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Abstract: The classical functions of vitamin D are to regulate calcium-phosphorus homeostasis and
control bone metabolism. However, vitamin D deficiency has been reported in several chronic
conditions associated with increased inflammation and deregulation of the immune system, such as
diabetes, asthma, and rheumatoid arthritis. These observations, together with experimental studies,
suggest a critical role for vitamin D in the modulation of immune function. This leads to the
hypothesis of a disease-specific alteration of vitamin D metabolism and reinforces the role of
vitamin D in maintaining a healthy immune system. Two key observations validate this important
non-classical action of vitamin D: first, vitamin D receptor (VDR) is expressed by the majority
of immune cells, including B and T lymphocytes, monocytes, macrophages, and dendritic cells;
second, there is an active vitamin D metabolism by immune cells that is able to locally convert
25(OH)D3 into 1,25(OH)2D3, its active form. Vitamin D and VDR signaling together have a
suppressive role on autoimmunity and an anti-inflammatory effect, promoting dendritic cell and
regulatory T-cell differentiation and reducing T helper Th 17 cell response and inflammatory cytokines
secretion. This review summarizes experimental data and clinical observations on the potential
immunomodulating properties of vitamin D.
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1. Introduction

The role of vitamin D in the regulation of calcium-phosphate homeostasis and in the control of
bone turnover is well known. Vitamin D status significantly affects skeletal health during growth and
in adult age, its deficiency during growth leads to rickets [1], whereas during adult age it is responsible
of osteomalacia and various degree of osteoporo-malacia [2]. Low vitamin D status increases bone
turnover, decreases bone density, and is associated with increased fracture risk. In addition to the
well-known effect on skeletal health in the last two decades evidence has been accumulated on the
pleiotropic effect of vitamin D other than on bone health thanks to the findings that vitamin D receptor
(VDR) and the vitamin D activating enzyme 1-α-hydroxylase (CYP27B1) are expressed in several cells
outside the bone and kidney, such as in the intestine, platelets, pancreas, and prostate [3]. Several cells
involved in the immune function express VDR and CYP27B1, this observation suggests that the active
form of vitamin D, 1,25(OH)2D3, is able to control the immune function at different levels. Previous
reviews on the role of vitamin D in the regulation of immune system have been published in recent
years [4,5]. Here we summarize the recent evidence sexploiting authors’ expertise in both experimental
and clinical fields.
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2. Vitamin D Metabolism

Vitamin D enters the body trough dietary intake (about 20% of vitamin D3 is assumed with diet)
or is synthetized by the skin (80%) from 7-dihydrocholesterol following UVB exposure. Vitamin D3

becomes biologically active after hydroxylation in the liver by the enzymes cytochrome P450 2R1
(CYP2R1) and cytochrome P450 27 (CYP27A1) becoming 25(OH)D3. The fully-active metabolite
1,25(OH)2D3 is hydroxylated in the kidney by the enzyme CYP27B1, parathormone (PTH), and the
fibroblast growth factor 23 (FGF-23) control CYP27B1 synthesis and activity [6]. Synthesis of
1,25(OH)2D3 is strictly regulated in a renal negative feedback loop: high levels of 1,25(OH)2D3

and FGF-23 inhibit CYP27B1 and induce the cytochrome P45024A1(CYP24A1), which transforms
1,25(OH)2D3 into the inactive form 24(OH)D3 [7].

In addition to the kidney, CYP27B1 is expressed by other cell types, including immune cells.
These cells produce 1,25(OH)2D3 that has autocrine and/or paracrine effects, the high level produced
locally is thought to be responsible for immunomodulation. The regulation of CYP27B1 synthesis in
immune cells is different than the signals regulating kidney production of 1,25(OH)2D3. Inflammatory
signals, such as lipopolysaccharide (LPS) and cytokines, induce monocyte and macrophage production
of CYP27B1 [8–10]. These differences in the regulation of 1,25(OH)2D3 production point to an
autocrine/paracrine effect as immunomodulatory.

3. Vitamin D Status

Vitamin D status is defined by the blood measurement of its hydroxylated form 25(OH)D3,
however, there is no common agreement on the threshold levels to identify desirable vitamin D level.
Guidelines from different scientific societies and different countries established 50 nM/L or 75 nM/L
to consider vitamin D sufficiency [11–13], however, it is generally accepted that 25(OH)D3 levels lower
than 50 nM/L are associated with bone metabolism alteration, increased risk of falls, and myopathy in
adults [14–18]. Experts in the field generally agree to maintain 25(OH)D3 between 20 and 125 nM/L in
order to obtain the certain skeletal effects without toxic effects. Recent literature raises the suspicion
that administration of a bolus of vitamin D3 higher than 50,000 UI may result in an increased risk of
falls and fractures [19,20]; moreover, the mortality related to 25(OH)D3 is a “U shaped curve” and
25(OH)D3 levels higher than 150 nM/L are associated with increased mortality [21].

4. Vitamin D and the Innate Immune System: Antimicrobial Activity

The innate immune system is the first defense against infection, it is required to rapidly fight
against invading pathogens. The innate immune system comprehends components both from the
host and resident microbes (microbiota). The host defense comprises physical barriers to infection
(as skin, mucous surfaces, mucus, and vascular endothelial cells), enzymes expressed by epithelial
and phagocytic cells (as lysozyme), antimicrobial peptides and proteins (as defensins, cathelicidins,
and others expressed by phagocytes), inflammatory humoral components (as complement and
opsonins), and cell receptors that rapidly recognize pathogens (as toll-like receptors) and cellular
components (as mast cells, dendritic cells, macrophages, neutrophils cells and natural killer).
Interaction between microbiota a vitamin D will be analyzed in the following paragraph.

Vitamin D is a well-known regulator of innate immunity, the first data on this topic have been
generated on the treatment of diseases caused by mycobacteria, such as tuberculosis and leprosy [22,23],
however, the mechanisms responsible for these actions have been elucidated in more recent years.
1,25(OH)2D3 enhances the production of defensin β2 and cathelicidin antimicrobial peptide (CAMP)
by macrophage and monocyte keratinocytes increasing their antimicrobial activity [24–26]. Moreover,
1,25(OH)2D3 increases chemotaxis, autophagy, and phagolysosomal fusion of innate immune
cells [27,28]. The exposition of human monocytes to pathogens, such as M. tuberculosis and others,
up-regulates the expression of CYP27B1 and of VDR, thus enhancing both the cell ability to produce
1,25(OH)2D3 in the site of infection and to respond to this metabolite. However, macrophages are
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heterogeneous, with different functions [29]. Macrophages formed after interleukin (IL)-15 stimulus
respond to vitamin D stimulus increasing their antimicrobial activity, whereas phagocytic macrophages
obtained after stimulus with IL-10 are weakly influenced by vitamin D levels regardless oftheir high
phagocytic activity [10,30].

1,25(OH)2D3 up-regulates CAMP not only by monocytes/macrophages, but also in other cells
participating in the innate immune system as first-barrier defenses, such as keratinocytes, epithelial,
intestinal, lung and corneal cells, and placenta trophoblasts (see for a comprehensive review Wei and
Christakos, 2015) [4].

Data in humans on infections other than mycobacterial have been generated on urinary and
respiratory infections and on sepsis. A predisposition to urinary tract infection in children with low
vitamin D levels due to the reduced production of CAMP and defensing β2 has been suggested
by association studies [31,32]. Additionally, in chronic obstructive pulmonary disease (COPD)
patients’ levels of CAMP and other antimicrobial peptides were associated with increased risk of acute
exacerbations [33]. Consistent with this datum treatment with 1,25(OH)2D3 was effective in reducing
respiratory infections in asthma patients thanks to increased CAMP expression and inflammatory
cytokine modulation [34]. Data on the role of vitamin D status and vitamin D supplementation in
sepsis are also available both in pediatric and in adult patients: in pediatric patients a clear role
for 25(OH)D3 and CAMP was not demonstrated [35], whereas in adults lower levels of 25(OH)D3

were found in sepsis [36] and a high-dose of vitamin D3 increases circulating CAMP and reduces
inflammatory cytokines as IL-6 and IL-1β [37].

More recently data on a possible role of vitamin D in increasing resistance to HIV infection
have been published, in particular HIV-exposed seronegative individuals produced more CAMP in
oral-mucosa and peripheral-blood, and have higher CYP24A1 mRNA in vaginal-mucosa; CYP24A1 is
considered an indicator of high levels of 1,25(OH)2D3 [38]. Low serum vitamin D has been associated
with HIV/AIDS progression and mortality [39].

1,25(OH)2D3 is able to increase the production of other antimicrobial peptides, such as defensing
β2-4, this ability has been demonstrated both in vitro by monocytes stimulation [40,41] and in vivo in
pediatric patients’ blood [32].

Vitamin D is able to modulate innate immune system, also increasing the phagocytic ability on
immune cells [42,43] and by reinforcing the physical barrier function of epithelial cells. In particular
1,25(OH)2D3can enhance corneal [44] and intestinal [45] epithelial barrier function (Figure 1).

Taken together these data point to a role of vitamin D in defending the organism against pathogens
suggesting that vitamin D sufficiency has to be granted in patients affected by acute or chronic
infection. The ability of immune cells to hydroxylate 25(OH)D3 into its active form 1,25(OH)2D3

suggests administrating vitamin D3 rather than hydroxylated metabolites to patients affected by
infections in order to allow the autocrine/paracrine function of 1,25(OH)2D3 without overcoming local
hydroxylation and the feedback system.

5. Vitamin D and Microbiota: Increasing Host Defenses

The whole of the commensal, symbiotic, and pathogenic microorganisms living in different
areas of the human body has defined microbiota. Microbiota and the host have several relationships,
and the perfect balance between microbiota and the host is required for the development, maturation,
and properfunction of the immune system [46]. Several papers suggest that vitamin D is one of
the actors of the complex relationship between microbiota living in the gut (GM) and immune
system modulation. Vitamin D is responsible for the barrier function of the intestinal epithelium
and for the modulation of the bowel immune system, hence, low levels may be associated with
greater gut permeability and, consequently, with GM-induced metabolic endotoxemia that induces a
low-grade inflammation [47]. Moreover, vitamin D administration may influence GM composition,
and in vitro data demonstrate that vitamin D enhances macrophages’ ability to kill Escherichia coli. [48].
In animals with vitamin D depletion and the knockout of the VDR, the GM dysbiosis favors metabolic
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disorders [49]. Other studies in mice demonstrated that VDR reduces the response to infection of the
intestinal epithelium [50].

Elegant studies in transgenic mice demonstrated that over-expression of VDR in the intestinal
epithelium induces resistance to colitis [51,52] and decreases mucosal inflammation suppressing
epithelial cell apoptosis, boosting tight junction function [51,53]. On the other hand VDR selective
deletion in bowel favors a more severe form of colitis characterized by greater Th1 and Th17 mucosal
infiltration and inflammatory cytokines production [54]. In humans, observational studies suggest that
low levels of 25(OH)D3 are associated with increased risk of inflammatory bowel disease (IBD) [55–57]
and that high levels of 25(OH)D3 in these patients protect against Clostridium difficile infection [58].
The experimental data on the role of VDR in developing IBD have been confirmed by the finding of a
significant reduction of VDR expression (about 50%) in the colon epithelium in patients affected by IBD
with respect to healthy controls [51,53]. The reduction in VDR expression by IBD patients may explain
the different effect on GM composition of high oral dosages of vitamin D3 demonstrated in a small
cohort of patients affected by Crohn’s disease with respect to healthy controls [59], however, human
data on the effect of vitamin D supplementation on GM in IBD are still controversial, as other studies
did not confirm these results [60,61]. In the study by Luthold and coll. [61] dietary intake of vitamin D
and 25(OH)D3 were inversely correlated with Coprococcus and Bifidobacterium, however, thanks to their
ability to produce butyrate these bacteria are commonly considered as anti-inflammatory. A possible
explanation of these contradictory results may be the different effect of vitamin D on GM according
to the different gastro-intestinal tracts considered [62]. Recently, a double-blind placebo-controlled
study on patients affected by cystic fibrosis demonstrated that vitamin D insufficiency is associated
with different microbiota not only in the gut, but also in the airways, and that the administration of
50,000 IU of oral vitamin D3 weekly significantly affects microbiota composition [63]. Nevertheless,
the evaluation of clinical outcomes of microbiota change is still open.

Several data point to an effect of vitamin D on microbiota. Conversely, some recent reports suggest
that microbiota, per se, influences vitamin D metabolism mainly through FGF-23; germ-free (GF) mice
have low vitamin D and high FGF-23, whereas their colonization with bacteria results in increased
levels of tumor necrosis factor-α (TNF-α) and a decrease in FGF-23 with normalization of vitamin D
hydroxylated metabolites. Inhibition of FGF-23 in GF mice restores vitamin D metabolism without
bacterial colonization of the gut [64] (Figure 1).

The role of GM as an active player in the regulation of bone metabolism in humans is being
investigated more and more [46], and the role played by vitamin D is still under debate. Further studies
to clarify their interplay are needed.
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6. Vitamin D and the Adaptive Immune System

The adaptive immune system or acquired immune system is the second defense against infection.
It is required to specifically fight against pathogens, is activated by exposure to pathogens, and unlike
the innate immune system it is able to learn about the pathogen and enhance the immune response
accordingly, thanks to an immunological memory. The adaptive immune system is composed of T and
B cells and is also responsible for autoimmune reaction.

25(OH)D3 suppresses adaptive immunity [4,65]. In experimental models it down-regulates
the immune responses mediated by T helper (Th) 1 cells, thus inhibiting the production
of pro-inflammatory cytokines, such as Interferon-γ IFN-γ, IL-6, IL-2, and TNF-α [66,67].
Although experimental studies in vitro and in animals have yielded encouraging results on the
immunomodulatory effect of 1,25(OH)2D3, the same cannot be said about human studies, and few
studies have confirmed the suppressive effect of vitamin D on Th1 cells and inflammatory
cytokine production in different diseases and spinal tuberculosis [68], uremia [69], and autoimmune
thyroiditis [70]; whereas others in IBD [71], dialysis [72], and rheumatoid arthritis [73] do not confirm
these results. These discrepancies may be due to the different diseases considered and also to the
different type of treatment administered, mainly 1,25(OH)2D3 in vitro and in animals and vitamin
D3in vivo in humans. Moreover, when considering administration of vitamin D3 different doses were
used in different studies. Therefore, it is almost impossible to compare the results.

It has been suggested that 1,25(OH)2D3 acts as an immunomodulatory not only by suppressing
Th1 cells activation, but also modulating Th2 cells, T regulatory (Tregs) cells activity, and Th17 cells.

The majority of the in vitro studies assessing the effect of vitamin D on Th2 suggests that
1,25(OH)2D3 upregulates Th2 cells activity [74–76]. Amongst immunomodulatory effects of vitamin D
its ability to suppress Th17 and increase Treg cells has been recently demonstrated [77–79]. Th17 cells
produce IL-17 and have been implicated in the pathogenesis ofseveral autoimmune diseases, some
experimental studies suggest that 1,25(OH)2D3 suppresses Th17 formation and activity [67,80–83]
by blocking Nuclear Factor of Activated T-cells (NFAT) and Runt-related Transcription Factor 1
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(RUNx1) binding to the IL-17 promoter and inducing Forkhead box P3 (FOXP3) [81], and by inhibiting
RAR-related Orphan Receptor Gamma2 (RORγt) which is the transcription factor of IL-17 [84].

More recently our lab showed no effect of the administration of a high bolus of vitamin D3

(300,000 UI) in the modulation of Th subset in patients affected by early rheumatoid arthritis [73],
as well as a study on hemodialysis patients [72].

It has also been suggested that the administration of oral vitamin D3 increases Tregs function
in patients with type 1 diabetes mellitus [85], however, in other diseases, such as early rheumatoid
arthritis, this effect was not confirmed [73].

The overall effect of vitamin D on Th cells differentiation may be mediated by its effect on
dendritic cells, these cells are antigen-presenting cells (APCs), responsible for T cell differentiation
into an effector cell with pro- or anti-inflammatory properties, thus, modulation of APCs is crucial in
initiating and maintaining adaptive immune response and self-tolerance [86]. In vitro differentiation of
dendritic cells in the presence of 1,25(OH)2D3 induces a “tolerogenic state” characterized by low levels
of inflammatory cytokines, such as IL-12 and TNF-α, with increased levels of the anti-inflammatory
IL-10, these cells induce the differentiation of Treg cells and induce apoptosis in the autoreactive T
cells [87–90] (Figure 2).

Taken together these data are not sufficient to prove a real role for vitamin D in the modulation
of adaptive immune system in humans, thus, the therapeutic use of vitamin D and its metabolites in
patients aiming to ameliorate the adaptive immune system is not sustained by sufficient data.
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Figure 2. Effect of vitamin D on the adaptive immune system. Abbreviations: APC, antigen presenting
cell; IFN, interferon; IL, interleukin; Th1, T helper 1 cell; Th2, T helper 2 cell; Th17, T helper 17 cell;
TNF, tumor necrosis factor; Treg, T regulatory cell.
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7. Vitamin D and Autoimmune Diseases

Thanks to the evidences of immunomodulatory effect of vitamin D the role of vitamin D deficiency
and supplementation in autoimmune diseases has long been studied. Animal studies showed an
important role of 1,25(OH)2D3 supplementation in the control of autoimmune diseases, such as
experimental autoimmune encephalomyelitis (EAE) and collagen-induced arthritis (CIA). In these
two conditions 1,25(OH)2D3 prevents the initiation and reduces the disease progression [91–93].
Similarly, different mouse models of enterocolitis display a more severe phenotype during vitamin
D deficiency and reduced inflammation after administration of 1,25(OH)2D3 (see for a review
Alhassan et al., 2017) [94]. Despite solid experimental evidence human studies are less convincing:
some epidemiological data link increasing latitude and consequent decrease sunlight exposure
with higher prevalence of multiple sclerosis [95–97], type I diabetes [98–100], and IBD [101]. It is
clear that such differences may be due to genetic and lifestyle factors other than 25(OH)D3 levels.
Other epidemiological data reinforcing the hypothesis of a link between sun exposure, vitamin D
synthesis, and the risk of developing multiple sclerosis stem from the observation that subjects born in
months associated with lower 25(OH)D3 level in the northern hemisphere (April) are at higher risk
of developing the disease, whereas patients born in October (higher vitamin D levels) are at lower
risk [102].

Some studies correlated vitamin D dietary intake and the prevalence of autoimmune diseases as
rheumatoid arthritis [103] and type 1 diabetes mellitus [104,105], however, the correct evaluation of
vitamin D intake is challenging as it is based on patient recall. To bypass the challenging measurement
of vitamin D intake and sun exposure, levels of 25(OH)D3 in the serum can be useful, and, indeed,
low levels of 25(OH)D3 in the serum of patients affected by autoimmune diseases with respect to
healthy controls have been found [106–112]. Nevertheless, these studies demonstrated a correlation
and not a causal relationship.

Intervention studies with different doses of vitamin D3 in autoimmune diseases lead to different
outcomes, recently we demonstrated that a bolus of vitamin D3 (300,000 UI) in patients affected by
early rheumatoid arthritis is effective in ameliorating general health, however, we found no effect
on disease activity nor on inflammatory markers and T cells subset [73]. In patients affected by
type 1 diabetes clinical intervention studies with vitamin D3 or hydroxylated analogs have been
disappointing, as no clinical study has demonstratedan effect of vitamin D in ameliorating glucose
metabolism and insulin secretion [113,114], however, in a small prospective trial in children with type 1
diabetes autoantibodies 1,25(OH)2D3 administration decreased the serum glutamic acid decarboxylase
65 (GAD65) autoantibody, pointing to some immunomodulation of 1,25(OH)2D3 [115].

In addition to autoimmune diseases vitamin D has also been implicated in the control of other
inflammatory conditions, such as cardiovascular diseases: in animal models vitamin D3 administration
reduces macrophage production of pro-inflammatory cytokines, and decreases atherosclerosis and
inflammation in the epicardial adipose tissue [116,117]. In humans an association between low
25(OH)D3 level and increased activation of inflammatory pathway in epicardial adipose tissuein
patients affected by coronary artery disease has been described [118]. Vitamin D deficiency has been
linked to cardiovascular disease not only by the modulation of inflammatory pathways, but also
through the modulation of endothelial function, the effect on arterial stiffness, and a possible beneficial
role on atherosclerotic plaque formation. However, this topic is beyond the scope of this review.
For further insight in the role of vitamin D in the pathogenesis of cardiovascular disease see the review
by Apostolakis and coll. [119].

8. Conclusions

In summary, several studies point to an important role of vitamin D as an immunomodulator,
and strong data demonstrate a role for 1,25(OH)2D3 in increasing the ability of the innate immune
system to fight against pathogens, whereas data on the effect of 1,25(OH)2D3in the modulation of
acquired immune system are more controversial. There is no general consensus on the desired level of
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25(OH)D3 to achieve immunomodulatory effects, thus, there is no current indication for vitamin D3

supplementation in patients with infections and/or autoimmune diseases. Further studies are needed
to clarify the role of vitamin D as immunomodulator in humans.
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