACTTGCCC AACTAGACATCA AGGCATGTTT 12 [25]
FHIT 3 61206990 61207024 AAACTTGCTT TCACTTTACTCTGT GGACTTGCCC 14 [26]
DOCK9 13 98270727 98270761 GGGCAAGTCC ACAGTGCAAAGTAA AAGCAAGTTT 14 [25]
GRIN2A 16 9796860 9796894 AAACTTGCTT TGACTTTACTCCAT GGACTTGCCC 14 [25]
ACCN1 17 28722009 28722043 AGGCAAGTCC GCAGTGCAAAGCGA AAGCAAGTTT 14 [25]

These 23 top ranked REs had a p53MH score of 100 and a transactivation capability score of "4" by our algorithm. Of these, only 3 p53-REs (of 
genes PPM1J, DDB2 and PLK2; bold font) have been experimentally validated in previous studies.
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ture-reported validated p53-REs and artificially varied
their spacer length (from 0 to 14 bp), keeping the dimer
composition constant. For simplicity, we have grouped
the results into different categories based on the fold-
change (4-fold, 3-fold, 2-fold or 1-fold) in transactivation
capacity with varied spacer lengths. For example, a change
in transactivation score from "4" to "0" with an increase
in spacer length corresponds to a 4-fold change.

Weak p53-RE half-sites show increased transactivation capability 
when spacer length is reduced
In order to test whether a lower spacer length would
increase the predicted capacity of the REs with weaker
dimers, we tested all possible spacer lengths from 0 to 14
bp (see Methods). We selected two validated p53 target
genes (MET and TRPM2) with a 4-fold change difference
when the spacer length was artificially varied for the anal-
ysis of implication of spacer length in p53-RE transactiva-
tion capacity. While the functional p53-RE of MET not
only has mismatches in the core CWWG but also has a

spacer of 14 bp (GGACGGACAG-14 bp spacer-
AGACACGTGC), TRPM2 p53-RE (GGCCTTGCCT-5 bp
spacer-AGGCCTGCTT) has a spacer length of 5 bp. Inter-
estingly, MET p53-RE was predicted to have an increased
transactivation capability (4-high) if the spacer length
were artificially reduced to 0 or 1 bp (Figure 6). Likewise,
TRPM2 p53-RE was predicted to have a capacity of 4
(high) if the spacer lengths were lower (i.e. 0, 1, or 2 bp).
An alternate example is p53-RE of DDR1 (GAGCT-
GGTCC-0 spacer-AGGCTTATCT) (Figure 7), whose pre-
dicted transactivation score drops to zero when the spacer
length is increased by 1 bp! In a recent systematic analysis
measuring the ability of the p53 to transactivate 1/2 site or
3/4 sites [30], it has been suggested that two weak half-
sites may actually be a functional 3/4 site.

Strong p53-RE half-sites retain high transactivation capability 
irrespective of spacer length
Since p53-REs that are in strong agreement with the con-
sensus are known to have higher transactivation capabil-

Four-fold change in predicted transactivation capability of validated p53 REs with varying spacer lengthsFigure 6
Four-fold change in predicted transactivation capability of validated p53 REs with varying spacer lengths.
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ity [9,29], we selected those REs that have a high similarity
to the consensus (especially in the core CWWG) and pre-
dicted the effects of spacer length on their transactivation
by varying the spacer length (0–14 bp). For instance, the
functional p53-RE of RRM2B (chr8:103318244–
103318263) has CATG in both the dimers (Figure 7), and
we found that increasing the spacer length does not alter
the transactivation significantly. Similar results were
obtained for target genes DDB2 and SEMA3B (Figure 7).
These results are in complete agreement with earlier find-
ings that the effect of spacer is partially overcome by the
presence of a strong CWWG core in the dimers [31]. List
of p53 REs with 1-fold and 2-fold change in transactiva-
tion scores with varying spacer lengths are included as
additional files (Additional Files 4, 5, and 6).

Implication of SNPs on p53-RE transactivation capability
Although several computational approaches exist to pre-
dict the impact of coding and non-coding polymorphisms
[32], very few take into account the binding affinity of a
transcription factor with the response element, let alone
predict their impact.

Effect of SNPs overlapping p53-RE half-sites
Using the p53-REs as a test case, we sought to assess the
impact of human non-coding single nucleotide polymor-
phisms (SNPs) on the p53-RE transactivation capability.
To do this, using the UCSC genome browser [33], we
made an intersection of 199 validated p53-REs and
human non-coding SNPs. There were 36 non-coding
SNPs overlapping with a known validated p53-RE (Table
2; see also Additional files 7 and 9 for a complete list of
validated p53-RE overlapping SNPs along with the predic-
tions of their effects on transactivation). Of these, 33 over-
lapped with dimers, out of which 10 SNPs were predicted
to impact the transactivation capacity by our predictor.
For instance, a G>C variation (rs2228108) in the TAP1
gene (occurring at +643 bp from TSS), decreased the pre-
dicted transactivation score from "3" to "1." The variation
alters the "G" of the core motif CWWG in the first dimer
to "C" which could result in reduced transactivation capa-
bility. A similar result (9-fold change in the binding affin-
ity) was obtained when we repeated the analysis using
Veprintsev's algorithm [20]. Likewise, a C>G variation
(rs934345) occurring upstream to DCC1, and overlap-
ping a validated p53-RE, is predicted to increase the trans-
activation capability from "2" to "3." The DCC1 p53-RE
has "CAG" for the "RRR" in dimer1 (native RE), which
changes to "GAG" because of a SNP (C->G) and could be
responsible for increasing the predicted transactivation
score. Thus, our algorithm is not only sensitive to predict
the implications following variations in the core
"CWWG" but also to those occurring in the flanking
sequences. However, there were some exceptions – for
instance, a SNP (rs702720; T->C) that overlaps the third

purine in the RRR of the second dimer of a validated p53-
RE. Although both the wild-type and minor allele are mis-
matches to the original p53 consensus, our model pre-
dicts an increase in the transactivation score from "1" to
"2". This could be because of lack of sufficient training
data that gives sufficient coverage throughout the entire
variation space of the p53 consensus. Also, as discussed
earlier there were only 12 p53-REs in the training set with
spacer lengths greater than 8.

Effect of indels overlapping p53-RE spacer region
For analyzing the effect of indels overlapping spacers on
p53 REs transactivation capability, we used Galaxy [34] to
obtain the 17-species multiple alignments for both vali-
dated p53 REs. We then used a custom bioinformatics
program to assess the level of conservation between spe-
cies in the two dimers and the spacer separately. Indels
occurring in the dimer and spacer were noted. We then
ran the transactivation capability prediction algorithm on
the p53 REs of each species. This way the level of sequence
conservation and transactivation capability between spe-
cies could be obtained. The algorithm was able to success-
fully predict differences in transactivation capability. For
example, a validated p53 RE occurring on exon 4 of the
EEF1A1 is highly conserved across multiple species. How-
ever, subtle differences exist. For instance, the human
p53-RE has a dimer1+dimer2 sequence of "GGGCAT-
GCTCGGGTCTGCCC" and has a transactivation score of
"1". But the corresponding frog sequence has a p53 RE
that has a 20-mer sequence of "GGGCATGCTCGAGTTT-
GTCC" and has a transactivation score of "2." A C>T in the
first "W" of the "CWWG" sequence in dimer2 results in
the transactivation capability increasing by a unit of 1.

We also analyzed those p53 REs that have insertions or
deletions in their spacers among the conserved species
and predicted their transactivation capability. For exam-
ple, a validated p53 RE in the 5'UTR of BCL6 has a spacer
of length 13 and a predicted transactivation score of "1" in
the human. When compared to other species, dog has a
conserved p53 RE with a spacer length of 11 and a pre-
dicted transactivation score of "2" (see Additional file 8
for all of the multi-species alignments and predicted
scores for validated p53 REs).

Conclusion
Our p53-RE transactivation predictor is a useful comple-
mentary tool to current algorithms that are based on posi-
tion-weight-matrices and experimental-based affinity
values. Through various analyses we have shown that our
method performs better than an existing algorithm by
Veprintsev. We have done initial validation of our method
by analyzing known validated p53-REs. We have shown
the utility of this method as a valuable aid to the existing
p53MH algorithm in obtaining high quality novel p53-
Page 8 of 14
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3-fold change in predicted transactivation capability of validated p53 REs with varying spacer lengthsFigure 7
3-fold change in predicted transactivation capability of validated p53 REs with varying spacer lengths.
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Table 2: Thirty-six non-coding SNPs overlapping with a validated p53-RE.

Genes p53 RE Location Spacer Length SNP ID Allele Wt-Binding Prediction Minor Allele-Binding 
Prediction

Reference

SERTAD1 chr19: 45623874–45623893 0 rs268682 C/G 0 1 [7]
TAP1 chr6: 32929058–32929083 6 rs2228108 C/G 3 1 [10]
TP73 chr1: 3597020–3597050 11 rs12121865 A/G 2 3 [8,10]
PLK2 chr5: 57793125–57793147 3 rs702720 A/G 1 2 [7,9,10]
HSP90AB1 chr6: 44322842–44322871 10 rs35074133 A/T 2 3 [10]
BDKRB2 chr14: 95740864–95740883 0 rs1800508 C/T 0 3 [9,10]
DSCC1 chr18: 48118859–48118878 0 rs934345 C/G 2 3 [7]
TP73 chr1: 3556376–3556406 11 rs12040834 G/T 1 2 [10]
EEF1A1 chr6: 74286408–74286431 4 rs11550799 G/T 1 2 [9,10]
EEF1A1 chr6: 74286408–74286431 4 rs11550790 G/T 1 2 [9,10]
EEF1A1 chr6: 74286408–74286431 4 rs11556652 C/T 1 3 [9,10]
EEF1A1 chr6: 74285585–74285606 2 rs11556679 C/G 1 1 [10]
EEF1A1 chr6: 74286408–74286431 4 rs11550844 C/T 1 1 [9,10]
KRT8 chr12: 51585038–51585059 2 rs11554493 C/T 0 0 [10]
EEF1A1 chr6: 74285784–74285805 2 rs11556702 A/G 2 2 [10]
ADARB1 chr21: 45316682–45316701 0 rs2838769 A/G 2 2 [10]
SCGB1D2 chr11: 61765841–61765860 0 rs2232945 A/G 3 3 [7]
TP63 chr3: 190989527–190989549 3 rs9844460 C/T 4 4 [10]
EOMES chr3: 27739623–27739643 1 rs3806624 C/T 2 2 [7]
PMS2 chr7: 6012202–6012223 2 rs2881029 A/C 1 1 [7,10]
SIVA chr14: 103984243–103984262 0 rs11628179 G/T 3 3 [7]
KRT8 chr12: 51585038–51585059 2 rs13098 A/T 0 0 [10]
PLK3 chr1: 45038183–45038202 0 rs17880745 A/T 2 2 [8]
PLK3 chr1: 45038183–45038208 6 rs17880745 A/T 2 2 [7,10]
HSPA8 chr11: 122437379–122437406 8 rs11823704 A/C 0 0 [9,10]
ARHGEF7 chr13: 110602821–110602840 0 rs1658728 G/T 3 3 [7]
RRM2B chr8: 103318244–103318263 0 rs28999675 C/G 4 4 [7-10]
TP73 chr1: 3556358–3556385 8 rs12040834 G/T 2 2 [10]
TP73 chr1: 3597020–3597039 0 rs12121865 A/G 3 3 [7]
EEF1A1 chr6: 74285784–74285805 2 rs11550818 C/T 2 2 [10]
TRIM22 chr11: 5668357–5668376 0 rs35926783 A/G 4 4 [10]
EDN2 chr1: 41720668–41720687 0 rs11572355 A/G 3 3 [7,8,10]
CASP1 chr11: 104411147–104411166 0 rs3809024 A/G 3 3 [7,10]
HSPA8 chr11: 122437379–122437406 8 rs41302367 A/G On Spacer On Spacer [9,10]
SLC38A2 chr12: 45037706–45037735 10 rs7960147 C/T On Spacer On Spacer [9,10]
MSH2 chr2: 47483388–47483420 13 rs1863332 A/C On Spacer On Spacer [10]

Of these, 33 SNPs overlap with dimers, out of which 10 SNPs were predicted to impact the transactivation capacity by our predictor (See Additional File 9 for more details).
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REs. The results indicate that our model can predict the
changes in the level of transactivation capability relative
to changes in the spacer length. Additionally, our results
corroborate the current theories on variation of binding
affinities relative to spacer lengths. Based on our results
we hypothesize that a deletion in the spacer (leading to
smaller or no spacer) of a low-affinity RE could increase
its transactivation capability while p53-REs with con-
served consensus and high transactivation capability are
tolerant of longer spacer lengths. We strongly believe that
our method will help in prioritizing novel p53-REs
obtained through various methods including high-
throughput ChIP-chip experiments. Lastly, as more p53-
RE transactivation experimental data becomes available,
we anticipate an increase in the accuracy of our model.

Methods
Regression model for p53-RE transactivation capability
Our analysis is based on methods explained previously in
Udalova et al. [21]. The known p53-REs with transactiva-
tion capability were extracted from Jegga et al. [8], and the
pair-wise distance between each p53-RE was calculated as
follows:

dij min(h(REi, REj), h(REi, )), where dij is the distance

between ith RE (REi), and jth RE (REj)

 is the reverse complement of REj

h(REi, REj) is the Hamming distance between ith and the jth

RE

A total of 263 unique REs were obtained from Jegga et al.
[8] and hence the distance matrix D is of dimension 263
× 263. Let n denote this unique number of REs. We used
the "cmdscale" function from "stats" package in R [35] for
scaling the distance matrix to an (n-1) dimensional Eucli-
dean space. We obtained the m-valid principal coordi-
nates (Eigen vectors) from the output. When scaling, the
pair-wise distance dij, calculated earlier, is approximately
equal to the Euclidean distance between the two
sequences in the m-dimensional space. Thus, there were a
total of 116 valid dimensions.

The consensus for p53 is two half-sites (10 bp each) of
RRRCWWGYYYY separated by a spacer. We used the m
valid principal coordinates and the spacer as features to
train a multinomial logistic regression. In the training
data there were 5 levels of transactivation scores ranging
from 0 to 4. If there are Z levels the probability of observ-
ing a transactivation capability of level z in sequence i is
given by

and

where 

In the above equations αz refers to the intercept for trans-
activation level z. β is a vector of regression coefficients. xik
refers to the kth principal coordinate of the ith sequence. Si
refers to the spacer length of the ith sequence. If an
unknown sequence, not present in the training set, is the
input, it is mapped into the Euclidean space using a kernel
density function. This function is defined in Udalova et al.
[21]. The transactivation level with the highest predicted
probability is assigned as the predicted transactivation
capability of the novel input sequence (see Figure 8 for the
schematic representation of the methods).

Variance and Eigen Values (Dimensions)
The variance of the original data captured by the first n
Eigen values (here dimensions) can be defined as

where ε is a vector of all Eigen values and N is the total
number of valid Eigen values.

Correlation between observed and predicted affinities
If a is a vector of actual binding affinities and p is a vector
of predicted binding affinities, the Pearson correlation
coefficient between actual and predicted binding affinities
is given by

where n is the total number of REs for which affinities are
obtained.

Calculating sensitivity and specificity of prediction 
algorithms
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where TP = True positive predictions

FN = False negative predictions

TN = True negative predictions

FP = False positive predictions

Compiling validated and known p53-REs
Validated human p53-REs were compiled from literature
(Jegga et al. [8] – 43 REs; Horvath et al. [7] – 83 REs; Riley
et al. [10] – 151 REs; and Ma et al. [9] – 63 REs; of these,
the last two [9,10] themselves are compilations of vali-
dated p53 REs from the literature). The p53-RE sequences
of the compiled list were downloaded using BLAT and the
UCSC table browser [33]. Similarly, known p53-REs (not
necessarily experimentally validated) were also compiled
from literature (Xie et al. [25] – 1196 REs; Wei et al. [11]
– 428 REs; and Hearnes et al. [26] – 631 REs). Since the
putative p53 target genes from Wei et al. and Hearnes et
al. are based on genome-wide p53 binding maps using
ChIP experiments, the exact position and the sequence of
the p53 binding sites were unknown. The results in the

publications are given in the form of p53 locus regions of
length between 1 kb and 2 kb. We therefore ran the
p53MH [16] algorithm on all the sequences obtained
from the p53 binding loci. We set the threshold at 70 and
restricted the output to three binding sites with the high-
est scores. Xie et al. scanned the -2 kb to +2 kb region of
the human genomic transcription start site and scanned
for motifs that are conserved at least across human,
mouse, rat, and dog. In the MSigDB database [36], which
is based on Xie et al., only the associated gene harboring
the p53 binding sites is given. Hence, we scanned the -2
kb to +2 kb region of the genes from the database using
p53MH with a cut-off score of 70 and restricted the output
to the top three binding site matches.

Spacer Analysis
For performing the spacer analysis we obtained all the val-
idated p53 REs (199) as described earlier. After eliminat-
ing those REs with spacer length more than 14 we
obtained 196 REs. Using a JAVA script, we constructed
multiple entries for each REs with spacer length varying
from 0 to 14 (keeping the half-sites constant) and noted
the spacer length in the native RE. For each of these REs we
then calculated the predicted transactivation capability
through our regression model. The graphical representa-
tions of the transactivation capability variations with
spacer length were generated using the R-package.

Specificity
TN

TN FP
=

+

Flow chart for training, validating, and testing logistic regression model for p53 RE transactivation capability predictionFigure 8
Flow chart for training, validating, and testing logistic regression model for p53 RE transactivation capability 
prediction.
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Overlapping SNPs for validated and putative microRNA 
REs
Using the custom track feature in the UCSC Genome
Browser, we intersected the p53-REs' positional coordi-
nates with human SNP ("snp128" – corresponding to
NCBI's dbSNP 128) coordinates and downloaded all the
SNPs intersecting with p53-REs. Using custom programs
written in JAVA we found the precise location of the SNPs
on the RE and classified them as those occurring within
the dimer (or the half-sites) or the spacer. We used the
UCSC table browser to get the annotations for SNPs such
as the minor and wild-type (wt) alleles and the strand. We
used this to create the altered sequence (replacing the
affected base pair) and finally predicted the binding affin-
ities for the native RE and the mutated RE (with the poly-
morphic base pair) separately and estimated the
difference.

Availability of the software
The transactivation predictor software is available upon
request from the authors.
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