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Abstract

Purpose

Leveraging Electronic Health Records (EHR) and Oncology Information Systems (OIS) has

great potential to generate hypotheses for cancer treatment, since they directly provide

medical data on a large scale. In order to gather a significant amount of patients with a high

level of clinical details, multicenter studies are necessary. A challenge in creating high qual-

ity Big Data studies involving several treatment centers is the lack of semantic interoperabil-

ity between data sources. We present the ontology we developed to address this issue.

Methods

Radiation Oncology anatomical and target volumes were categorized in anatomical and

treatment planning classes. International delineation guidelines specific to radiation oncol-

ogy were used for lymph nodes areas and target volumes. Hierarchical classes were cre-

ated to generate The Radiation Oncology Structures (ROS) Ontology. The ROS was then

applied to the data from our institution.

Results

Four hundred and seventeen classes were created with a maximum of 14 children classes

(average = 5). The ontology was then converted into a Web Ontology Language (.owl) for-

mat and made available online on Bioportal and GitHub under an Apache 2.0 License. We

extracted all structures delineated in our department since the opening in 2001. 20,758

structures were exported from our “record-and-verify” system, demonstrating a significant

heterogeneity within a single center. All structures were matched to the ROS ontology

before integration into our clinical data warehouse (CDW).
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Conclusion

In this study we describe a new ontology, specific to radiation oncology, that reports all ana-

tomical and treatment planning structures that can be delineated. This ontology will be used

to integrate dosimetric data in the Assistance Publique—Hôpitaux de Paris CDW that stores

data from 6.5 million patients (as of February 2017).

Introduction

The increasing number of parameters that need to be taken into account to achieve precision

medicine makes it almost impossible to design dedicated trials [1]. Hypothesis-generating

studies, using Big Data approaches can help in identifying relevant prognostic or predictive

factors to be explored later in randomized controlled trials, in order to generate level-I evi-

dence. Such studies need a high number of patients and features for meaningful analysis, using

for example machine learning algorithms. This calls for the participation of several centers for

patient and treatment data pooling and integration. In the field of radiation oncology, medical

data is already highly structured, through the use of Oncology Information and “Record-and-

Verify” systems. Data can be easily extracted with the precise features of treatment planning

(dosimetry) and delivery. However, this data can have very heterogeneous labels that will need

time-consuming curation and unification. It is particularly true for anatomical and target vol-

umes labeling.

Using routine radiation oncology data requires respecting a set of principles, to make it

more accessible. These principles, known as the FAIR Data Principles [2], initially developed

for research data, are now being extended to clinical trials and routine care data. Medical data

are stored in totally secure environments, and within such confined the data must be Findable,

Accessible, Interoperable, and Reusable for research purposes Behind FAIR principles is the

notion that algorithms may be used to search for relevant data, to analyze the data sets, and to

mine the data for knowledge discovery. Electronic health record data cannot be fully shared

but efforts can be made to make vocabularies and algorithms reusable and enable multi-site

collaborations. To achieve that goal, the radiation oncology community must pave the road for

semantic frameworks that the sources and the users could agree upon in the future. Besides

usual quantitative data (dose, etc), standard representation of anatomical regions and target

volumes is required to study, for example, radiation complications. In this article, we present

methods to annotate radiation data with harmonized vocabularies and to integrate radiation

data with clinical and genomic data in translational platforms.

Background

Large Hospital Information Systems (CERNA, EPIC) have no functionality specific to radia-

tion oncology. There are currently several domain-specific softwares for radiation oncology

planning: MOSAIQ (Elekta, Stockholm, Sweden), ARIA (Varian, Palo Alto, California, USA),

Multiplan and Tomotherapy Data Management System (Accuray, Sunnyvale, California,

USA) and iPlan (Brainlab, Munich, Germany). Each of these treatment planning and record-

and-verify systems has its own anatomical structures labelling, which is not consistent across

platforms, making it difficult to extract and analyze dosimetric data on a multicenter large

scale. Using knowledge management with concept recognition, classification and mapping

would lead to an accurate ontology that could be used to unify data in clinical data warehouses,
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thus facilitating data reuse and study replication in cancer centers. Previous efforts have

included the creation of precise naming nomenclatures [3], without defining classes or con-

cepts. The American Association of Physicists in Medicine also setup a task group for Stan-

dardizing Nomenclature for Radiation Therapy (AAPM TG 263) and will publish their

recommendations soon [4].

Ontologies of anatomical structures

In order to be able to use and share information, we need a controlled common vocabulary, a

list of terms that have been enumerated explicitly. These terms must be hierarchically collected

in a taxonomy. In addition to these parent-child associations, networks between concepts can

be developed to create a thesaurus. Beyond these, an ontology is a formal naming and defini-

tion of the types, properties, and interrelationships of the concepts that exist in a domain. They

organize in a formal logical format, standardized terms that are both human-readable and

machine-processable. Most of them are based on description logics to ensure consistency.

They are distributed as open source components of information systems that can be main-

tained separately from software and therefore shared among many different users and applica-

tions. The use of ontology is already widespread in biomedical domains outside of radiation

oncology. They have also been recognized as a necessary tool in the basic sciences, e.g., the

Gene Ontology provides the foundation for annotating genes.

The Foundational Model of Anatomy (FMA) was developed by the University of Washing-

ton to serve as an ontology of anatomical structures that could be used for multiple purposes

[5]. It has been used as a basic ontology in several projects developed by the W3C including

the NeuroImaging Model. However, it was created as a reference ontology for anatomical enti-

ties and is not adapted to represent anatomical volumes and delineation features specific to

radiation oncology. Drawing similar conclusions for medical imaging, the radiology commu-

nity has developed RadLex an application ontology that incorporates and accommodates all

salient anatomical knowledge necessary to manage anatomical information related to radiol-

ogy [6]. RadLex was used, for example, to annotate positron emission tomography-computed

tomography (PET-CT) images and support studies on these semantically enriched data [7].

These terminologies can be organized in repositories, such as the Bioportal or the UMLS

Metathesaurus [8]. However, no ontology did include specific radiation oncology terms,

which led to the creation of the Radiation Oncology Ontology (ROO) by Dekker et al [9], that

reused other ontologies and added specific radiation oncology terms such as Region Of Inter-

est (ROI), Target Volumes (GTV, CTV, PTV), Dose-Volume Histograms (DVH). Still, the

ROO does not provide concepts for all anatomical or target volume currently used in most

radiation oncology department and has not been updated since July 2015. For example, lymph

nodes levels, that are essential for the planning of nodal CTV in radiotherapy, are not included

[10,11]. We chose to create anontology dedicated to radiation oncology structures with a high

level of detail that aligned to reference ontologies like FMA.

i2b2: A platform for clinical data warehousing (CDW). The Georges Pompidou Euro-

pean Hospital (HEGP) is an 800-bed academic hospital located in southwest Paris belonging

to Assistance Publique-Hôpitaux de Paris (AP-HP), with focus on oncology and cardiovascu-

lar diseases. In 2012, the French National Cancer Institute (INCa) granted eight SIRICs (Site

de Recherche Intégré sur le Cancer in French, or Integrated Cancer Research Site) labels in

France. SIRICs’ ambitions are to provide new operational resources to oncology research, to

optimize and accelerate the production of knowledge and to favor knowledge dissemination

and application in patient care. The CARPEM (CAncer Research and PErsonalized Medicine)

program is one of these eight SIRICs and HEGP is strongly involved in CARPEM. Data from
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750,000 patients are stored in the HEGP clinical data warehouse, including 14,000 cancer

patients treated with radiation. The HEGP clinical data warehouse (CDW) relies on the Infor-

matics for Integrating Biology and the Bedside (i2b2) model—an open source infrastructure

developed by Harvard Medical School and adopted by more than 130 academic hospitals

around the world [12,13]. The i2b2 warehouse uses an Entity-Attribute-Value (EAV) data

model for its adaptability and dynamic nature. Concepts are stored separately in a hierarchical

data model. We designed the Radiation Oncology Structures ontology to unify data extracted

from our Record-and-Verify System (ARIA) before integrating the data into our i2b2 CDW

[14].

Methods

Ontology design

To design an ontology is to create and organize a set of concepts (or classes) in a given domain.

An application ontology is an ontology designed for a specific use or application focus and

whose scope is specified through testable use cases. Application ontologies often re-use refer-

ence canonical ontologies such as the FMA to construct ontological classes and relationships

between classes. We designed the Radiation Oncology Structures (ROS) ontology to fit the spe-

cific needs of radiotherapy, while being aligned to existing ontologies, such as the Founda-

tional Model of Anatomy (FMA). For example, a class of head and neck anatomical structures

represents all organs at risk in the head and neck area. Head and neck lymph nodes (LN) levels

are instances of this class. The head and neck LN level II is an instance of the class of head and

neck LN. A class can have subclasses that represent concepts that are more specific than the

superclass. We can divide the class head and neck LN level II in IIa and IIb subclasses. Alterna-

tively, we can divide a class of head and neck LN level by laterality, right and left, or we can

divide ideally by laterality and level. We chose this model for the ROS ontology, because it

gives the highest granularity (or level of details) that we will need for easy and straight dosimet-

ric analysis on a large scale. In practical terms, developing an ontology requires defining classes

and arranging the classes in a taxonomic (subclass–superclass) hierarchy. Several ontology

design approaches are possible. We adopted a bottom up approach to identify and cluster the

terms into concepts, then a top-down development process to organize the concepts and

design the ontology.

We started with extracting structure names from our Record-and-Verify System with VAR-

IAN Application Programming Interface (ESAPI) [15] (ARIA, Varian, Palo Alto, California,

United States) and cluster them into the most general concepts in the domain (anatomical vs

target volumes) and subsequent specialization of the concepts. For each subclasses, lymph

nodes levels were named according to international radiation oncology delineation guidelines

[10,16–19]. Because the numbering of these levels might overlap between areas, each level’s

name includes the superclass it belongs to. When all concepts were defined, we used Protégé

5.2.0, a free, open-source editor and framework to build the ontology [20,21]. Each class is

linked to existing FMA [22] or SNOMED Clinical Terms [23] concepts.

Data integration into the clinical data warehouse (CDW)

We evaluated the coverage of our ontology by using it to annotate all HEGP radiation oncol-

ogy data with ROS concepts and integrate them into the HEGP clinical data warehouse. This

study was approved by the IRB and ethics committee CPP Ile-de-France II. IRB Committee #

00001072. Study reference # CDW_2015_0024. Data on treatment planning and delivery in

our institution (2001–2016) were extracted from the ARIA system using reverse engineering

and the VARIAN ESAPI [15] for dose-volume histograms (DVH). Structures labels were

The Radiation Oncology Structures ontology
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sorted and filtered by number of occurrences. Each of them was then matched to the ROS

ontology before integration into the CDW.

Results

The ROS ontology

We created four hundred and seventeen classes, with a maximum number of subclasses of 14

and an average number of 5. The first three superclasses are Anatomical Volumes, Target Vol-

umes and Miscellaneous Volumes. For the anatomical volumes, we created seven subclasses:

head, neck, thorax, abdomen, pelvis, limb and spine. For each of the anatomical classes, we cre-

ated subclasses for lymph nodes, vessels, vertebrae or bones, and specific organs. For each

paired organ, we specified left or right with a class. For target volumes, we used Biological Tar-

get Volumes (BTV), Clinical Target Volumes (CTV), Gross Tumor Volumes (GTV), Internal

Target Volumes (ITV) and Planning Target Volumes (PTV). Within each of these subclasses,

we created a primary target volume that includes the gross primary and tumor volume and a

nodal target volume that includes all involved nodal regions. For the Clinical Target Volumes,

subclasses were created for each risk level (low, intermediary and high). The Miscellaneous

Volumes class includes an applicator volume (for brachytherapy), an external volume and a

pacemaker volume.

We mapped the ROS to the Unified Medical Language System (UMLS) using the UMLS

terminology service Application Programming Interface (UTS API). The mapping was real-

ized in four steps: first, we tried searching ROS terms using an exact match strategy (case

insensitive, but whitespace sensitive). Then, we normalized the unmatched terms using the

normalization function provided by the UMLS and attempt to match them against similarly

normalized terms in the UMLS. In some cases, the UMLS normalization is too conservative

and fails to identify an existing concept of the UMLS. We extended the normalization in two

additional steps: (1) we removed numbers at the end of terms. For example, the term “Cervical

Vertebrae 01” is normalized to “Cervical Vertebrae” and performed a normalized search in the

UMLS. (2) We extended the normalization by removing also words related to the laterality (i.e.

“left” and “right”). For example, “Left Rib 03” is normalized to “Rib,” and matched against

normalized terms from the UMLS. The first two strategies identified equivalent concepts,

whereas the extended normalization identified broader concepts. Overall, we were able to find

a mapped concept in the UMLS for 81% of the ROS classes (S1 Table). The remaining

unmapped classes are constituted of the lymph node areas and the target volumes (S2 Table).

The ontology is available online on Bioportal (Fig 1) [24] and GitHub[25] in.owl,.csv and.

rdf formats.

Use case from HEGP

With the aim of integrating data from our Treatment Planning and Record-and-Verify System

(ARIA, Varian, Palo Alto, California, United States) into our institutional CDW, we extracted

the following dosimetric data: Course ID, Plan Setup ID, Reference Point ID, Total Dose

Limit, Daily Dose Limit, Session Dose Limit. For each treatment fraction we included Date/

Time, duration of the activity and text comment. We also needed to include Dose-Volume

Histograms (DVH) for each treatment. We ensured that structures labeling was consistent

across the population. A total of 20,758 different structures labels were created for treatment

planning between 2001 (opening of our department) and 2017. We applied the ROS ontology

to our data to correct inconsistencies in spelling, laterality, or lymph node levels before integra-

tion. Structure names were clustered to create classes (Fig 2): LN_C1_L (Left Cervical Lymph

node Level 1) in red, LN_C1_R (Right Cervical Lymph node Level 1) in green and LN_C1 (All

The Radiation Oncology Structures ontology
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Cervical Lymph node Level 1) in For this area, we reduced the labels from 15 to 3 classes from

the ROS ontology (contributions from each initial labels are shown in red, green and blue rib-

bons, which respectively contribute to the ROS labels LN_C1_L, LN_C1_R and LN_C1). As a

demonstration, we integrated all the data from a cohort of 262 patients using the ROS Ontol-

ogy. We reconstructed the Dose Volume Histogram for the mesorectum, directly from the

data stored in the i2b2 CDW for a subgroup of 84 patients treated with neoadjuvant chemora-

diation for rectal cancer (Fig 3).

Discussion

Why did we need a specific ontology?

Several anatomical ontologies are already available, and it would be easier to re-use existing

ontologies. But no existing ontology matches the classifications we use on a daily basis for

delineating lymph node areas. We needed to reuse our data from our CDW, and since all our

labels have been created according to lymph node areas guidelines, we decided to create a new

ontology for that purpose. The ROS ontology describes commonly contoured (anatomical and

treatment planning) structures for radiation treatment planning. We extracted 20,758 struc-

tures labels (created over a 16 years period in our radiation department), classified and catego-

rized them to produce the ontology. Lymph nodes delineation international guidelines are

provided. This ontology was created to standardize the integration of radiation oncology data

into clinical data warehouses for multicenter studies. The high granularity of this ontology will

allow precise dosimetric evaluations.

A key benefit of biomedical ontologies is sharing and reuse: We have validated the coverage

and the consistency of the ROS ontology by using it to annotate the radiation oncology data of

14,000 patients treated at HEGP radiation oncology department between 2001 and 2016. The

Fig 1. Map of the ROS ontology from the first superclass to the cervical lymph nodes area I class.

https://doi.org/10.1371/journal.pone.0191263.g001
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ontology is now made available to be used in other hospitals. The ROS ontology can be down-

loaded from BioPortal and re-used in other centers and applications [24]. Ontologies are sepa-

rate from application code that uses them. This separation of ontologies from applications

permits both the commercial and public sectors to cooperate in developing and using these

Fig 2. Visualization of heterogeneity reduction for cervical lymph nodes area I. A: all area I labels. B: Label LN_C1_L (red). C: Label LN_C1_R (green). D: Label

LN_C1 (blue).

https://doi.org/10.1371/journal.pone.0191263.g002
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ontologies for the benefit of the entire scientific community. We believe that similar benefits

will accrue for the ontology that we have developed. In fact, ontologies enable to create many

data intensive applications and therefore could become a critical technology for "big data" radi-

ation oncology. Any institution is able to use our ontology by matching their existing data,

which is fairly easy, since we only used standard concepts that rely on international guidelines.

Benefits of Big Data for radiation oncology

Radiation oncology generates a large amount of data for each patient. This data, unlike in

most medical specialties, are well structured because it is already stored in digital systems and

can be extracted. A comprehensive Electronic Health Record for any cancer patient will be

around 8 GB, with genomic and imaging data being the largest contributors. Creating a pre-

dictive model in radiation oncology requires a significant variety and heterogeneity of the data

Fig 3. Dose Volume Histogram for 84 patients treated with neo-adjuvant chemoradiation for rectal cancer generated from the

dosimetric data extracted from the treatment planning system and integrated into our i2b2 CDW.

https://doi.org/10.1371/journal.pone.0191263.g003
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types that need to be included. This represents in itself a significant challenge. This large

amount of high-quality data, can be leveraged with Big Data approaches, such as machine

learning, in order to create predictive models [26–29]. Previously published studies have

described the methods that could be used, on a smaller scale [30] or for international data-

sharing [31,32]. Here we present the first actual implementation of our approach in a clinical

data warehouse. The end-goal will be to create a Learning Health System that will guide the

physician to personalize treatment, according to the predicted efficacy or toxicity [33]. Patients

that will have a good treatment-response could benefit from de-escalated dose for example

[34].

Possible improvements and perspectives

The ROS ontology can be used by anyone because it is available online under an Apache 2

Licence. Improvements could include new target volumes that could appear in the future. A

higher level of details could also be added, if there were an actual need for it (i.e. only if these

structures are indeed delineated in routine). The granularity of our ontology is not an obstacle

to its implementation in other departments (which is underway in 4 others APHP radiation

therapy centers), since the level of granularity is adapted to the level of the treating center

(thanks to the hierarchical structure of the ontology). For example, if a center does not delin-

eate each cervical lymph-node levels (1 through X for example), the superclass above can be

used (simply use the left or right cervical lymph nodes class). However, we must stress that

using detailed level to delineate and create target volumes is standard-of-care, since an interna-

tional consensus is now available [10].

The ROS ontology will be used to harmonize structures labels generated by the five radia-

tion oncology departments from AP-HP, the largest public health service in Europe, with 39

hospitals. Five radiation oncology departments treat each year around 8,000 patients (122,000

fractions). AP-HP has a CDW that includes data from 6.5 million patients as of February 2017.

Following the successful example of HEGP, data from all AP-HP radiation oncology depart-

ments will be integrated within the central AP-HP CDW.

Conclusion

Because we needed to harmonize structures labels before we could integrate treatment plan-

ning and delivery into our CDW, we created an ontology specific to radiation oncology delin-

eation. Four hundred and seventeen classes were created with a maximum of 14 children

classes (average = 5). The ROS ontology allowed us to reduce the 20758 structures created

during 15 years in our institution to only 417 classes that matched across any patients or

treatments.

Supporting information

S1 Table. Supp file 1—RO_UMLSMappings.xls. Classes of the ROS ontology mapped to the

UMLS.

(XLSX)

S2 Table. Supp file 2—Supp file 2—RO-unmapped_UMLSMappings.xls. Classes of the ROS

ontology unmapped in the UMLS.

(XLSX)
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