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Abstract: Calbindin-D28k (CB), a calcium-binding protein, mediates diverse neuronal functions.
In this study, adult gerbils were fed a normal diet (ND) or exposed to intermittent fasting (IF) for
three months, and were randomly assigned to sham or ischemia operated groups. Ischemic injury
was induced by transient forebrain ischemia for 5 min. Short-term memory was examined via
passive avoidance test. CB expression was investigated in the Cornu Ammonis 1 (CA1) region
of the hippocampus via western blot analysis and immunohistochemistry. Finally, histological
analysis was used to assess neuroprotection and gliosis (microgliosis and astrogliosis) in the CA1
region. Short-term memory did not vary significantly between ischemic gerbils with IF and those
exposed to ND. CB expression was increased significantly in the CA1 pyramidal neurons of ischemic
gerbils with IF compared with that of gerbils fed ND. However, the CB expression was significantly
decreased in ischemic gerbils with IF, similarly to that of ischemic gerbils exposed to ND. The CA1
pyramidal neurons were not protected from ischemic injury in both groups, and gliosis (astrogliosis
and microgliosis) was gradually increased with time after ischemia. In addition, immunoglobulin G
was leaked into the CA1 parenchyma from blood vessels and gradually increased with time after
ischemic insult in both groups. Taken together, our study suggests that IF for three months increases
CB expression in hippocampal CA1 pyramidal neurons; however, the CA1 pyramidal neurons are
not protected from transient forebrain ischemia. This failure in neuroprotection may be attributed to
disruption of the blood–brain barrier, which triggers gliosis after ischemic insults.
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1. Introduction

Intermittent fasting (IF) entails alternate cycles of feeding and fasting to induce energy
and dietary restriction [1]. A few studies using rodent models of focal cerebral ischemia
have demonstrated that IF increases resistance to ischemia/reperfusion injury in rodent
brains [1–4]. In these studies, IF attenuates tissue damage (infarction) and neurological
deficit following focal brain ischemia, demonstrating that IF acts as a mild metabolic
stressor in neurons or glial cells and effectively upregulates the expression of several neu-
roprotective antioxidant enzymes, inflammatory mediators, and calcium-binding proteins.
However, recent studies suggest that IF in a gerbil model of 5-minute transient forebrain
ischemia (TFI) does not protect neurons [5].

Irreversible neuronal death in the gerbil model occurs specifically in vulnerable subre-
gions of the brain, including the striatum, neocortex and hippocampus [6,7]. In particular,
pyramidal neurons in the hippocampal cornu ammonis 1 (CA1) are vulnerable to ischemic
insults and are prone to die several days after 5-minute episodes of TFI, and this selective
neuronal death is designated as “delayed neuronal death” [8,9]. It is well known that
glial cells (microglia and astrocytes) proliferate with hypertrophied cell bodies, and this
“reactive gliosis (microgliosis and astrogliosis)”, which occurs early after 5-minute TFI,
is gradually enhanced with time until delayed neuronal death occurs [9,10]. In addition,
gliosis in CNS insults is initiated after the disruption of the blood–brain barrier (BBB),
allowing non-CNS molecules including blood and serum components to enter the brain
parenchyma [11–14].

Among neuroprotective factors against brain insults, calbindin-D28k (CB), one of the
major calcium-binding and buffering proteins, maintains intracellular calcium homeostasis
and plays a critical role in protecting neurons against calcium-mediated neurotoxicity [15–18].
Ca2+ is an important intracellular messenger controlling cellular differentiation, growth, mem-
brane excitability and synaptic activity [19]. Ischemic insults lead to an excessive intracellular
influx of Ca2+ [1], which results in neuronal death [20]. In addition, CB-containing neurons play
an important role in learning, memory, cognitive function, and long-term potentiation [21,22].
Hippocampal CB expression may influence memory function via neuronal calcium homeosta-
sis [23].

Based on ongoing studies, IF and/or CB exhibit favorable effects on memory and
cognitive function. To date, however, the mechanism of the IF-induced modulation of mem-
ory and cognitive function, and CB expression, is unclear. To the best of our knowledge,
studies have yet to analyze these IF-induced effects on gerbil brains exposed to 5-minute
TFI. Therefore, we investigated whether IF influenced passive avoidance tests, which are
used to determine learning and short-term memory, CB expression, neuronal survival,
reactive gliosis and BBB leakage (disruption) in the hippocampal CA1region, in which the
pyramidal neurons are very vulnerable to transient ischemia in gerbils with 3-month IF.

2. Results

We previously presented a change in body weight caused by IF and normal diet for
three months, showing that no significant difference in body weights was detected between
IF-subjected gerbils and normal-dieted gerbils (data not shown) [11,24].

2.1. Passive Avoidance Test (PAT)

PAT was performed to examine the effect of IF on learning and memory following TFI
(Figure 1). No significant difference was shown in the latency time after 3 months of IF
between the normal diet (ND)/sham and the IF/sham groups. At 5 days after ischemia, a
significant reduction (p < 0.001) in the latency time was shown in both ND/ischemia and
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IF/ischemia groups compared to that in the ND/sham group, showing that the latency time
in both of the groups was similar. These results demonstrate that the short-term memory
function in the IF/ischemia group was not different from that in the ND/ischemia group.

Figure 1. Short-term memory tests using passive avoidance test in the ND/sham, IF/sham, ND/ischemia and IF/ischemia
groups. The latency time before and after 3-month IF in both sham groups is not altered. In addition, there is no difference
in latency time at 5 days post-ischemia between the ND/ischemia and IF/ischemia groups (n = 7 per group; * p < 0.05, vs.
ND/sham group by post hoc Tukey’s test). Bars indicate means ± SEM. IF, intermittent fasting; ND, normal diet.

2.2. CB Protein Levels

The CB protein level in the hippocampal CA1 of the ND/ischemia group was signifi-
cantly decreased 1 day after ischemia and gradually decreased until 5 days after ischemia
(Figure 2). In the IF/sham group, the CB protein level was significantly increased (p < 0.001)
after 3-month IF compared with that in the ND/sham group (Figure 2). However, the
CB protein level in this group was significantly reduced (p < 0.001) from 1 day to 5 days
after ischemia, showing that the change pattern after ischemia was similar to that of the
ND/ischemia group (Figure 2).

2.3. CB Immunoreactivity

As shown in Figure 3A, CB immunoreactivity in the ND/sham group was shown
in the stratum pyramidale (SP) of the hippocampal CA1. CB immunoreactivity in the
ND/ischemia group was significantly and gradually decreased (p < 0.001) from 1 day to
5 days after ischemia, showing that relative optical density (ROD) was 70% at 1 day, 31%
at 2 days, and 41% at 5 days post-ischemia compared with that in the ND/sham group
(Figure 3B–D,I).
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Figure 2. Representative blot images and quantitative analysis of CB protein in the hippocampal CA1 region of the
ND/sham, IF/sham, ND/ischemia and IF/ischemia groups at sham, 1 day, 2 days, and 5 days after ischemia (n = 5 at each
point in time in each group, * p < 0.05 vs. sham group, # p < 0.05 vs. corresponding time point group of ND group, † p < 0.05
vs. pre-time point group of each group by post hoc Tukey’s test). Bars indicate means ± SEM. IF, intermittent fasting; ND,
normal diet.

The CB immunoreactivity in the CA1 of the IF/sham group had almost doubled (about
200% of the ND/sham group) compared with that in the ND/sham group (Figure 3E).
In the IF/ischemia group, the CB immunoreactivity in the SP of the CA1 region was
also significantly decreased (p < 0.001) with time after ischemia (53% at 1 day, 33% at
2 days, and 36% at 5 days post-ischemia when compared with that in the ND/sham group)
(Figure 3F–I), showing that the ROD pattern was similar to that found in the ND/ischemia
group (Figure 3I). These finding indicate that IF for 3 months increased CB expression;
however, the IF did not maintain CB expression in the CA1 after transient ischemia.

2.4. Neuroprotection
2.4.1. Cresyl Violet (CV) Positive Cells

CV staining was performed to investigate the distribution and morphology of cells
located in the hippocampal CA1 region (Figure 4). In the ND/sham group, numerous
CV-positive cells located in the stratum pyramidale were CA1 pyramidal cells (Figure 4A).
In the ND/ischemia group, the patterns of CV-positive CA1 pyramidal cells were not
altered at 1 day and 2 days after ischemia, although the CV stainability was decreased
with time after ischemia (Figure 4B,C). At 5 days after ischemia, most of the CV-positive
pyramidal cells were damaged at 5 days post-ischemia (Figure 4D).
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Figure 3. Calbindin D28K (CB) immunohistochemistry in the CA1 region of the ND (upper columns) and the IF (lower
columns) groups at sham (A,E), 1 day (B,F), 2 days (C,G) and 5 days (D,H) after ischemia CB immunoreactivity is shown in
CA1 pyramidal neurons (arrows). CB immunoreactivity in the CA1 pyramidal neurons (asterisk) in the IF/sham group
is significantly higher than that in the ND/sham group. However, the CB immunoreactivities in both of the groups
decreases gradually and similarly with time after ischemia. Scale bar = 50 µm. (I) relative optical density (ROD) of CB
immunoreactivity as percent value in the CA1 region (n = 7 in each group, * p < 0.05 vs. ND/sham group, # p < 0.05 vs.
corresponding time point group of ND group, † p < 0.05 vs. pre-time point group of each group by post hoc Tukey’s test).
Bars indicate the means ± SEM. IF, intermittent fasting; ND, normal diet; SO, stratum oriens; SP, stratum pyramidale; SR,
stratum radiatum.

In the IF/sham group, the distribution of CV-positive pyramidal cells was not different
from that in the ND/ischemia group (Figure 4E). In the IF/ischemia group, the change
pattern of CV-positive pyramidal cells was similar to that found in the ND/ischemia group
(Figure 4F–H).

2.4.2. Neuronal Nuclear Antigen (NeuN) Immunoreactive Neurons

NeuN (a marker for neurons) immunoreactivity was observed in CA1 pyramidal neurons
of the ND/sham groups (Figure 5A). In the ND/ischemia group, NeuN-immunoreactive
neurons were not significantly altered (p < 0.001) in number at 1 day and 2 days (about 98%
and 95% of the ND/sham group, respectively) after ischemia (Figure 5B,C,Q), showing
that the intensity of NeuN immunoreactivity at 2 days post-ischemia was weaker than
that in the ND/sham group (Figure 5C). At 5 days post-ischemia, however, the numbers
of NeuN immunoreactive CA1 pyramidal neurons were dramatically reduced (p < 0.001)
(about 12% of the ND/sham group) (Figure 5D,Q).

In the IF/sham group, the numbers and NeuN immunoreactivity in the CA1 pyra-
midal neurons did not differ from those in the ND/sham group (Figure 5E,Q). In the
IF/ischemia group, the number of NeuN-immunoreactive CA1 pyramidal neurons at
1 day and 2 days post-ischemia was similar to that found in the ND/ischemia group
(Figure 5F,G,Q), showing that, at 2 days post-ischemia, NeuN immunoreactivity was still
strong (Figure 5G). At 5 days after ischemia, the number of NeuN immunoreactive CA1
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pyramidal neurons was also markedly decreased (p < 0.001) (about 19% of the ND/sham
group) (Figure 5H,Q).

Figure 4. Cresyl violet (CV) staining in the CA1 region of the ND (upper column) and IF (lower column) groups at
sham (A,E), 1 day (B,F), 2 days (C,G) and 5 days (D,H) after ischemia. Numerous CV-positive cells are found in stratum
pyramidale (SP). CV stainability of cells in the SP is gradually decreased after ischemia in both of the ND/ischemia and
IF/ischemia groups, and, at 5 days after ischemia, CV-positive cells in the SP of the groups are damaged (asterisks).
Scale bar = 50 µm. IF, intermittent fasting; ND, normal diet; SO, stratum oriens; SR, stratum radiatum.

2.4.3. Fluoro-Jade B (FJB)-Positive Cells

FJB (a high-affinity fluorescent marker for neuronal degradation)-positive cells were
not observed in the ND/sham or IF/sham groups (Figure 5I,J). After ischemia in both of the
groups, FJB-positive cells were not detected until 2 days after ischemia (Figure 5J,K,N,O,R).
At 5 days following ischemia, FJB-positive cells were detected in both of the groups
(Figure 5L,P), showing that there was no significant difference in the numbers of FJB-
positive cells between the ND/ischemia and IF/ischemia groups (Figure 5R).

2.5. Microgliosis

Immunohistochemical staining for ionized calcium-binding adapter molecule 1 (Iba-1),
a marker for microglia, was done to observe microglia activation in the CA1 region in
the ND and IF groups with or without ischemia (Figure 6). In the ND/sham (Figure 6A)
and IF/sham (Figure 6E) groups, there was no difference in the distribution of Iba-1
immunoreactive microglia between the two groups. Namely, they were evenly scattered in
all layers of the CA1 region and identified as a resting form of microglia (Figure 6A,E). After
ischemia in the two groups, the change patterns of the Iba-1 immunoreactive microglia
were similar (Figure 6B–D,F–H). With time after ischemia, their cytoplasm was enlarged
with thickened processes as the active form. In addition, no significant difference in the
ROD of Iba-1 immunoreactivity was observed between the two groups. The ROD in the
ND/ischemia group was gradually increased (167% at 1 day, 231% at 2 days, and 494%
at 5 days compared to that of the ND/sham group) (Figure 6I). In the IF/ischemia group,
the ROD was 175% at 1 day, 248% at 2 days, and 481% at 5 days, compared to that of the
ND/sham group (Figure 6I).
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Figure 5. Neuronal nuclei antigen (NeuN) immunohistochemistry (A–H) and fluoro-Jade B (FJB) fluorescence staining
(I–P) in the CA1 region of the ND and IF groups at sham (A,E,I,M), 1 day (B,F,J,N), 2 days (C,G,K,O) and 5 days (D,H,L,P)
after ischemia. The NeuN immunoreactive pyramidal neurons in both of the groups show immunoreactivity until 2 days
post-ischemia; however, at 5 days post-ischemia, few NeuN immunoreactive pyramidal neurons (asterisk) are shown in
both of the groups. In addition, in both of the groups, numerous FJB-positive neurons are shown in the stratum pyramidale
(SP) at 5 days post-ischemia. Scale bar = 50 µm. (Q,R) Mean numbers of NeuN immunoreactive (Q) and FJB-positive (R)
cells in 250 µm2 at the center of the CA1 region (n = 7 in each group, * p < 0.05 vs. ND/sham group by post hoc Tukey’s
test). Bars indicate the means ± SEM. IF, intermittent fasting; ND, normal diet; SO, stratum oriens; SR, stratum radiatum.
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Figure 6. Ionized calcium-binding adapter molecule 1 (Iba-1) immunohistochemistry in the CA1 region of the ND (upper
column) and IF (lower column) groups at sham (A,E), 1 day (B,F), 2 days (C,G) and 5 days (D,H) after ischemia. In both
of the groups, Iba-1 immunoreactivity is significantly increased with time following ischemia, showing no difference in
the immunoreactivity between the two groups. Note that Iba-1 immunoreactive cells are numerous near the stratum
pyramidale (SP) (asterisk), in which pyramidal neurons are dead. Scale bar = 50 µm. (I) Relative optical density (ROD) of
Iba-1 immunoreactivity as percent values in the CA1 region (n = 7 in each group, * p < 0.05 vs. ND/sham group, † p < 0.05
vs. pre-time point group of each group by post hoc Tukey’s test). Bars indicate the means ± SEM. IF, intermittent fasting;
ND, normal diet; SO, stratum oriens; SR, stratum radiatum.

2.6. Astrogliosis

Immunohistochemical staining for glial fibrillary acidic protein (GFAP), a marker
for astrocytes, was carried out in order to investigate the activation of astrocytes in the
CA1 region in the ND and IF groups with or without ischemia (Figure 7). GFAP im-
munoreactive astrocytes, as the resting form, had fine cellular processes in both ND/sham
(Figure 7A) and IF/sham groups (Figure 7E). On the other hand, after ischemia, the pattern
of changes in the GFAP immunoreactive astrocytes was similar between the ND and IF
groups (Figure 7B–D,F–H). With time after ischemia, GFAP immunoreactive astrocytes
became hypertrophied, and their cellular processes became thickened in both of the ND
and IF/ischemia groups (Figure 7B–D,F–H). ROD in the ND/ischemia group was grad-
ually increased (142% at 1 day, 214% at 2 days, and 316% at 5 days compared to that of
the ND/sham group) after ischemia (Figure 7I). In the IF/ischemia group, the ROD was
140% at 1 day, 207% at 2 days, and 309% at 5 days compared to that of the ND/sham group
(Figure 7I).
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Figure 7. Glial fibrillary acidic protein (GFAP) immunohistochemistry in the CA1 region of the ND (upper column)
and IF (lower column) groups at sham (A,E), 1 day (B,F), 2 days (C,G) and 5 days (D,H) after ischemia. In both of the
groups, the GFAP immunoreactivity is significantly increased with time following ischemia, showing no difference in the
immunoreactivity between the two groups. Scale bar = 50 µm. (I) Relative optical density (ROD) of GFAP immunoreactivity
as percent values in the CA1 region (n = 7 in each group, * p < 0.05 vs. ND/sham group, † p < 0.05 vs. pre-time point group
of each group by post hoc Tukey’s test). Bars indicate the means ± SEM. IF, intermittent fasting; ND, normal diet; SO,
stratum oriens; SP, stratum pyramidale; SR, stratum radiatum.

2.7. Immunoglobulin G (IgG) Immunoreactivity

To investigate BBB leakage due to the disruption of the BBB after ischemia, immuno-
histochemistry for IgG was conducted in the CA1 region in the ND and IF gerbils with or
without ischemia (Figure 7). IgG immunoreactivity was fundamentally shown inside of the
blood vessels in both the ND/sham (Figure 8A) and IF/sham groups (Figure 8E) (arrows).
However, in both the ND and IF groups with ischemia, IgG immunoreactivity was shown
near or outside the blood vessels (arrows), and was significantly enhanced (p < 0.001)
(ND and IF, 183% and 181%, respectively) at 1 day, and a more significant increase (544%
and 564%, respectively) was detected at 2 days compared to that in the ND/sham group
(Figure 8B,C,F,G,I). At 5 days after ischemia, the IgG immunoreactivity was dramatically
increased (ND and IF, 2027% and 1987%, respectively) in both the ND and IF/ischemia
groups compared to that in the ND/sham group (Figure 8D,H,I).
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Figure 8. Immunoglobulin G (IgG) immunohistochemistry in the CA1 region of the ND (upper column) and IF (lower
column) groups at sham (A,E), 1 day (B,F), 2 days (C,G) and 5 days (D,H) after ischemia. In the two groups, IgG immunore-
activity is significantly increased with time after ischemia, showing that there is no difference in the immunoreactivity
between the two groups. Scale bar = 50 µm. (I) Relative optical density (ROD) of IgG immunoreactivity as percent values in
the CA1 region (n = 7 in each group, * p < 0.05 vs. ND/sham group, † p < 0.05 vs. pre-time point group of each group by
post hoc Tukey’s test). Bars indicate the means ± SEM. IF, intermittent fasting; ND, normal diet; SO, stratum oriens; SP,
stratum pyramidale; SR, stratum radiatum.

3. Discussion

The three major mechanisms underlying the neuronal death induced by transient global
brain or forebrain ischemia include the following: (1) oxidative stress induced by overpro-
duction of reactive oxygen species (ROS), (2) inflammatory response by pro-inflammatory
cytokines and immune cells, and (3) glutamate-induced excitotoxicity [25–27]. Accordingly,
many studies have reported the factors underlying neuroprotection against TFI. The en-
hanced expression of antioxidant enzymes contributes to ROS scavenging, and the elevation
of anti-inflammatory cytokines triggers inflammation in ischemic brains by suppressing the
expression of pro-inflammatory cytokines, and the increased levels of calcium-binding pro-
teins attenuate excitotoxicity by buffering glutamate influx [28,29]. Therefore, we investigated
whether an IF-mediated increase in CB expression influenced neuronal survival, reactive
gliosis and BBB leakage (disruption) in the hippocampal CA1 region.

The hippocampus is critical for memory and cognitive function [30]. IF increases
the thickness of the hippocampal CA1 region in mice, suggesting enhanced learning and
memory [31]. In addition, alternate-day IF has been shown to improve memory, sensory
and motor skills [32–34]. In this study, we evaluated short-term memory after TFI with
or without 3-month IF in gerbils, and found no significant difference in function between
groups with ND/ischemia and IF/ischemia as well as groups exposed to ND/sham
and IF/sham. These findings differ from those reported in foregoing studies. Based on
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our current study, the long-term (3 months) exposure of gerbils to alternate-day IF does
not increase short-term memory. In this regard, we evaluated the expression of CB in
cognitive and memory function [35], neuroprotection and reactive gliosis (microgliosis and
astrogliosis) in the hippocampal CA1 region of the four groups (ND/sham, ND/ischemia,
IF/sham and IF/ischemia) to determine the factors underlying the lack of short-term
memory enhancement following IF.

The CB levels are decreased and the Ca2+ influx is increased in brains with aging,
which influences memory and cognitive function decline [36–38]. Based on these studies,
the increased CB expression enhances memory and cognitive function. In our current
study, we found that CB expression was significantly increased in the IF/sham group
after 3 months of IF compared with that of the ND/sham group; however, based on
PAT, the learning and memory performance following 3-month IF was not enhanced.
We also found that CB expression following ischemia declined gradually with time after
ischemia in the IF/ischemia group, similar to that of the ND/sham group. This result
indicates that the 3-month IF in gerbils does not sustain CB expression after ischemic
insult despite the increased CB expression in CA1 pyramidal neurons following 3-month
IF. Based on the findings of altered CB in the IF/ischemia group, we analyzed the degrees
of neuroprotection and reactive gliosis in the IF/ischemia group. The findings indicate that
the death (loss) of CA1 pyramidal neurons and reactive gliosis in the IF/ischemia group
was similar to that of the ND/ischemia group, suggesting that IF for 3 months in gerbils
does not protect against TFI.

Dietary restriction or caloric restriction in animal models of focal or global ischemia
significantly reduces neurological damage [4,39–42]. In addition, a few studies have
demonstrated that IF induces neuroprotective effects by attenuating cellular dysfunction,
degeneration and death in the brain after experimental focal brain ischemia [43], in contrast
to the transient forebrain ischemia induced in our study. We recently reported that IF for
3 months in a gerbil model of TFI increased the expression of endogenous antioxidant
enzymes (SOD1, SOD2, and catalase) without protecting the hippocampal CA1 pyrami-
dal neurons from ischemic injury [5]. Similarly, in our current study, the increased CB
levels following IF failed to protect the CA1 pyramidal neurons in the IF/ischemia group
against TFI.

Several studies have reported that CB levels play a key role in neuroprotection or
neuronal survival in the brains of patients with neurodegenerative disorder or injury [44–47].
In the case of focal brain ischemia involving rabbits, the increased CB protects the brain tissue
against focal ischemia, suggesting that the increased CB blocks intracellular calcium entry
and protects the brain against focal ischemia [48,49]. In contrast, it has been reported that
CB fails to protect hippocampal neurons from transient global brain ischemia in spite of its
cytoplasmic calcium-buffering properties observed in CB knockout mice [44].

Ischemic insults trigger reactive gliosis in the brain [9,10]. Attenuated reactive gliosis
in ischemic brains is a measure of neuroprotection against ischemic insults [10,50,51]. Our
results showed the development of microgliosis and astrogliosis, which was enhanced
with time in the CA1 region of both the ND and IF groups after 5 min of TFI, although the
differences between the two groups were not statistically different. This finding indicates
that ischemia-induced gliosis, which leads to neuronal damage/death, cannot be prevented
by 3-month IF. Some studies have reported that gliosis following brain insults begins after
the disruption of the BBB, which allows blood and serum components to enter the ischemic
brain parenchyma [11–14]. We recently reported that 1-, 2- and 3-month IF did not prevent
BBB leakage in the gerbil hippocampal CA1 region 5 days after 5-minute TFI [11]. In
addition, we found that interleukin-13 (an anti-inflammatory cytokine), which plays a
beneficial role in ischemic injury, was significantly increased in the ischemic CA1 region,
but there was no neuroprotective effect against TFI [11]. Taken together, the BBB leakage in
ischemic brains may fail to protect neurons from ischemic insults.

Our present study was performed using gerbils with a mean lifespan of 110 weeks
in males and 139 weeks in females [52]. In this regard, the 3-month IF period in gerbils
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may translate to approximately 10 years in human beings. The 3-month duration should
be adequate for gerbils to adapt to the new dietary protocol, which may explain the
lack of neuroprotective effects following transient ischemia with 3-month IF. This finding
suggests that the effects of long-term IF on brains may differ from those of dietary or caloric
restriction following various brain injuries, in particular ischemic insults.

Ischemic stroke is a representative senile disease, and several studies have investigated
various outcomes after ischemic insults using aged animals [50,51,53,54]. The current data,
however, relate to adult animals, suggesting the need for additional and identical studies
involving aged animals.

In brief, IF for 3 months increased the production of CB in hippocampal CA1 pyra-
midal neurons in gerbils. However, the 3-month IF did not prevent BBB disruption or
reactive gliosis, which might lead to the death of CA1 pyramidal neurons after 5 min of
TFI. Further studies with diverse and modified IF regimens are necessary to determine the
neuroprotective effects after TFI, and to establish the type of IF protocol that prevents or
protects against ischemic brain injury.

4. Materials and Methods
4.1. Experimental Animals

Male Mongolian gerbils (Meriones unguiculatus) at six months of age (body weight,
75 ± 5 g) were obtained from the Experimental Animal Center (Kangwon University,
Chuncheon, Gangwon, Republic of Korea). They had been maintained at a constant
temperature (23 ± 2 ◦C) and humidity (50 ± 5%) with a 12 h light/dark cycle. The care
and handling of animals in this research complied with the “Guidelines of the Current
International Laws and Policies” described in the “Guide for the Care and Use of Laboratory
Animals” (The National Academies Press, 8th Ed., 2011). In addition, the protocol of
this experiment was approved (approval number: KW-200113-1) by the committee of
Institutional Animal Care and Use Committee at Kangwon National University.

4.2. IF and Experimental Groups

For IF, gerbils were allowed free access to ND every other day and no food on alternate
days (24 h fasting and 24 h feeding), and IF was applied for three months according to
the published method [3,32,55]. During the feeding period, food intake in all gerbils was
controlled daily (10 g/day), and body weight was monitored every week.

For experimental groups, 96 male gerbils were used and randomly divided into four
groups, as follows: (1) ND/sham group (n = 12)—gerbils were fed ND and received sham
ischemia operation; (2) ND/ischemia group (n = 36)—animals were fed ND and received
ischemia; (3) IF/sham group (n = 12)—gerbils had IF for three months and received sham
operation; (4) IF/ischemia group (n = 36)—animals had IF and received ischemia. The
animals in the ischemia group were sacrificed at 1 day, 2 days, and 5 days after ischemia
to investigate the effects of IF on CB expression and neuroprotection following transient
global forebrain ischemia. To decrease the number of gerbils, gerbils in the sham group
were sacrificed only at 5 days after the sham ischemia operation.

4.3. Induction of Transient Forebrain Ischemia

As we previously described [5], all gerbils were anesthetized with a mixture of
2.5% isoflurane from Baxtor (Deerfield, IL, USA) in 67% nitrous oxide and 33% oxygen.
Under anesthesia, the gerbils received an incision on the neck to find both common carotid
arteries, and the arteries were occluded by non-traumatic aneurysm clips for 5 min and
then re-perfused. The body temperature of the gerbils was controlled at normothermia
(37 ± 0.5 ◦C) using a thermometric blanket during the surgery, monitoring the temperature
using a rectal temperature probe (TR-100) (Fine Science Tools, Foster City, CA, USA). All
animals were fed ND after the surgical procedure. The gerbils included in the sham group
underwent identical surgical procedures without the ligation of common carotid arteries.
Thereafter, the gerbils were kept in thermal incubators (temperature, 23 ◦C; humidity, 60%)
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to maintain body temperature at the normothermic level until they were euthanized. Until
the gerbils were sacrificed, they were continually fed ND or IF.

4.4. PAT

Learning and memory was assayed through PAT according to the modification of
a published method [56]. Shortly, the Gemini Avoidance System (GEM 392) (San Diego
Instruments, San Diego, CA, USA) was used for this PAT, which consisted of two rooms
(light and dark) with a grid floor. First, training was performed one day before IF, 29 days
after IF and 4 days after ischemia, as follows. For the training, each gerbil was allowed to
explore the environment of the two rooms for one min, while the grid floor was opened.
After the exploration, the gerbil was permitted to enter the dark room when a light in the
light room was turned on, while the floor was given an inescapable foot-shock (0.5 mA
for 5 s). A substantive PAT test was done 24 h after the training. Each trained gerbil
was put in the dark room, the light of the light room was turned on, and the floor was
opened. Thereafter, we recorded the latency time, which is the time to enter the dark room,
within 180 s.

4.5. Western Blotting

To examine changes of CB protein level in the hippocampal CA1, 40 gerbils (n = 5 at
sham, 1, 2 and 5 days post-ischemia in each group) were used for the blotting according
to a previously published method [57]. Shortly, at each point in time, five gerbils in each
group were deeply anesthetized by an intraperitoneal injection of pentobarbital sodium
(60 mg/kg) from JW Pharm (Seoul, South Korea), and their hippocampal CA1 tissues
were collected. The tissues were lysed with RIPA buffer (Santa Cruz, CA, USA) and
homogenized with an ultrasonic homogenizer for 5 min. These homogenates were then
centrifuged at 12,000 rpm for 20 min at 4 ◦C, and the supernatants were collected. Next,
protein concentrations were measured with a bicinchoninic acid kit from Thermo Fisher
Scientific (Waltham, MA, USA). In detail, the proteins were separated by 10% sodium
dodecyl sulfate–polyacrylamide gel and transferred to nitrocellulose membranes (Pall
Corp., Pittsburgh, PA, USA). These membranes were blocked with 5% non-fat milk (in
Tris-buffered saline/Tween, TBST) for 60 min on a shaker at room temperature and then
incubated in primary antibodies (rabbit anti-CB) (diluted 1:1000) (Cell signaling technology,
Danvers, MA, USA) and rabbit anti-β-actin (42 kDa) (1:2000, Sigma-Aldrich, St. Louis,
MO, USA) overnight at 4 ◦C. The membranes were washed three times with TBST and
incubated with peroxidase conjugated anti-rabbit IgG (1:4000, Santa Cruz, CA, USA) for 1 h
at room temperature. After washing them with TBST, they were visualized by horseradish
peroxidase (Millipore, Billerica, MA, USA). The band intensities were analyzed using
ImageJ (ver. 1.52v, National Institutes of Health, Bethesda, MD, USA).

4.6. Preparation of Histological Sections

At each point in time after TFI, seven gerbils in each group were deeply anesthetized by
intraperitoneal injection of 60 mg/kg of pentobarbital sodium (JW Pharm. Co., Ltd., Seoul,
Korea) at designated times (1, 2 and 5 days after ischemia) following IF. Under anesthesia,
the gerbils were transcardially washed with 0.1 M phosphate buffered saline (PBS) (pH 7.4)
and fixed with 4% paraformaldehyde solution (in 0.1 M PB, pH 7.4). After fixation, their
brains were removed, and cryoprotected in 30% sucrose solution. Finally, brain tissues
containing the hippocampus were serially sectioned into coronal sections (30 µm thickness)
in a cryostat of Leica (Wetzlar, Germany) and kept in plates containing PBS.

4.7. Immunohistochemistry

We used the following antibodies: rabbit anti-CB (diluted 1:1000; Cell signaling tech-
nology, Danvers, MA, USA), NeuN (diluted 1:800; Abcam, Cambridge, MA, USA), Iba-1
(1:800, Wako, Japan) and GFAP (1:1000, Chemicon, Temecula, CA, USA). For immunohis-
tochemistry for each antibody, we carried it out according to our published method [38].
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Shortly, the sections obtained at designated times after ischemia were incubated in 0.3% hy-
drogen peroxide (H2O2) solution for 30 min, followed by 10% normal goat serum solution
(in 0.05 M PBS, pH 7.4) for 30 min. These sections were reacted with each antibody for
18 h at 4 ◦C. Continuously, they were exposed to biotinylated anti-rabbit IgG (diluted
1:200, Vector, Burlingame, CA, USA) and streptavidin peroxidase complex (diluted 1:200,
Vector, Burlingame, CA, USA) for 2 h at room temperature, respectively. Finally, the re-
acted sections were visualized by incubating in a 0.05% solution of 3, 3′-diaminobenzidine
tetrahydrochloride (DAB) (in 0.1 M Tris–HCl buffer, pH 7.2).

4.8. CV Histochemistry

CV histochemical staining was performed to examine the distribution and morphology
of cells in the hippocampus. In short, according to a published method [58], 1% CV acetate
(Sigma, St. Louis, MO, USA) solution (in distilled water) was prepared, and glacial acetic
acid was added to this solution. To stain the sections, they were reacted in the CV solution
for 1 h at room temperature (about 23 ◦C). After washing the sections with distilled water,
they were dehydrated with serial ethanol. Finally, the stained sections were prepared as
permeant slides.

4.9. FJB Histofluorescence Staining

FJB is a fluorescent derivative used to detect degenerating cells. In this study, FJB
histofluorescence staining was done to examine the damage/death of hippocampal cells
after ischemia. As described previously [55,59,60], in short, the sections were immersed
in a 0.06% solution of potassium permanganate and reacted with 0.0004% solution of FJB
(Histochem, Jefferson, AR, USA).

4.10. Data Analysis

Changes in CB, Iba-1 and GFAP immunoreactivity were quantitatively analyzed
according to our published method [38]. In brief, we selected seven sections at 120 µm
intervals within the antero-posterior from −1.4 to −2.2 mm according to the gerbil brain
atlas in each gerbil. Images of each immunoreactivity were taken from the corresponding
area (250 µm2) under 20× primary magnification in the hippocampus with an AxioM1
light microscope from Carl Zeiss (Göttingen, Germany) equipped with a digital camera
from Axiocam (Carl Zeiss, Germany), which was connected to a PC monitor. The captured
images were calibrated into an array of 512 × 512 pixels, and each immunoreactivity was
evaluated by optical density (OD). The OD was obtained after the transformation of the
mean grey level using a formula (OD = log (256/mean grey level). The background density
was subtracted, and the OD ratio was calibrated as the percent of relative OD (ROD) using
Adobe Photoshop version 8.0. Finally, ROD was analyzed with the Image J 1.46 software
from the National Institutes of Health (Bethesda, MD, USA).

Numbers of NeuN-and FJB-positive cells were counted according to our published
method [61]. In brief, we selected seven sections via the above-mentioned method. Images
of NeuN-positive cells were captured with an AxioM1 light microscope (Carl Zeiss, Göttin-
gen, Germany). Images of FJB-positive cells were taken with an epifluorescent microscope
from Carl Zeiss (Göttingen, Germany) equipped with 450–490 nm of blue excitation light
and a barrier filter. The digital images of cells positive for NeuN and FJB were counted in
a 250 × 250 µm square applied at the center of the CA1 region using an image analyzing
software (Optimas 6.5) from CyberMetrics (Scottsdale, AZ, USA).

4.11. Statistical Analysis

Data are expressed as the mean±SEM (standard error of the mean). The differences in
the ROD or mean numbers of the respective immunoreactive structures obtained for each
group were statistically analyzed with one-way analysis of variance followed by a post hoc
Tukey’s test using GraphPad Instat from Instat Statistics (GraphPad Software Inc., La Jolla,
CA, USA). A p value of <0.05 was considered statistically significant.
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