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Abstract: The aim of this study was to establish the blood glucose response to different cooking
methods of pasta. Participants consumed three identical meals in a random order that were freshly
cooked (hot), cooled and reheated. Blood glucose concentrations were assessed before, and every
15 min after ingestion of each meal for 120 min. There was a significant interaction between
temperature and time (F(8.46–372.34) = 2.75, p = 0.005), with the reheated (90 min) condition returning
to baseline faster than both cold (120 min) and hot conditions. Blood glucose area under the curve
(AUC) was significantly lower in the reheated (703 ± 56 mmol·L−1·min−1) than the hot condition
(735 ± 77 mmol·L−1·min−1, t(92) = −3.36, pbonferroni = 0.003), with no significant difference with the
cold condition (722 ± 62 mmol·L−1·min−1). To our knowledge, the current study is the first to show
that reheating pasta causes changes in post-prandial glucose response, with a quicker return to fasting
levels in both the reheated and cooled conditions than the hot condition. The mechanisms behind the
changes in post-prandial blood glucose seen in this study are most likely related to changes in starch
structure and how these changes influence glycaemic response.
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1. Introduction

Dietary carbohydrates are a fundamental constituent of a balanced diet, contributing between
40–70% of energy intake [1], with people relying heavily on staple foods, such as pasta and rice for
energy [2,3]. The digestion rates of carbohydrates are determined strongly by the proportions of
sugars, starch and fibre present within the carbohydrate. Refined and starchy carbohydrates are readily
hydrolysed into their glucose components by pancreatic amylase and brush border enzymes in the
small intestine, whereas dietary fibres (including resistant starch, RS) cannot be hydrolysed in the small
intestine [4]. Starch that has undergone retrogradation—a process by which the glucose molecules in
starch re-associate with each other in an irregular fashion post-gelatinisation [5]—is known to have a
high RS content, and therefore will not be digested as effectively in the small intestine and will undergo
fermentation by gut bacteria in the large intestine [6]. Therefore, foods with a high RS content produce
a lower glycaemic response and contribute towards them having a lower glycaemic index (GI).

Low GI diets have numerous nutritional benefits and may be effective in the management of
metabolic syndromes such as obesity and type-2 diabetes mellitus (T2DM), as they produce a lower
post-prandial blood glucose response [7], as well as effects on cardiometabolic and inflammatory
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markers [8]. There is a body of evidence supporting the link between RS digestion and post-prandial
hyperglycaemia and insulinaemia, because RS-rich foods are harder to digest. The preparation of
food can also influence the GI properties of a meal, with retrogradation of starch by cooling and
reheating, increasing the amount of RS, particularly type 3, present [9]. However, there is a lack of
published evidence regarding humans that supports the effect of cooking on glycaemic response to a
high carbohydrate meal.

The aim of this study was to establish the blood glucose response to a pasta meal that was
cooked and eaten hot; cooked and eaten after cooling or cooked and cooled and then reheated.
We hypothesised that the cooked and eaten hot meal would produce the highest glycaemic response
when compared with the other methods of preparation because of its disorganised, amorphous
structure and swollen starch granules produced by gelatinization, with the cooked, cooled then
reheated meal causing the lowest glycaemic response due to its repeated retrogradation from being
cooked, cooled and then reheated.

2. Materials and Methods

2.1. Participants

Forty-five volunteers (age = 20–24 years) took part in this study and were informed of the
experimental protocol both verbally and in writing before giving informed consent. The study protocol
was approved by the School of Pharmacy and Biomolecular Sciences Research Ethics Panel (approval
number: PABS-REP-2017-05).

2.2. Experimental Conditions

Participants undertook each experimental condition in an unblinded random order decided
by a random number generator, with each experimental visit separated by a minimum of 48 h.
Participants were instructed to refrain from performing any strenuous physical activity for 2 days
prior to each experimental visit and attended the laboratory after an overnight fast. Participants were
excluded from the study if fasting plasma glucose exceeded 7 mmol/L during their first visit to the
laboratory. No participants had fasting plasma glucose concentrations in excess of 7 mmol/L in their
first experimental visit, although 15 participants had values in excess of 5.6 mmol/L on at least one
visit, while 5 participants had fasting plasma glucose values in excess of 5.6 mmol/L on two visits.

2.3. Pasta Preparation

Three different preparations of white fusilli pasta (Asda Stores Ltd., Leeds, UK) with a simple
Tomato and Basil Stir-in pasta sauce (Dolmio R©, Mars Inc., Slough, UK) were tested in this study: hot,
cold and reheated. Each participant was given 100 g (dry weight) of pasta, which was cooked in water
for 20 min [10], at a ratio of 566 mL of water to 100 g of pasta, with 100 g of pasta sauce. The hot
pasta meal was freshly cooked, the cold pasta meal was cooked and chilled for 24 h overnight in a
refrigerator at 4 ◦C in a sealed plastic container, while the reheated pasta meal followed the same
treatment as the cold condition but was then reheated on the day of the experiment for 3 min in a
750 W microwave (Proline SM18) on the high setting, with stirring every minute. Each subject was
provided with 250 mL of water with their meal, which they were asked to ingest within 15 min [11].

2.4. Blood Glucose Responses

Capillary blood samples were collected by the participant by single use lancet from the
fingertip before, and every 15 min for 120 min after ingestion of the meal. Whole blood glucose
concentrations were measured using an automatic analyser (Accu-Chek Performa Blood Glucose
Meter, Roche Diagnostics, Basel, Switzerland).
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2.5. Calculations and Data Analysis

Area under the glucose curve (AUC) was calculated using the conventional trapezoid rule.
Blood glucose response was analysed using a 2-way repeated measures ANOVA, and area under the
curve was analysed using a 1-way repeated measures ANOVA (Jamovi v 0.9.5.12 [12]). Assessment of
sphericity using Machualy’s test indicated that there was a violation of this assumption for the both
the time and treatment x time interaction in blood glucose response, therefore Greenhouse–Geisser
corrections were applied. Pairwise comparisons were conducted using a Bonferonni post-hoc correction
(pbonferonni). Data shown is mean ± standard deviation unless otherwise stated, with significance
accepted if p < 0.05.

3. Results

3.1. Preparation Method

There was a significant effect of the preparation method of the pasta (F(2–88)= 4.40, p = 0.015),
with mean 2 h blood glucose concentration significantly lower in the reheated condition
(5.78 ± 0.91 mmol/L) than in the hot condition (6.03 ± 1.02 mmol/L, t(88) = 2.94, pbonferroni =
0.013). There were no differences in mean 2 h blood glucose concentrations between cold pasta
(5.94 ± 0.95 mmol/L) and either hot (t(88) = 1.10, pbonferroni = 0.820), or reheated (t(88) = 1.83,
pbonferroni = 0.210) pasta.

3.2. Time

Pasta ingestion caused significant increases in blood glucose regardless of the preparation method
(F(3.06–134.81) = 59.97, p < 0.001), with significantly increased blood glucose at each time point than the
previous time point up to 30 min (Table 1).

3.3. Preparation Method and Time Interaction

There was a significant interaction between preparation method and time (F(8.46–372.34) = 2.75
p = 0.005). The reheated condition saw a faster return to baseline than both cold and hot conditions,
with the reheated condition seeing a return to baseline values within 90 min, compared with 120 min
in the cold condition, and the hot condition not returning to baseline by the end of the 2 h period
(Table 1). However, there were no differences at any time point between any condition (Figure A1).

Table 1. Post-prandial glucose response.

Time (mins) 0 15 30 45 60 75 90 105 120

Cold 5.16 5.68 A 6.63 B,C 6.58 B 6.09 B 6.04 B 5.72 A 5.72 A 5.63
[0.57] [0.94] [1.08] [1.17] [0.91] [0.91] [0.66] [0.58] [0.65]

Hot 5.07 5.91 B 7.10 B,C 6.68 B 6.26 B 5.90 B 5.97 B 5.82 B 5.58 B

[0.70] [0.76] [0.95] [1.00] [1.23] [0.77] [0.78] [0.78] [0.67]

Reheated 5.05 5.82 B 6.94 B,C 6.47 B 5.85 B 5.57 A 5.56 5.46 5.33
[0.44] [0.71] [0.92] [0.97] [0.93] [0.74] [0.62] [0.63] [0.59]

Data shown is mean [standard deviation]. All n = 45. A/B significantly different from baseline (p < 0.05/p < 0.001).
C significantly different from previous time-point (p < 0.05).

3.4. Area Under the Curve

There was a significant effect of preparation method on AUC (F(2–92) = 6.19, p = 0.003). Reheated
pasta had a significantly lower area under the curve (703 ± 56 mmol·L−1·min−1) than the hot condition
(735 ± 77 mmol·L−1·min−1, t(92) = −3.36, pbonferroni = 0.003), with no significant difference with the
cold condition observed (722 ± 62 mmol·L−1·min−1, t(92) = −2.07 pbonferroni = 0.123). There was also
no significant difference between the cold and hot condition (t(92) = −1.29, pbonferroni = 0.601, Figure 1).
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Figure 1. Area under the curve for post-prandial glucose response to three different carbohydrate
meal preparations. Data shown is mean ± standard error alongside individual responses. * denotes
significant difference between groups (p < 0.05).

4. Discussion

This study aimed to examine the effect of cooking methodology of pasta on post-prandial blood
glucose, and found that both cooled, and reheated pasta, were associated with a faster return to
baseline blood glucose, than the hot condition, while reheated pasta also showed significantly reduced
blood glucose AUC, compared with freshly cooked pasta.

To our knowledge, the current study is the first to show that reheating pasta causes changes
in post-prandial glucose response, with a quicker return to fasting levels in both the reheated and
cooled conditions, than the hot condition. The mechanisms behind the changes in post-prandial
blood glucose seen in this study are most likely related to modifications of starch structure and the
subsequent influence on the glycaemic response. Studies in potatoes, noodles, rice and lentils indicate
that cooking and cooling changes the amount of RS present [6,13–18] changing the digestibility of
these foods [19,20]. This alteration in chemical structure, in conjunction with changes in amylopectin
and amylose crystallisation, may contribute to the indigestibility of starch [21,22]. These retrograded
RS molecules form tight structures stabilised by hydrogen bonds [5]. This modified structure means
that digestive enzymes (e.g., α-amylase) less effectively digest starch [23] resulting in food with a lower
GI [24].

A significantly faster return to baseline in the reheated condition, than in the hot condition was also
shown, which contributed to the decrease in AUC after ingestion of the reheated pasta. Sonia et al. [25]
found lower blood glucose levels and AUC after consumption of reheated rice, compared with control
rice, and suggested this was most likely attributable to higher RS, which would decrease the available
carbohydrate content. A similar result was obtained by Lu et al. [26], when comparing freshly cooked
white rice with reheated cold-stored parboiled rice and in vitro digestion studies showed that freshly
cooked warm rice was digested more rapidly than cold-stored and reheated rice and minced-reheated
parboiled rice was more resistant to digestion [27].

The authors suggest that the amorphous ordered crystalline state produced after cooling, persists
on reheating. In this study, only one heating–cooling cycle was applied, however, a review by
Boers et al. [28], indicated that multiple heating–cooling cycles of rice can achieve a higher RS content.
Retrograded amylopectin is generally thought to melt upon reheating, due to the low melting point
(46–65 ◦C) of these crystallites [29], but during reheating, the amylopectin crystallites may retain
some of the associating forces, which could partially explain why pressure parboiling of rice elicits a
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relatively low GR. Some amylose–lipid complexes have a melting temperature above 100 ◦C and are
not melted during the cooking process, resulting in higher levels of RS [30].

Studies on potatoes [31], and maize porridge [32], similarly observed a lower GR
and RS respectively upon consumption after reheating, than when freshly prepared.
Darman–Djoulde et al. [32] suggested the storage-reheating process increased RS by promoting the
interaction of starch with other components such as proteins, lipids or itself. Conditions known
to decrease the digestibility of starch and subsequent GR responses, include those which increase
lipid–amylose formation [21]. Robertson [9] states that while common food preparation methods,
including reheating, are thought to be involved in increasing RS, the mechanism by which this is
achieved is unclear.

Most research agrees that cooling carbohydrates results in retrogradation and subsequent RS
formation. However, there is considerably less agreement when looking at the effect of reheating which,
above 65 ◦C, is thought to reverse retrogradation by breaking some of the amylopectin crystallites,
thereby decreasing RS and rendering the food more susceptible to digestion. However other studies,
including ours, did not observe this effect, and suggest upon reheating, the retrograded amylopectin
crystallites may not be converted into a digestible form. Temperatures above 145 ◦C are required
to remove crystallinity of retrograded amylose, a temperature which exceeds the range used for
processing of starchy foods. This implies that retrograded amylose, once formed, may retain its
crystallinity following re-heating [33]. What has yet to be determined is why reheated starches may
contain more RS, than cooled.

The decreased AUC resulting from reheating is significant because reducing post-prandial glucose
fluctuations has several benefits, such as the reduction of inflammation and oxidative stress, [34].
Schisano et al. [35], reported that exposure of cultured endothelial cells to oscillating glucose
concentrations was more deleterious than constant high glucose exposure and induced a metabolic
memory after glucose normalisation, as well as causing greater apoptosis. In non-diabetic lean patients,
reduced post-prandial NFκB activation in white blood cells resulted from meals which elicited a flatter
glycaemic response [36]. In patients with T2DM glycaemic variability is implicated in coronary artery
disease [37]. For example oxidative stress is activated by glycaemic fluctuations [38] and incremental
glucose peaks have been shown to correlate with carotid intima-media thickness, which is a surrogate
marker for atherosclerosis [39].

In conclusion, although it is evident that the cooking methodology of pasta influences
post-prandial glucose response, with a faster return to baseline in both cooled and reheated pasta,
as well as reduced AUC following reheating, further work is needed to understand the mechanisms
driving these changes and to ascertain if alterations in chemical structure is the primary factor
influencing post-prandial glucose response.
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Figure A1. Post-prandial glucose response to either fresh (hot), cold, or reheated pasta. Data shown is
mean ± standard error, alongside individual responses.

References

1. Cust, A.; Skilton, M.; van Bakel, M.; Halkjaer, J.; Olsen, A.; Agnoli, C.; Psaltopoulou, T.; Buurma, E.;
Sonestedt, E.; Chirlaque, M.D.; et al. Total dietary carbohydrate, sugar, starch and fibre intakes in the
European Prospective Investigation into Cancer and Nutrition. Eur. J. Clin. Nutr. 2009, 63, S37–S60.
[CrossRef] [PubMed]

2. Heinemann, R.J.B.; Fagundes, P.L.; Pinto, E.A.; Penteado, M.V.C.; Lanfer-Marquez, U.M. Comparative study
of nutrient composition of commercial brown, parboiled and milled rice from Brazil. J. Food Comp. Anal.
2005, 18, 287–296. [CrossRef]

3. Huang, M.; Li, J.; Há, M.A.; Riccardi, G.; Liu, S. A systematic review on the relations between pasta
consumption and cardio-metabolic risk factors. Nutr. Metab. Cardiovasc. Dis. 2017, 27, 939–948. [CrossRef]
[PubMed]

4. Lattimer, J.; Haub, M. Effects of Dietary Fiber and Its Components on Metabolic Health. Nutrients 2010, 2,
1266–1289. [CrossRef] [PubMed]

5. Haralampu, S. Resistant starch—A review of the physical properties and biological impact of RS3. Carbohydr.
Polym. 2000, 41, 285–292. [CrossRef]

6. Sajilata, M.G.; Singhal, R.S.; Kulkarni, P.R. Resitant Starch—A Review. Comp. Rev. Food Sci. Food Saf. 2006, 5,
1–17. [CrossRef]

7. Ojo, O.; Ojo, O.O.; Wang, X.H.; Adegboye, A.R.A. The Effect of Dietary Glycaemic Index on Glycaemia in
Patients with Type 2 Diabetes: A Systematic Review and Meta-Analysis of Randomized Controlled Trials.
Nutrients 2018, 10, 1584. [CrossRef]

8. Ojo, O.; Ojo, O.O.; Wang, X.H.; Adegboye, A.R.A. The Effects of a Low GI Diet on Cardiometabolic and
Inflammatory Parameters in Patients with Type 2 and Gestational Diabetes: A Systematic Review and
Meta-Analysis of Randomised Controlled Trials. Nutrients 2019, 11, 1584. [CrossRef]

9. Robertson, M.D. Could resistant starch be the redeemer of dietary carbohydrate? Pract. Diab. 2014, 31, 375.
[CrossRef]

10. Cocci, E.; Sacchetti, G.; Vallicelli, M.; Angioloni, A.; Dalla Rossa, M. Spaghetti cooking by microwave oven:
Cooking kineticsand product quality. J. Food Eng. 2008, 85, 537–546. [CrossRef]

http://dx.doi.org/10.1038/ejcn.2009.74
http://www.ncbi.nlm.nih.gov/pubmed/19888280
http://dx.doi.org/10.1016/j.jfca.2004.07.005
http://dx.doi.org/10.1016/j.numecd.2017.07.005
http://www.ncbi.nlm.nih.gov/pubmed/28954707
http://dx.doi.org/10.3390/nu2121266
http://www.ncbi.nlm.nih.gov/pubmed/22254008
http://dx.doi.org/10.1016/S0144-8617(99)00147-2
http://dx.doi.org/10.1111/j.1541-4337.2006.tb00076.x
http://dx.doi.org/10.3390/nu10030373
http://dx.doi.org/10.3390/nu11071584
http://dx.doi.org/10.1002/pdi.1906
http://dx.doi.org/10.1016/j.jfoodeng.2007.08.013


Foods 2020, 9, 23 7 of 8

11. Brouns, F.; Bjorck, I.; Frayn, K.; Gibbs, A.L.; Lang, V.; Slama, G.; Wolever, T.M.S. Glycaemic index
methodology. Nutr. Res. Rev. 2005, 18, 145–171. [CrossRef] [PubMed]

12. The Jamovi Project (2019). Available online: https://www.jamovi.org (accessed on 9 October 2019).
13. Akerberg, A.K.; Liljeberg, H.G.; Granfeldt, Y.E.; Drews, A.W.; Björck, I.M. An in vitro method, based on

chewing, to predict resistant starch content in foods allows parallel determination of potentially available
starch and dietary fiber. J. Nutr. 1998, 128, 651–660. [CrossRef] [PubMed]

14. Wang, N.; Hatcher, D.W.; Tyler, R.T.; Toews, T.; Gawalko, E.J. Influence of cooking and dehulling on
nutritional composition of several varieties of lentils (lens culinaris). LWT Food Sci. Technol. 2009, 42, 842–848.
[CrossRef]

15. Garcia-Alonso, A.; Jimenez-Escrig, A.; Martin-Carron, N.; Bravo, L.; Saura-Calixto, F. Assessment of some
parameters involved in the gelatinization and retrogradation of starch. Food Chem. 1999, 66, 181–187.
[CrossRef]

16. Monro, J.; Mishra, S.; Blandford, E.; Anderson, J.; Genet, R. Potato genotype differences in nutritionally
distinct starch fractions after cooking, and cooking plus storing cool. J. Food Compost. Anal. 2009, 22, 539–545.
[CrossRef]

17. Raatz, S.K.; Idso, L.; Johnson, L.K.; Jackso, M.I.; Combs, G.F. Resistant starch analysis of commonly consumed
potatoes: Content varies by cooking method and service temperature but not by variety. Food Chem. 2016,
208, 297–300. [CrossRef]

18. Wepner, B.; Berghofer, E.; Miesenberger, E.; Tiefenbacher, K. Citrate starch: Application as resistant starch in
different food systems. Starch/Stärke 1999, 51, 354–361. [CrossRef]

19. Garcia-Alonso, A.; Goni, I. Effect of processing on potato starch: In vitro availability and glycaemic index.
Nahrung 2000, 44, 19–22. [CrossRef]

20. Leeman, A.M.; Barström, L.M.; Björck, I.M.E. In vitro availability of starch in heat-treated potatoes as related
to genotype, weight and storage time. J. Sci. Food Agric. 2005, 85, 751–756. [CrossRef]

21. Nayak, B.; De, J.; Berrios, J.; Tang, J. Impact of food processing on the glycemic index (GI) of potato products.
Food Res. Int. 2014, 56, 35–46. [CrossRef]

22. Sharma, A.; Yadav, B.S.;Yadav, R.B. Resistant starch: Physiological roles and food applications. Food Rev. Int.
2008, 24, 193–234. [CrossRef]

23. Englyst, H.; Wiggins, H.S.; Cummings, J.H. Determination of the non-starch polysaccharides in plant foods
by gas-liquid chromatography of constituent sugars as alditol acetates. Analyst 1982, 107, 307–318. [CrossRef]
[PubMed]

24. Granito, M.; Perez, S.; Valero, Y. Quality of cooking acceptability and glycemic index of enriched pasta with
legumes. Rev. Chilena Nutr. 2014, 41, 425–432. [CrossRef]

25. Sonia, S.; Witjaksono, F.; Ridwan, R. Effect of cooling of cooked white rice on resistant starch content and
glycemic response. Asia Pac. J. Clin. Nutr. 2015, 24, 620–625. [PubMed]

26. Lu, L.; Venn, B.; Lu, J.; Monro, J.; Rush, E. Effect of Cold Storage and Reheating of Parboiled Rice on
Postprandial Glycaemic Response, Satiety, Palatability and Chewed Particle Size Distribution. Nutrients
2017, 9, 475. [CrossRef] [PubMed]

27. Lu, L.; Monro, J.; Lu, J.; Rush, E. Effect of Cold Storage, Reheating, and Particle Sizes on In Vitro Glucose
Release and Starch Digestibility among Five Rice Products in Auckland, New Zealand. J. Rice Res. 2016,
4, 171.

28. Boers, H.M.; ten Hoorn, J.S.; Mela, D.J. A systematic review of the influence of rice characteristics and
processing methods on post-prandial glycaemic and insulinaemic responses. Br. J. Nutr. 2015, 114, 1035–1045.
[CrossRef]

29. Asp, N.-G.; van Amelsvoort, J.M.M.; Hautvast, J.G.A.J. Nutritional implications of resistant starch. Nutr. Res.
Rev. 1996, 9, 1–31. [CrossRef]

30. Larsen, H.N.; Rasmussen, O.W.; Rasumussen, P.H.; Alstrup, K.K.; Biswas, S.K.; Tetens, I.; Thilsted, S.H.;
Hermansen, K. Glycaemic index of parboiled rice depends on the severity of processing: Study in type 2
diabetic subjects. Eur. J. Clin. Nutr. 2000, 54, 380–385. [CrossRef]

31. Fernandes, G.; Velangi, M.; Wolever, T. Glycemic index of potatoes commonly consumed in North America.
J. Am. Diet. Assoc. 2005, 105, 557–562. [CrossRef]

http://dx.doi.org/10.1079/NRR2005100
http://www.ncbi.nlm.nih.gov/pubmed/19079901
https://www.jamovi.org
http://dx.doi.org/10.1093/jn/128.3.651
http://www.ncbi.nlm.nih.gov/pubmed/9482777
http://dx.doi.org/10.1016/j.lwt.2008.10.007
http://dx.doi.org/10.1016/S0308-8146(98)00261-1
http://dx.doi.org/10.1016/j.jfca.2008.11.008
http://dx.doi.org/10.1016/j.foodchem.2016.03.120
http://dx.doi.org/10.1002/(SICI)1521-379X(199910)51:10<354::AID-STAR354>3.0.CO;2-W
http://dx.doi.org/10.1002/(SICI)1521-3803(20000101)44:1<19::AID-FOOD19>3.0.CO;2-E
http://dx.doi.org/10.1002/jsfa.2035
http://dx.doi.org/10.1016/j.foodres.2013.12.020
http://dx.doi.org/10.1080/87559120801926237
http://dx.doi.org/10.1039/an9820700307
http://www.ncbi.nlm.nih.gov/pubmed/6283946
http://dx.doi.org/10.4067/S0717-75182014000400012
http://www.ncbi.nlm.nih.gov/pubmed/26693746
http://dx.doi.org/10.3390/nu9050475
http://www.ncbi.nlm.nih.gov/pubmed/28489031
http://dx.doi.org/10.1017/S0007114515001841
http://dx.doi.org/10.1079/NRR19960004
http://dx.doi.org/10.1038/sj.ejcn.1600969
http://dx.doi.org/10.1016/j.jada.2005.01.003


Foods 2020, 9, 23 8 of 8

32. Darman-Djoulde, R.; Oldewage-Theron, W.; Egal, A.A.; Samuel, F. Influence of room-temperatures
storage-reheating cycles on nutritional properties of maize meal porridge (PAP) used in the Vaal region,
South Africa. J. Food Process. Preserv. 2010, 34, 181–191. [CrossRef]

33. World Health Organization, Food and Agriculture Organization of the United Nations. Carbohydrates in
Human Nutrition Report of a Joint FAO/WHO Expert Consultation; FAO: Rome, Italy, 1998.

34. Wolever, T.M.S.; Jenkins, A.L.; Prudence, K.; Johnson, J.; Duss, R.; Chu, Y.; Steinert, R.E. Effect of adding oat
bran to instant oatmeal on glycaemic response in humans-a study to establish the minimum effective dose of
oat β-glucan. Food Funct. 2018, 9, 1692–1700. [CrossRef] [PubMed]

35. Schisano, B.; Tripathi, G.; McGee, K.; McTernan, P.G.; Ceriello, A. Glucose oscillations, more than constant
high glucose, induce p53 activation and a metabolic memory in human endothelial cells. Diabetologia 2011,
54, 1219–1226. [CrossRef] [PubMed]

36. Dickinson, S.; Hancock, D.P.; Petocz, P.; Ceriello, A.; Brand-Miller, J. High-glycemic index carbohydrate
increases nuclear factor-kappaB activation in mononuclear cells of young, lean healthy subjects. Am. J.
Clin. Nutr. 2008, 87, 1188–1193. [PubMed]

37. Benalia, M.; Zeller, M.; Mouhat, B.; Guenancia, C. Glycaemic variability is associated with severity of
coronary artery disease in patients with poorly controlled type 2 diabetes and acute myocardial infarction.
Diabet. Metab. 2019, 45, 446–452. [CrossRef]

38. Monnier, L.; Colette, C.; Mas, E.; Michel, F.; Cristol, J.P.; Boegner, C.; Owens, D.R. Regulation of oxidative
stress by glycaemic control: Evidence for an independent inhibitory effect of insulin therapy. Diabetologia
2010, 53, 562–571. [CrossRef]

39. Esposito, K.; Ciotola, M.; Carlen, D.; Schisano, B.; Sardelli, L.; Di Tommaso, D.; Misso, L.; Saccomanno, F.;
Ceriello, A.; Guigliano, D. Post-meal glucose peaks at home associate with carotid intima-media thickness in
type 2 diabetes. J. Clin. Endocrinol. 2008, 93, 1345–1350. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1111/j.1745-4549.2008.00323.x
http://dx.doi.org/10.1039/C7FO01768E
http://www.ncbi.nlm.nih.gov/pubmed/29480316
http://dx.doi.org/10.1007/s00125-011-2049-0
http://www.ncbi.nlm.nih.gov/pubmed/21287141
http://www.ncbi.nlm.nih.gov/pubmed/18469238
http://dx.doi.org/10.1016/j.diabet.2019.01.012
http://dx.doi.org/10.1007/s00125-009-1574-6
http://dx.doi.org/10.1210/jc.2007-2000
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Materials and Methods
	Participants
	Experimental Conditions
	Pasta Preparation
	Blood Glucose Responses
	Calculations and Data Analysis

	Results
	Preparation Method
	Time
	Preparation Method and Time Interaction
	Area Under the Curve

	Discussion
	
	References

