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Abstract: (1) Background: Ectopic fat deposition and its effects, metabolic syndrome, have been sig-
nificantly correlated to lifestyle and caloric consumption. There is no specific noninvasive evaluation
tool being used in order to establish clinical markers for tracing the metabolic pathway implicated in
obesity-related abnormalities that occur in the body as a result of a high-fat diet (HFD). The purpose
of this work is to investigate in vivo ectopic fat distribution and in vitro metabolite profiles given by
HFDs, as well as how they are inter-related, in order to find surrogate metabolic biomarkers in the
development of metabolic syndrome utilizing noninvasive approaches. (2) Methods: Male Wistar
rats were divided into a standard normal chow diet, ND group, and HFD group. After 16 weeks
of different diet administration, blood samples were collected for proton nuclear magnetic reso-
nance (1H NMR) and biochemical analysis. Magnetic resonance imaging/proton magnetic resonance
spectroscopy (MRI/1H MRS) was performed on the abdomen, liver, and psoas muscle of the rats.
(3) Results: Visceral fat showed the strongest relationship with blood cholesterol. Although liver fat
content (LFC) was not associated with any biophysical profiles, it had the highest correlation with
metabolites such as (-CH2)n very-low-density lipoprotein/low-density lipoprotein (VLDL/LDL),
lactate, and N-acetyl glycoprotein of serum 1H NMR. HFD showed no obvious influence on muscle
fat accumulation. Acetoacetate, N-acetyl glycoprotein, lactate, (-CH2)n VLDL/LDL, and valine were
the five possible metabolic biomarkers used to differentiate HFD from ND in the present study.
(4) Conclusions: Our study has validated the influence of long-term HFD-induced ectopic fat on body
metabolism as well as the metabolic profile deterioration both in vivo and in vitro.

Keywords: MRI; 1H MRS; 1H NMR; HFD; metabolic syndrome

1. Introduction

Obesity is one of the most serious public health concerns of the twenty-first century.
Since the 1980s, the prevalence of global obesity has been high, reaching triple digits
in many countries that make up the European Region of the World Health Organization

Diagnostics 2022, 12, 1621. https://doi.org/10.3390/diagnostics12071621 https://www.mdpi.com/journal/diagnostics

https://doi.org/10.3390/diagnostics12071621
https://doi.org/10.3390/diagnostics12071621
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com
https://orcid.org/0000-0002-8010-7232
https://orcid.org/0000-0001-7390-8878
https://doi.org/10.3390/diagnostics12071621
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com/article/10.3390/diagnostics12071621?type=check_update&version=1


Diagnostics 2022, 12, 1621 2 of 18

(WHO). Obesity, along with the health hazards that come with it, has become a public health
crisis in both industrialized and developing countries [1,2]. Notification of high levels of
triglycerides (TGs) in very-low-density lipoprotein/low-density lipoprotein (VLDL/LDL)
is a main foreteller for cardiovascular disease (CVD) risk assessment [3]. Excess or improper
fat deposition in organs other than adipose tissue has long been thought to play a role
in the development of metabolic diseases such as insulin resistance and type 2 diabetes.
According to new cross-sectional interventional evidence, dietary fat composition may
play a crucial role in ectopic fat deposition, which may increase the likelihood of metabolic
syndrome disease [4]. The connection between regional fat distribution and metabolic
changes generated by a high-fat diet (HFD) has become a contentious issue.

It has been established that the macronutrient composition of a diet linked to ectopic fat
can disrupt metabolic processes and can also affect organ function [5]. As a reason, it may
be a valuable attribute for distinguishing between persons who have a healthy metabolism
and those who have a disordered metabolism. Fatty acid that transfers from adipose tissue
to nonadipose tissues is a major contributor to metabolic changes [6,7]. Understanding
how the HFD influences ectopic fat distribution, and the metabolite changes that result,
could help in a better understanding of the metabolic mechanism that produces metabolic
syndrome. Therefore, to determine whether a subject has excess fat distribution that comes
from an excessively HFD and its related abnormal metabolite conditions, further diagnostic
assessments need to be established.

Indeed, the interaction between highly metabolically active visceral fat and an acceler-
ated rate of de novo lipogenesis in hepatic steatosis may enhance the loss of hepatic insulin
sensitivity and is the major cause of hyperglycemia [8,9]. In order to determine the effect of
greater morbidity and mortality caused by pathogenic visceral fat and fatty liver in obesity,
a noninvasive and reliable evaluation of visceral fat and hepatocellular lipid content is
necessary. A number of methods for assessing body composition have been developed, but
some of them, such as body dissection and chemical analyses, are invasive measurement
procedures [10,11]. For identifying metabolic profiles, precise and noninvasive diagnostic
approaches have recently become crucial. There is no unique noninvasive monitoring
technique for identifying the metabolic process involved in obesity-related disorders that
emerge in the body as a consequence of an HFD. Having exceptional soft tissue resolution
and inherently high contrast between fat and water makes magnetic resonance imaging
(MRI) an ideal technique for assessing adipose tissues and muscle [12]. This study pro-
vides the data needed to locate the metabolic pathway implicated in metabolic alterations
brought on by ectopic fat in the body as a result of an HFD.

Metabolomics research based on bioanalytical chemistry has been shown to be an
effective method for detecting inter- and intravariability in metabolic pathways altered by
various digestions [13]. Proton nuclear magnetic resonance (1H NMR) spectroscopy is the
most widely used metabolomics technology, especially in cancer, diabetes, inborn errors
of metabolism, and cardiovascular disease research [14]. The combination of multivariate
data analysis with nontargeted 1H NMR spectroscopy profiling of the various biofluids
has to be a novel approach for metabolomic detection in obesity because of its high and
simultaneous detection of a wide range of chemicals [15,16].

The etiology of human obesity-related metabolic anomalies is remarkably similar in
both obese and lean rats, as a point of reference [17]. Although both Wistar and Sprague
Dawley rats can be utilized as models for HF diet-induced obesity, Wistar rats show stronger
and earlier metabolic effects and are good models for dissecting aspects of physiological
control that are hard to analyze in humans [18,19].

We intended to see how metabolomics and ectopic fat content changed in noninvasive
ways in moderately different diet administrations (low-fat diet and HFD) in order to
develop diagnostic markers, particularly for use as obesity-related disease assessment
tools. Not only are blood biochemical parameters used, but body fat composition and
metabolomics biomarkers are also characterized as alternative determinant biomarkers in
noninvasive obesity clinical management. We discovered promising in vitro metabolite
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biomarkers in blood and ectopic fat depots in various anatomies in this work, along with
correct relations between certain biochemical profiles.

2. Materials and Methods
2.1. Animal Experiment

A total of 26 male Wistar rats (180–200 g) aged 2 months were obtained from the Na-
tional Animal Center, Salaya Campus, Mahidol University, Thailand. They were randomly
divided into two dietary groups, normal chow diet, ND (n = 13) and HFD (n = 13). All
experimental rats were housed under controlled temperature (25 ± 1 ◦C) and lighting
in a 12:12 hour light/dark cycle (lights on 06:30–18:30) with food and water ad libitum.
After 7 days of acclimatization, the rats in the ND group were provided standard rat
chow (C.P. Mice Feed Food No. 082;) with 4.02 kcal/g energy rate and the HFD group
consumed 5.35 kcal/g energy rate containing 57.60 fat % of total energy percentage [20].
The compositions of the ND and HFD are shown in Tables 1 and 2.

Table 1. Composition of normal chow diet.

Composition Normal Chow Diet
g (Gram) kcal (Kilocalorie) %E (Energy Percentage)

Carbohydrate 495.30 1981.20 51.99
Fat 83.70 753.30 19.77

Protein 269.00 1076.00 28.24
Vitamins 65.40 - -

Fiber 34.30 - -
Total 947.70 3810.50 100

kcal/g 4.02 kcal/g

Table 2. Composition of high fat diet.

Composition High Fat Diet
g (Gram) kcal (Kilocalorie) %E (Energy Percentage)

Carbohydrate 190.76 763.04 14.27
Fat 342.24 3080.16 57.60

Protein 353.60 1414.40 26.45
Cholesterol 10 90 1.68

Vitamins 85.19 - -
DL-Methionine 3 - -

Fiber 13.21 - -
Yeast powder 1 - -

Sodium chloride 1 - -
Total 1000 5347.60 100

kcal/g 5.35 kcal/g

2.2. Ethical Considerations

The animal facilities and protocols were approved by the Laboratory Animal Care and
Use Committees at the Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
and followed the National Institute of Health guidelines on the ethical use of animals
(Permit number: 07/2562).

2.3. Biophysical Characteristics

All animals were allowed free access to water and fresh food every day. Body weight
and food intake were recorded daily, which was then converted into total daily energy intake.

2.4. Biochemical Blood Analysis

After 16 weeks of different food administration, blood samples from both groups were
obtained by cutting the tail tip after overnight fasting. All serum samples were stored at
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−80 ◦C for further analysis. All laboratory examinations were carried out by using a fully
automated analyzer (Architect ci8200, Abbott Diagnostic, Lake County, IL, USA). Blood
lipid cholesterol, TGs, and fasting glucose (FG) were measured.

2.5. Magnetic Resonance Imaging for Abdominal Fat Detection

After 16 weeks of different food administration, the rats were anesthetized with
40 mg/kg pentobarbital (single dose) via intraperitoneal injection. The abdomens of both
groups were scanned in prone position by a 1.5 Tesla, Ingenia, Philip MR machine (Philips
Healthcare, Amsterdam, The Netherlands) under anesthetic conditions. The 3 mm thickness
T1-weighted axial images were collected with the following parameters: Repetition time
(TR) = 450 ms, echo time (TE) = 8 ms, field of view (FOV) = 200 mm. Afterward, an
axial slice was taken at the level that was free from the liver or buttock adipose tissue
and was saved in digital imaging and communications in medicine (DICOM) format for
fat quantification.

The image was analyzed using the Medical Image Processing, Analysis, and Visualiza-
tion (MIPAV, National Institutes of Health, Bethesda, MA, USA) software package equipped
with a semiautomatic segmentation technique which converts grayscale pixels into binary
images of black and white, based on the signal intensity-based histogram-thresholding
method [21]. The software uses the grayscale range (0–255). Mathematical morphology
helps to determine the tissues according to different grayscales being used together with a
histogram (intensity versus pixel count) for intensity threshold determination. The area
with high signal intensity, or that which appears brighter, represents abdominal adipose
tissue which was set as the threshold to exclude the nonrelevant organs and tissue in the
image [22].

The pixel value that appeared as white in segmental images represents abdominal
adipose tissue content, while black pixels represent mesenteric air and soft tissue such
as muscle, blood vessels, and bony structures, as shown in Figure 1c. The visceral and
subcutaneous regions were determined through the manual drawing of a region of interest
(ROI) along the abdominal wall that demarcates the intraperitoneal and extraperitoneal
regions [23]. Afterward, the abdominal fat percentage (Abd fat %) and visceral fat percent-
age (Vis fat %) were measured first. Next, the subcutaneous fat percentage (SC fat %) was
calculated by subtracting these values.

Diagnostics 2022, 12, x FOR PEER REVIEW 5 of 20 
 

 

  
Figure 1. T1 weighted image analysis by MIPAV software; (a) transverse abdominal image with ROI 
redlining, (b) grayscale-related histogram of T1-weighted MR image with intensity on the x-axis 
and pixel count on the y-axis, (c) segmental transverse abdominal fat image with ROI redlining, and 
(d) histogram of total abdominal tissue with intensity on the x-axis and pixel count on the y-axis. 

2.6. Single-Voxel Proton Magnetic Resonance Spectroscopy (1H MRS) for Liver and Psoas Mus-
cular Fat Detection 

Before 1H MRS acquisition, 3 mm thickness T1 and T2 MR images of three planes 
(axial, sagittal, and coronal) were scanned by TFE and TSE sequences for the exact voxel 
localization using a 1.5 T (Ingenia, Philips Medical Systems, Amsterdam, The Nether-
lands) equipped with a head coil. Liver metabolite spectrum without water suppression 
was taken by a single-voxel point resolved spectroscopy (PRESS) technique with 5 × 5 × 5 
mm3 voxel size on the right lobe of liver (Couinaud lobe segment V–VIII) that avoided the 
bile ducts and large vascular structures, as shown in Figure 2. The spectrum was acquired 
with repetition time (TR) = 2000 ms, echo time (TE) = 31 ms, number of signal averaging = 
128. For muscular lipid metabolite detection, the voxel was carefully positioned on the left 
psoas muscle as shown in Figure 3.  

 
Figure 2. MR spectra acquisition: Liver image with single voxel (5 × 5 × 5 mm3) on (a) axial image 
and (b) coronal image. In graph (c), MRS spectrum obtained from single-voxel PRESS sequence. 
Methyl (₋CH3) peak at 0.9 ppm and methylene (₋CH2) peak at 1.3 ppm. White square: voxel. 

Figure 1. T1 weighted image analysis by MIPAV software; (a) transverse abdominal image with ROI
redlining, (b) grayscale-related histogram of T1-weighted MR image with intensity on the x-axis
and pixel count on the y-axis, (c) segmental transverse abdominal fat image with ROI redlining, and
(d) histogram of total abdominal tissue with intensity on the x-axis and pixel count on the y-axis.

2.6. Single-Voxel Proton Magnetic Resonance Spectroscopy (1H MRS) for Liver and Psoas
Muscular Fat Detection

Before 1H MRS acquisition, 3 mm thickness T1 and T2 MR images of three planes
(axial, sagittal, and coronal) were scanned by TFE and TSE sequences for the exact voxel
localization using a 1.5 T (Ingenia, Philips Medical Systems, Amsterdam, The Netherlands)
equipped with a head coil. Liver metabolite spectrum without water suppression was
taken by a single-voxel point resolved spectroscopy (PRESS) technique with 5 × 5 × 5 mm3
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voxel size on the right lobe of liver (Couinaud lobe segment V–VIII) that avoided the bile
ducts and large vascular structures, as shown in Figure 2. The spectrum was acquired with
repetition time (TR) = 2000 ms, echo time (TE) = 31 ms, number of signal averaging = 128.
For muscular lipid metabolite detection, the voxel was carefully positioned on the left psoas
muscle as shown in Figure 3.
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2.1 ppm, and creatine at 3.04 ppm. White square: voxel.

Metabolite signals with and without water suppression were analyzed for metabolite
identification and quantification. Liver fat content (LFC) and psoas muscular fat content
were processed by Tarquin 4.3.10 free software. The CSV format spectrum fitting was
carried out by quickly fitting the acquisition data into Tarquin software. The peak area is
represented as the concentration of the center peak metabolite at a specific number of parts
per million (ppm). After setting of spectrum baseline mode and treatment in an OriginPro
analyzer, auto-peak determination was carried out using a local maximum peak filtering
method by a threshold height percentage setting. The resultant peaks were adjusted
manually, if needed. The integration was carried out from the baseline x-axis. Spectrum
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fitting and quantification were carried out for the water peak (4.7 ppm), and the major
lipid peaks -CH3 (0.9 ppm), -CH2 (1.3 ppm), and allylic (2.1 ppm) were carefully integrated
with prior knowledge [24]. The T2 relaxation correction was performed using a linear least
square equation to determine T2 of water and fat. The hepatic fat and muscular fat contents
were obtained from area peak integration at a specific chemical shift by OriginPro 2015
(64 bits) Beta3 b9.2.196 software.

2.7. Proton Nuclear Magnetic Resonance (1H NMR) Acquisition and Analysis

Serum metabolites of ND and HFD groups were detected by the 1H NMR method.
After centrifuging, 200 µL of supernatant fresh serum sample was dissolved by adding
400 µL of dimethyl sulfoxide-D6 (99.8% deuteration) and was mixed gently. The homo-
geneous solution was transferred into a 5 mm diameter high-quality NMR tube. Data
were acquired using a Bruker AVANCE 500 MHz (Bruker, Bremen, Germany) with a Carr–
Purcell–Meiboom–Gill (CPMG) water-suppression presaturation pulse sequence at 27 ◦C.
A 90◦ pulse with number of signal averaging (NSA) of 16 was applied. A spectrum in the
0–6 ppm range was analyzed by TopSpin 4.0.7 software.

After transforming of frequency domain spectrum pattern from the time domain free
induction decay (FID) signal, the baseline and phase were corrected by using automatic
code insertion. The solvent peak ppm or known metabolite peak ppm was set as a reference
for calibration. The individual metabolite integrations were carried out after manual
peak picking. Metabolites were identified and compared to existing literature [25]. The
resulting specific peak integration seen in Figure 4 was normalized by dividing the total
integration value.
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2.8. Statistical Analysis

The Kolmogorov–Smirnov test was used to identify the degree of deviation from a
normal distribution within the data set. In univariate analysis, two-sample t-statistics
were performed to define the differences between ND and HFD groups based on bio-
physical profiles, biochemical results, fat contents estimated by MRI/1H MRS, and serum
metabolomics detected by 1H NMR. They were presented as mean ± SD values. Pearson’s
correlation analysis was carried out to verify the relationship of fat content and the model
from biophysical and biochemical profiles, thus p < 0.05 denotes statistical significance.
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Multivariate statistics were carried out with principal component analysis (PCA) to look
for clustering and possible confounders in the data set. Later, partial least squares dis-
criminant analysis (PLS-DA) was used in order to make a model to discriminate between
ND and HFD groups. The total amount of variation between the groups was explained
by the model with R2Y (cum %) and that within the group was denoted as R2X (cum %).
The predictive ability of the model was determined by cross-validation and denoted as
Q2 (cum %). The variable with a significant difference in univariate analysis (two-sample
t-test) and a PLS-DA variable importance in projection (VIP) value exceeding 1 was defined
as the strongest variable that contributes to the group discrimination [26,27]. Statistical
analysis was performed using IBM SPSS version 17 and OriginPro 2015.

3. Results

The results of the two groups were determined 16 weeks after the consumption of
different diets (ND and HFD).

3.1. Biophysical Parameters

Although daily HFD food intake (in weight) was almost 4% less than that of ND, the
total daily energy intake by HFD rats was 27.8% greater than that of ND rats, accounting
for 118.8 ± 16.14 kcal, p < 0.05 (Table 3). Body weight increased in both groups. At the end
of 16 weeks of providing different food, the HFD group reached 733.33 ± 132.46 g which
was approximately 35.80% (193.30 g) higher than that of the ND group with p < 0.05.

Table 3. Descriptive characteristics of biophysical and biochemical profiles between normal chow
diet, ND, and high-fat diet, HFD, groups.

Parameters
ND HFD p-Value

Mean ± SD Mean ± SD

Food intake (g) 23.1 ± 0.97 22.2 ± 3.02 0.50
Energy intake (kcal/day) 92.96 ± 3.89 118.8 ± 16.14 <0.05 *

Body weight (g) 540 ± 42.43 733.33 ± 132.46 <0.05 *
Blood TG (mg/dL) 95.61 ± 22.08 104.05 ± 30.65 0.60

Cholesterol (mg/dL) 92 ± 20.14 125.41 ± 14.48 <0.05 *
FG (mg/dL) 113.09 ± 18.56 124.12 ± 23.51 0.39

All data are presented as mean and standard deviation (SD) values. Significant values are shown as * p < 0.05. ND,
normal chow diet; HFD, high-fat diet; TG, triglyceride; and FG, fasting glucose.

3.2. Blood Biochemical Measurements

According to biochemical assay results, only the total cholesterol level in HFD
(125.41 ± 14.48 mg/dL) was noticeably different from ND rats (92 ± 20.14 mg/dL) with
p < 0.05. The blood TG and FG levels did not significantly change between the two groups.
Both biophysical and biochemical characteristics are shown in Table 3.

3.3. Abdominal Fat Compartments and Laboratory Characteristics

The total Abd fat % obviously increased in HFD with 43.60 ± 7.31%, but in ND had
only increased 31.31 ± 12.65%. Additionally, HFD showed about 40.41 ± 7.80% visceral fat
compartments which was about 36.98% higher than ND visceral fat content. There was no
significant variation in subcutaneous adipose tissue between the groups (Table 4).

Pearson’s correlation in Figure 5 shows that all fat percentages in the abdominal region,
Abd fat %, Vis fat %, and SC fat %, were strongly and significantly associated with daily energy
intake with r = 0.730, r = 0.707, and r = 0.818, p < 0.05 respectively. Vis fat %, Abd fat %, and
SC fat % correlated strongly with body weight with r = 0.719, r = 0.683, p < 0.05 and r = 0.926,
p < 0.001. In biochemical association, Vis fat % had the strongest relationship with blood
cholesterol (r = 0.834, p < 0.05). Furthermore, abdominal fat % also was related to cholesterol as
r = 0.816, p < 0.05. SC fat % had no association with blood biochemical data at all.
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Table 4. Descriptive characteristics of different fat contents between normal chow diet, ND, and
high-fat diet, HFD, groups.

Parameters
ND HFD

p-Value
Mean ± SD Mean ± SD

Abd fat % 31.31 ± 12.65 43.60 ± 7.31 <0.05 *
Vis fat % 29.50 ± 11.42 40.41 ± 7.80 <0.05 *
SC fat % 1.81 ± 1.78 3.19 ± 2.39 0.211

LFC 3.14 ± 1.39 60.40 ± 12.90 <0.001 **
Psoas muscular fat 3.35 ± 3.01 6.25 ± 0.72 0.111

All data are presented as mean and (SD) standard deviation (SD) values. Significant values are shown as * p < 0.05,
** p < 0.00. Abd fat %, abdominal fat percentage; Vis fat %, visceral fat percentage; SC fat %, subcutaneous fat
percentage; and LFC, liver fat content. ND, normal chow diet; and HFD, high-fat diet.
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3.4. Liver Fat Content (LFC) and Laboratory Characteristics

In this study, both saturated and unsaturated methylene lipids in the liver, -CH2 (1.3 ppm)
and =CH2 (2.1ppm), were significantly different between the two groups. The total liver fat
content percentage in the HFD group was approximately 19.2-fold higher than that in the ND
group (Table 4). Liver fat content was not associated with biophysical profiles (food intake, energy
intake, and body weight) at all. However, it was strongly and positively associated with blood
biochemical cholesterol (r = 0.780, p < 0.05). Individual fat content percentage in abdominal region,
Abd fat %, Vis fat %, and SC fat %, had a strong relationship with liver fat according to r = 0.834,
0.829, 0.768, p < 0.05, respectively (Figure 5).

3.5. Psoas Muscular Fat Content and Laboratory Characteristics

The total fat composition in psoas muscles of HFD seemed greater than in the ND
group, but the difference was not significant. It was strongly associated with blood choles-
terol (r = 0.767, p < 0.05), but had no relationship with any biophysical profiles. According to
Pearson’s interrelation of ectopic fat accumulation in different regions, psoas muscular fat
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amounts strongly and directly correlated with both abdominal fat and visceral fat contents
with r = 0.730, 0.722 and p < 0.05. However, there was no relation to subcutaneous fat
amount and to liver fat content. The descriptive characteristics of different anatomic fat
contents between ND and HFD groups and Pearson’s correlation results are presented in
Table 4 and Figure 5.

3.6. 1H NMR Metabolomic Characteristics

A total of 24 regions (metabolic profiles) were recognized from serum 1H NMR spec-
trum analysis that was related to different diet interventions. Altogether, seven variables dif-
fered significantly based on descriptive analysis between ND and HFD groups with p < 0.05
occurring in all. Those metabolite variables were lactate (4.1 ppm and 1.3 ppm), acetoac-
etate (2.22 ppm), N-acetyl glycoprotein NAC1 (2.14 ppm), methylene lipid of VLDL/LDL
(1.27 ppm), and valine (1.05 ppm and 0.996 ppm) after normalization. These trends and
all metabolite comparisons are shown in Table 5. Among the significant differences be-
tween ND and HFD individuals, univariate analysis revealed that lactate (1.3 ppm) and
(-CH2)n VLDL/LDL (1.27 ppm) had the highest increments with their VIP > 1. However,
acetoacetate was shown to have the greatest downtrend.

Table 5. Serum variables resolved by 1H NMR of ND and HFD groups.

No. Assigned Metabolites ppm, δ
ND HFD

p-Value Change %
Mean ± SD Mean ± SD

1 Unsaturated lipid (CH=CH) 5.3 0.01 ± 0.003 0.011 ± 0.004 0.591 9.64%
2 Alpha glucose 5.23 0.019 ± 0.004 0.02 ± 0.002 0.113 10.05%
3 Beta glucose 4.63 0.022 ± 0.004 0.024 ± 0.002 0.193 7.94%
4 Lactate 4.1 0.047 ± 0.01 0.065 ± 0.011 <0.05 34.96%
5 Total glucose 3.35–3.92 0.4 ± 0.035 0.416 ± 0.033 0.261 3.83%
6 TMAO 3.25 0.016 ± 0.003 0.018 ± 0.002 0.125 9.82%
7 Carnitine 3.23 0.022 ± 0.003 0.022 ± 0.002 0.717 1.71%
8 Choline 3.21 0.037 ± 0.006 0.033 ± 0.005 0.097 −10.05%
9 Creatine 3.04 0.006 ± 0.001 0.008 ± 0.004 0.299 18.67%

10 Glutamine 2.45 0.013 ± 0.005 0.013 ± 0.003 0.7 −4.30%
11 Glutamate 2.34 0.012 ± 0.004 0.01 ± 0.003 0.285 −13.18%
12 Acetoacetate 2.22 0.006 ± 0.003 0.003 ± 0.001 <0.05 −50.94%
13 N-acetyl glycoprotein 2.14 0.029 ± 0.004 0.036 ± 0.007 <0.05 22.49%
14 Unsaturated lipid (=CH2) 2.02 0.046 ± 0.010 0.048 ± 0.011 0.696 3.63%
15 Lysine 1.91 0.011 ± 0.005 0.012 ± 0.003 0.686 5.80%
16 Alanine 1.48 0.016 ± 0.004 0.016 ± 0.002 0.774 −2.16%
17 Lactate 1.3 0.089 ± 0.017 0.121 ± 0.049 <0.05 36.13%
18 (-CH2)n VLDL/LDL 1.27 0.048 ± 0.025 0.085 ± 0.03 <0.05 76.02%
19 3 hydroxybutyrate 1.17 0.012 ± 0.004 0.011 ± 0.004 0.596 −7.05%
20 Valine 1.047 0.005 ± 0.001 0.004 ± 0.001 <0.05 −18.03%
21 Isoleucine 1.02 0.004 ± 0.001 0.003 ± 0.001 0.264 −11.41%
22 Valine 0.996 0.01 ± 0.002 0.007 ± 0.001 <0.05 −25.79%
23 Leucine 0.96 0.014 ± 0.002 0.014 ± 0.007 0.881 2.16%
24 (-CH3) VLDL/LDL 0.87 0.041 ± 0.019 0.043 ± 0.01 0.765 4.65%

Calculated using two independent-sample t-tests and presented as mean and standard deviation (SD). Significant
values are shown as p-value. Percentage change is the increase (+) or decrease (−) in the mean in the HFD group
with respect to the ND group. ND, normal chow diet; HFD, high-fat diet; VLDL, very-low-density lipoprotein;
LDL, low-density lipoprotein; and TMAO, trimethylamine N-oxide.

The PCA score plot was based on the 24 serum 1H NMR variables of ND and HFD rats
according to different diet statuses. Each sample was represented by its metabolic profile
and visualized as a single symbol of which the location was determined by the contributions
of the 24 variables in the 1H NMR spectrum. There was a color clustering as shown in
Figure 6a. This means that this model allows HFD individuals to be clearly differentiated
from their ND counterparts. This model also explained the 23.52% of variation according
to principal component 1 (PC1), being the largest variance within the data set, and the
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16.24% of variation according to principal component 2 (PC2), being the second largest
variance within the data. Multivariate PLS-DA was used to train a classification model
(classifier) in discriminating between the HFD and ND individuals based on data input
from their metabolic profile. The model explained that the total amount of variation within
the groups was 29.93% (R2X(cum)) and, between the groups, it was 71.03% (R2Y (cum)).
The predictive ability of the model was good enough to discriminate between the groups
on the basis of the metabolic profile with a Q2(cum) of 75.88%. The PLS-DA score plot
shows the first predictive component F1 [P] (15.9%), explaining the variation between the
groups, versus the first orthogonal component F1 [O] (55.26%) that explains the variation
within the groups, as seen in Figure 6b.
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Figure 6. 1H NMR variables of normal chow diet group (ND) shown in black and high-fat diet group
(HFD) in red are plotted according to different body weights based on the 24 serum variables. (a) PCA
score plot shows principal component 1 on the x-axis and principal component 2 on the y-axis, and
(b) PLS-DA score plot shows the first predictive factor 1, F1 [P], on the x-axis, and the first orthogonal
component 1, F1 [O], on the y-axis.

The variables that strongly contribute to discrimination between HFD and ND in-
dividuals are determined according to significant univariate changes with p < 0.05 and
PLS-DA VIP value > 1. In this study, N-acetyl glycoprotein (2.14 ppm), lactate (1.3 ppm and
4.1 ppm), and (-CH2)n VLDL/LDL (1.27 ppm) are significantly higher. However, acetate
(2.22 ppm) and valine (1.047 ppm and 0.996 ppm) are lower in HFD compared to ND with
VIP > 1. The seven possible metabolites that discriminate HFD from ND are shown in
Figure 7. The most significant change in serum concentration between HFD and ND is
observed in variable 18, representing the saturated lipid (-CH2)n VLDL/LDL, being about
76.02%, as shown in Table 5.

Being associated with NMR metabolites, all three fat depots in the abdomen, the intra-
abdominal, and subdermal regions were directly proportional to both lactate (r = 0.788,
0.781, 0.739 and p < 0.05 in all) and saturated -CH2 (1.27 ppm) of lipid TG (r = 0.843, 0.832,
0.820 and p < 0.05), as shown in Figure 8. LFC totally correlated with methylene protons
of -CH2 (1.27 ppm) in the 1H NMR spectrum results with very the strongest coefficient
values being r = 0.915. Lactate and N-acetyl glycoprotein were also associated with LFC as
shown in Figure 8. The muscular fat deposit was strongly related to only saturated -CH2
(1.27 ppm) of lipid TG (r = 0.751 and p < 0.05) among the other serum metabolites in this
1H NMR study.
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Figure 7. Bar chart showing the variable importance in projection (VIP) scores. Blue bars represent
metabolites which have VIP > 1 and have significant differences between HFD and ND groups with p < 0.05.
VLDL, very-low-density lipoprotein; LDL, low-density lipoprotein; TMAO, trimethylamine N-oxide.
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fat percentage; Vis fat %, visceral fat percentage; SC fat %, subcutaneous fat percentage; and LFC, liver
fat content.
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4. Discussion

A greater knowledge of the processes that regulate adipose tissue expansion in obesity
is essential for the development of future therapeutic options for obesity-related metabolic
problems. This study showed that long-term HFD consumption caused higher fat accumula-
tion in different organs, accompanied by systematic metabolic changes in multiple biochem-
ical measures such as blood chemical profiles. The metabolic effects of the HFD were found
to be due to a range of metabolic pathways, including glycolysis/gluconeogenesis, fatty
acid, amino acid, ketone body, and choline metabolism issues, according to our findings.
These significant metabolic variations were detected after 16 weeks of HFD ingestion.

Many studies show that the pathological effects of excessive adiposity are dependent
not only on the quantity of fat, but also on the distribution of the fat mass in the body [28].
Different types of regional excessive fat distribution can be a disease concern, and abnormal
body fat depots in particular parts of the anatomy may have unique metabolic features. The
visceral fat, white adipose tissue surrounding the major abdominal organs, is thought to be
the principal adipose depot involved in the etiology of obesity-related disorders, while the
subcutaneous fat plays a less prominent role [29].

Despite the fact that food consumption rates varied less in this study, the HFD’s signif-
icant rise in energy intake and body weight was almost certainly due to the diet’s energy
states. An et al. also found that no matter what the amount/weight of food consumed,
the energy intake in HFD-fed rats was literally greater than that of ND-fed control [30].
The biophysiological metabolic mechanism deterioration may be a potential consequence
of the unhealthy type of energy obtained from food ingestion. Our study has shown that
the main difference in diet composition more significantly impacts lipid metabolism, as
clearly seen in the higher blood cholesterol levels of the HFD group compared to higher
carbohydrate ingestion in the ND group.

Moreover, the 16-week HFD intake induced a significant increase in rat body weight
that was in turn related to the obvious accumulation of fat in abdominal subcutaneous
regions detected by MRI. This is possibly because subcutaneous adipose tissue has a
higher preadipocyte cell population and a faster preadipocyte proliferating rate [31]. There
was no statistically significant link between visceral fat content and body weight; this
may be due to the smaller size of visceral adipocytes [32]. Furthermore, the quantity of
adipocytes determines weight [33]. Indeed, smaller adipocytes and their smaller population
in visceral fat, unrelated to BMI or gender, may indirectly noninvasively indicate their lack
of significance in this study’s body weight growth.

Our noninvasive MRI findings indicate that calorie intake is the primary cause of
ectopic lipid accumulation in all abdominal compartments. We made sure that the relative
weight of epididymal white adipose tissue was higher in mice fed the HFD compared to the
mice fed the high-carbohydrate diet [34]. In this study, the body weight and HFD energy
intake are the main influences on the subcutaneous fat accumulation. Furthermore, neither
the subcutaneous fat relationship to plasma TG nor the association with cholesterol and FG
demonstrated the less metabolic nature of subcutaneous fat. This finding totally coincided
with the weak relationship of subcutaneous fat to lipid metabolites (TG and high-density
lipoprotein cholesterol: HDL-C) and showed no association with FG in young adult obesity
in vivo [35]. This fact supports the fact that highly mobilized TG in subcutaneous fat, which
serves as a buffer during high dietary lipid intake and protects against lipotoxicity, seems to
play a role in glycemic control and therefore reduces cardiovascular risk in humans [36,37].

The enormous amount of fat packed inside the peritoneal cavity between internal
organs and the torso, whereby the abdomen protrudes excessively, is probably due to
intra-abdominal obesity. Our study evaluated the strongest relationship between visceral
fat and blood cholesterol (r = 0.834, p < 0.05) among the other ectopic fat relations. This
finding is consistent with our in vivo study on young adult populations in which visceral
fat had the most significant and strongest relationship to blood TG and HDL-C levels
when compared to abdominal and subcutaneous lipids [35]. Meek et al. also found that
intra-abdominal adipocytes are less responsive to insulin’s anti-lipolytic actions, and that
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visceral adipose tissue-derived free fatty acid (FFA) may have more significance in vivo,
reaching up to 40%. This can affect hepatic function in obesity [38]. In addition, an
in vitro human study showed that omental adipocytes have high metabolic responses to
adrenergic stimulation, with fewer anti-lipolytic alpha-2 adrenergic receptors (ARs) and
higher lipolytic beta-AR levels [39]. Our result revealed that fat depots inside the peritoneal
cavity have higher metabolic activity that mainly impacts fat metabolism compared to fat
deposition in any other areas. There was a similar conclusion in studies carried out on
humans. This finding supports the idea that high visceral fat, especially in young obese
people, could be a dyslipidemia-treated biomarker [35]. The health risks vary depending
on the compartmental obesity, even in the same degree of obesity, and particularly in intra-
abdominal obesity. As a result, metabolic syndromes with diabetes and atherosclerosis
illnesses may become more prevalent [36,40].

Excessive visceral fat accumulation leads to the secretion of free fatty acids into the
portal vein and the secretion of pro-inflammatory adipocytokines which leads to abnormal
accumulation of lipids in hepatocytes, a characteristic feature of hepatic steatosis [41,42].
Due to overloading of visceral adiposity, shown by an inability to allow subcutaneous
adipose tissue metabolic compensation, the surplus energy in the subcutaneous adipose
tissue is stored as an accumulation of fat at undesired sites [43]. Our results showed that
16-week HFD intake caused a significant increase in rat body weights and abdominal fat
content with the concurrent accumulation of lipid droplets in the liver. Although there was
no significant relation between liver fat and any biophysical profiles (body weights, energy
intake) of rats, there was a strong association with blood cholesterol found in this study.
This result is totally consistent with the proposed portal hypothesis, whereby the influx of
excess FFA in the portal vein is attributed to the high TG accumulation in the hepatocytes
and induces de novo lipogenesis that promotes the secretion of atherogenic lipoprotein
cholesterol [44]. This fact was supported in our observation of HFD-induced elevations of
blood cholesterol together with the TG accumulation in the liver. Our previous 1H MRS
study also showed that the amounts of intrahepatocellular lipids in obese and overweight
people were substantially greater than in normal-weight adults. In fact, they were around
9.4 and 4.1 times higher than normal-weight people, respectively. Furthermore, higher liver
fat in young obese individuals may be a significant predictor of glucose metabolism and
hyperglycemia [35].

Interestingly, the standard deviation observed in liver fat content value was con-
siderably larger in the HFD group than in controls, suggesting that HFD effects on the
biochemistry of rats were heterogeneous. Such heterogeneity was also observable for
two rats in terms of their cholesterol levels, even though their body weight-to-cholesterol
relationships were obviously inverted. This result elucidates the detailed mechanisms
underlying the emergence of such heterogeneity and suggests that obese rats use excessive
metabolic regulation to generate intrahepatocellular lipids via the reverse cholesterol trans-
port system. It probably came from different feeding schemes [45,46]. However, in previous
studies, the obesity-prone and obesity-resistant subsets of rats responded differently to the
same HFD [47].

The HFD group had no significant increase in psoas muscle fat in this investigation.
In addition, muscle fat had no association with either calorie intake or body weight. This
result was slightly different than the previous human findings that higher muscular fat
content was found in higher BMI young adults [35]. It appears that the overconsumption
of fat has a lower likelihood of influencing muscle fat accumulation, not just in reaction
to physical parameters, but also in conjunction with muscular fiber type composition and
oxidative activity [48]. This may be caused by the predominance of glycolytic fiber type II
composition, in which high ATPase activity with dynamic activity leads to a reduction in
myocellular TG depot size, although there may be some HFD intake [49]. Our observations
showed that there was no muscle fat linked with liver fat, but instead it was linked with
visceral fat. This fact was associated with an increase in total body fat and visceral adiposity,
which were accompanied by more intramyocellular and extramyocellular lipids (IMCLs
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and EMCLs) stored in obese adolescents [50]. Fonvig et al. also discovered that muscle
fat deposition was highly linked to visceral fat, but was unrelated to liver function [51].
Furthermore, the impact of muscle fat on biochemical blood cholesterol changes during
HFD induction was revealed in our research. The findings imply that IMCL and EMCL
content in 1H MRS may be a risk factor for arterial stiffness in human trials [52].

In comparison to ND supply, our research found that an HFD causes some noticeable
metabolite alterations. Even though biochemical data showed that glucose tributaries
were not considerably higher in the HFD group, this current investigation found a huge
rising trend in lactate. According to our prior young adult human investigation, higher
lactate levels appear to be a possible discriminating biomarker for nonhyperlipidemic and
hyperlipidemic obesity [53]. In fact, the HFD induced white adipose tissue expansion (hy-
pertrophic adipocytes) due to fat storage within the adipocytes [54]. Instead of generating
acetyl CoA through aerobic metabolism, those low-mitochondrial-function hypertrophic
adipocytes in white adipose tissue activate the anaerobic glycolysis pathway [55]. Further-
more, the reduced vascularity of larger adipocytes promotes local adipose tissue hypoxia,
and greater lactate production indicates the cells’ lack of adequate oxygen supply [56].

A minimal change in glucose and a noticeable increase in N-acetyl glycoproteins in the
HFD group occurring in this study may indicate a fatty liver response to pro-inflammatory
cytokines as increased production of acute phase-1 acid glycoproteins [57]. This is similar
to NMR research carried out on Ningxiang type obese pigs [58]. In addition, greater glucose
consumption and higher N-acetyl were discovered in our in vitro human investigation and
may be a result of hyperactivation of the hexosamine pathway, especially in hyperlipidemic
settings [53].

Serum lipid levels (saturated and unsaturated fatty acid chains of TG) are higher
in the HFD than in the ND group, according to our 1H NMR investigation. The most
significant metabolite with the biggest gain seen is lipid -CH2 protons of saturated fatty acid
chains, and in particular that of VLDL and LDL. This result is consistent with biochemical
analysis obtained from venous blood that shows a significant increase in cholesterol in the
HFD group. Meanwhile, in human serum NMR investigations, the -CH2 protons of both
unsaturated and saturated fatty acid chains produced high signal intensity in obese groups.
Furthermore, those fatty acid chains exhibited a substantial linear association between
TC, TG, and LDL laboratory values [53]. Increased serum VLDL/LDL levels imply an
overproduction by the liver and increased exportation of TG containing VLDL particles into
the bloodstream, which are subsequently converted to LDL. This finding supports the HFD-
induced lipid metabolic pathway’s imbalanced hepatic de novo lipogenesis and fatty acid
oxidation rates. Toledo et al. reported that fatty liver altered lipoprotein composition with
or without diabetes [59]. Our findings are consistent with a positive correlation between
hepatic fat fraction and pro-atherogenic lipidemia, as seen by increased large VLDL and
small dense LDL concentrations in obese adolescents with normal glucose tolerance [60].
Furthermore, our PLS-DA analysis revealed that -CH2 lipids and lactate were potentially
upregulated biomarkers having a VIP score of greater than 1. This is reinforced by the
fact that those two metabolites have a positive link with ectopic lipid content, which is
especially prevalent in the abdominal and hepatic areas.

Acetoacetate, another metabolite with a VIP score > 1, dramatically downtrended
in HFD when compared to ND. The enzyme hydroxymethylglutaryl CoA (HMG-CoA)
lyase produces this first ketone body mostly in the liver mitochondria during overspill
of acetyl CoA from fatty acid oxidation and certain amino acids [61]. In instances of
insulin resistance, fasting, or high-fat eating (nutritional ketosis), an increase in serum
ketone levels indicates that tissue is utilizing fat for energy rather than glucose [62]. Our
acetoacetate results contradict this fact. This finding is consistent with obesity, as significant
increases in total carnitine and lysine levels in blood metabolomics, along with carnitine
palmitoyltransferase 1A (CPT1A) deficiency, are linked to a slow beta oxidation rate and
hypoketotic hypoglycemic conditions [63,64]. No apparent differences in serum glucose
show that glucose use through the glycolysis pathway is normal in both groups. Hepatic
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fat oxidation can be measured using ketogenesis as a surrogate. In obese persons with
fatty livers, the rate of ketogenesis is reduced by an increase in hepatic TG loading, and a
decreased turnover rate is shown with severe insulin resistance, presumably contributing
to hypoketonemia, when compared to lean controls in animal models [65,66]. The fat-
derived ketones, such as acetoacetate, are produced from inefficient hepatic fat oxidation
and are utilized for lipid generation [67]. However, more research is needed to clarify the
physiological implications of hepatic futile cycling in vivo.

5. Conclusions

To summarize, more high-energy fatty dietary ingestion led to an increase in overall
body weight. Our noninvasive MRI in vivo analysis of local ectopic fat depots in the
abdominal, intra-abdominal, and subcutaneous areas shows that the energy level of a
high-fat meal is closely related to all three local ectopic lipids (Abd fat %, Vis fat %,
and SC fat %). Only cholesterol level in blood is correlated to Abd fat % and Vis fat %,
and there is no relation with SC fat %. It has been proven that higher TG buffering in
subcutaneous fat lowers lipotoxic effects. None of the systemically functioning fat depots,
whether intrahepatic or intramuscular, is reliant on food or energy, although cholesterol
metabolism is most likely to be. Regardless of adiposity, the high-fat meal has a lower
impact on FG, but considerably promotes lipid metabolism, which corresponds to the
cardiovascular risk biomarker. Furthermore, the substantial connection results between
visceral fat and intrahepatic TG levels in our investigation supported the portal theory of
body physiological energy adjustment. The untargeted serum metabolomics in vitro model
distinguished the effect of the HFD from the normal condition. Our metabolomics study
determined that lactate and lipid -CH2 (VLDL/LDL) are positive trend biomarkers, and
that acetoacetate will be the downstream dominant metabolic profile used to distinguish
the HFD-induced obesity from normal ones. These metabolic determinants can be used as
biomarkers to track metabolism during metabolic changes. This provides the foundation
for correcting obesity mechanisms and aids in the creation of novel anti-obesity drugs. The
consequence of long-term HFD-induced ectopic fat on body metabolism and metabolic
profile impairment was validated in our in vivo and in vitro research.
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