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SUMMARY

The mammary gland consists of cells with gene expression patterns reflecting their cellular 

origins, function, and spatiotemporal context. However, knowledge of developmental kinetics and 

mechanisms of lineage specification is lacking. We address this significant knowledge gap by 

generating a single-cell transcriptome atlas encompassing embryonic, postnatal, and adult mouse 

mammary development. From these data, we map the chronology of transcriptionally and 

epigenetically distinct cell states and distinguish fetal mammary stem cells (fMaSCs) from their 

precursors and progeny. fMaSCs show balanced co-expression of factors associated with discrete 

adult lineages and a metabolic gene signature that subsides during maturation but reemerges in 

some human breast cancers and metastases. These data provide a useful resource for illuminating 

mammary cell heterogeneity, the kinetics of differentiation, and developmental correlates of 

tumorigenesis.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
*Correspondence: wahl@salk.edu (G.M.W.), benjamin.spike@hci.Utah.edu (B.T.S.).
AUTHOR CONTRIBUTIONS
Concept and Supervision, G.M.W. and B.T.S.; Writing, R.R.G., G.M.W., and B.T.S.; Resources, R.L., K.E.V., and C.M.P.; 
Experimental Design, R.R.G., C.-Y.C., R.E.H., O.B., C.L.T., B.M.H., C.M.P., G.M.W., and B.T.S.; Experimentation, R.R.G., C.-Y.C., 
R.E.H., O.B., M.N., C.L.T., C.D., B.M.H., L.W.R., and B.T.S.; Computational Design, R.R.G., C.-Y.C., C.D., K.E.V., C.M.P., G.M.W., 
and B.T.S.; Computational Analysis, C.-Y.C., E.M.M., J.Y.H., C.F., and B.T.S.; Editorial Revision, R.R.G., O.B., E.M.M., G.M.W., 
and B.T.S. All authors interpreted the data.

SUPPLEMENTAL INFORMATION
Supplemental Information includes six figures, five tables, and one data file and can be found with this article online at https://doi.Org/
10.1016/j.celrep. 2018.07.025.

DECLARATION OF INTERESTS
The authors declare no competing interests.

HHS Public Access
Author manuscript
Cell Rep. Author manuscript; available in PMC 2018 December 20.

Published in final edited form as:
Cell Rep. 2018 August 07; 24(6): 1653–1666.e7. doi:10.1016/j.celrep.2018.07.025.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.celrep
https://doi.org/10.1016/j.celrep


Graphical Abstract

In Brief

Single-cell RNA sequencing of developing mouse mammary epithelia reveals the timing of 

lineage specification. Giraddi et al. find that fetal mammary stem cells co-express factors that 

define distinct lineages in their progeny and bear functionally relevant metabolic program 

signatures that change with differentiation and are resurrected in human breast cancers and 

metastases.

INTRODUCTION

A deep understanding of complex tissues requires knowledge of the integrated molecular 

circuitry of each of the tissue’s constituent cells. Prior work used surface markers to 

fractionate the luminal, basal, and alveolar cells of the mouse mammary gland, and their 

lineage-restricted progenitors and stem cells (Shackleton et al., 2006; Shehata et al 2012; 

Sleeman et al., 2006; Stingl et al., 2006; Villadsen et al., 2007). Delineating how the ratios 

and molecular profiles of these cell types change over development can give valuable 

insights into the organization of the tissue and the regulators of differentiation and 

homeostasis. It should also provide insight into subversion of this organization by maladies 

such as cancer and identify cell states that are susceptible to tumorigenesis and therapeutic 

targets to prevent or revert tumorigenic phenotypes. We and others have previously reported 

relationships between the expression profiles of mouse mammary stem/progenitor cell 

populations and human breast cancers (Lim et al., 2009; Pfefferle et al., 2015; Prat et al., 

2010; Spike et al., 2012). In particular, mouse fetal mammary stem cell (fMVaSC)-

containing isolates show significant relatedness to aggressive human breast cancers 

(Pfefferle et al., 2015; Spike et al. 2012). However, it has been challenging to distill critical 

molecular regulators and cell type-specific biomarkers from bulk profiles since the cell type 

of interest often constitutes a small fraction of the cell population. For example, 

transplantation assays show adult mouse mammary stem cells comprise ~2% of sorted cell 

populations (Shackleton et al., 2006; Spike et al., 2012; Stingl et al, 2006; Wang et al., 

2015). While the stem cell fraction is much higher during fetal mammary organogenesis, 

even the most enriched populations exhibit heterogeneity (Dravis et al., 2015; Spike et al., 

2012; Spike et al., 2014).
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Single-cell RNA sequencing (scRNA-seq) reveals the cellular and transcriptional 

heterogeneity of complex tissues (Kumar et al., 2017). For example, expression profiles have 

recently been obtained for single adult mouse mammary cells (Bach et al., 2017; Pal et al., 

2017). However, these studies reveal neither the transcriptional programs that generate 

mature cell types from primitive embryonic antecedents nor the timing with which 

developmental transitions occur.

Mouse mammary organogenesis occurs with stereotyped structures at reproducible times 

(Veltmaat et al., 2003), and with dramatic changes in stem cell function (Spike et al., 2012; 

Makarem et al., 2013a). fMaSCs are the earliest cells shown by in vitro mammosphere 

formation, in vivo lineage tracing, and transplantation to fulfill all criteria for bipotent 

mammary stem cells (Makarem et al., 2013a; Spike et al., 2012; Van Keymeulen et al., 

2011). They become measurable on embryonic day 16 (E16), increase dramatically to E18 

(Spike et al., 2012), and then decline immediately after birth to produce the architecturally 

simple mature mammary epithelium (Giraddi et al., 2015; Makarem et al., 2013b; Prater et 

al., 2014; Spike et al., 2012). Luminal and basal compartments appear to be sustained by 

uni-potent cells in adults (Van Keymeulen et al., 2011; Giraddi et al., 2015; Wang et al., 

2017; Wuidart et al., 2016), although rare bipotential adult mammary cells may also exist 

(Rios et al., 2014; Wang et al., 2015).

Here, we elucidate biological programs that distinguish fMaSCs from differentiating cells. 

We generate a scRNA-seq dataset encompassing fetal, postnatal, and adult mouse mammary 

epithelia, paying special attention to the perinatal interval, over which the prevalent, 

multipotent fMaSC phenotype declines and differentiation ensues (Makarem et al., 2013a; 

Spike et al., 2012). The data establish the chronology of emerging cell types in the 

mammary epithelium, and underlying changes in chromatin accessibility. We also identify 

fMaSC gene signatures related to chromatin architecture and metabolism that have 

significance for fMaSC function and relevance for human breast cancers. Mapping the 

relationships between single-cell tran-scriptomes as cells differentiate reveals two patterns of 

gene expression that revise classic models of transcriptionally discrete cell types. First, 

individual fMaSCs co-express genes associated with differentiating mammary lineages. This 

supports a model where opposing lineage differentiation factors aid in specifying the 

uncommitted stem cell state (Loh and Lim, 2011). Second, the fMaSC-containing 

population constitutes a single distribution of heterogeneous transcriptional states without 

discrete subclusters corresponding to their measured stem cell fraction. This suggests that 

stem cell capacity is distributed across heterogeneous cell profiles. The observation has 

implications for the generation of stem cell activity during tissue repair and cancer 

progression, and could explain historical difficulties in purifying stem cells using limited 

markers.

RESULTS

Single-Cell Transcriptomes from Developing Mouse Mammary Glands Distinguish Cell 
States

We used two approaches to generate scRNA-seq data from embryonic, postnatal, and adult 

mammary cells sorted for surface Epcam, an epithelial specific marker present throughout 
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development on stem, progenitor, and differentiated mouse mammary epithelial cells 

(Figures 1A, S1A, and S1B) (Shehata et al., 2012; Spike et al., 2012). We used the 

Chromium Drop-Seq platform (10x Genomics) to obtain transcriptomes from E16 (n = 690), 

E18 (n = 1,047), postnatal day 4 (P4) (n = 849), and adult mammary cells (n = 3,838). This 

includes 786 Epcam+ adult cells sorted for coexpression of Cd49f, ~2% of which are 

inferred to be functional stem cells based on mammary reconstitution assays (Prater et al., 

2014; Shackleton et al., 2006; Spike et al., 2012; Stingl et al., 2006). We constructed a 

normalized gene expression matrix spanning these developmental stages composed of 6,060 

cells with 500–2,000 expressed genes per cell, and a total of 22,184 genes expressed in five 

or more cells (Andrews, 2010; Dillies et al., 2013; Dobin et al., 2013; Hu and Smyth, 2009; 

Katayama et al., 2013; Li and Dewey, 2011; Li et al., 2009; Lin et al., 2016; Marinov et al., 

2014) (Table S1). We also used the C1 system (Fluidigm) to focus in greater depth on the 

transition from the stem cell-rich, late embryonic stage to the immediate postnatal stage. 

With C1, we sequenced 262 cells, which included differentiated adult comparators with >1.5 

million reads, 4,000–9,000 genes per cell, and 13,355 genes expressed in five or more cells 

(Figures 1A and S1C–S1I; Table S2).

We first visualized the Chromium-derived data using t-distributed stochastic neighbor 

embedding (tSNE), a commonly used dimensionality reduction approach that plots cells 

with similar profiles as nearby points (Figures 1B, 1C, 1E, and 1F) (van der Maaten and 

Hinton, 2008). This analysis identified one small group of cells from multiple developmental 

stages, and seven other groups in which all cells derive from a single stage (Figure 1B). 

Based on their lack of Epcam RNA, and high levels of Vi-mentin RNA and other non-

epithelial markers, the small mixed cell group likely represents contaminating stroma 

(Figures 1C and S2A). Apart from these cells, adult cells comprised three major clusters, P4 

cells comprised two clusters, and E16 and E18 cells comprised one cluster each (Figure 1B). 

An analysis of known lineage markers indicates the adult groups correspond to basal cells 

(Itgb1+, Krt14+), mature luminal cells (Ly6a+, Krt8+), and alveolar precursor cells (Cd14+, 

Csn3+, Krt8+) (Figure 1C). However, we note that lineage-associated markers are often 

imperfect in that they show sporadic expression in other adult groups (Figure 1C). The data 

also show that individual cells from earlier developmental stages often express multiple 

lineage markers (Figure 1C). For example, while a minority of P4 cells exhibit a basal 

profile, the majority manifest luminal and alveolar features (e.g., Krt8, Csn3, and Cd14 

expression) in addition to Krt14 (Figure 1). This contrasts with the interpretation that 

prepubertal cells are largely basal (Pal et al., 2017).

We next applied non-negative matrix factorization (NMF) as an alternative approach to 

cluster samples into transcriptional cell types based on the 1,000 most variably expressed 

genes in the data matrix (Figures 1D and S1L) (Brunet et al., 2004; Lee and Seung, 1999; 

Saeed et al., 2003; Shao and Höfer, 2017). This analysis included sorted adult basal cells 

(Epcam+, Cd49f+). We observed a small cluster of mixed-stage cells corresponding to the 

mixed tSNE cluster and three major adult cell clusters: (1) a basal cluster including the vast 

majority of presorted adult basal cells, (2) the presumptive luminal alveolar group, and (3) 

the mature luminal group. Some P4 cells from the smaller of the two P4 tSNE clusters were 

grouped with the adult basal compartment in this analysis (Figures 1D and 1E). Importantly, 

embryonic epithelial cells again comprise a single cluster in this analysis.
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Functional assays indicate that up to 2% of adult basal cells, and 10%−50% of E18 cells 

possess mammary stem cell attributes, depending on the markers used for isolation (Dravis 

et al., 2015; Shackleton et al., 2006; Spike et al., 2012; Stingl et al 2006; Wang et al., 2015). 

We examined these populations alone by tSNE to attempt to identify minority stem cell 

clusters (Figure 1F). However, other than stromal or luminal alveolar contaminants, neither 

group showed obvious subclusters (Figure 1F). The contaminating cell types likely reflect 

the technical limitations of cell sorting, the biological inaccuracy of marker-based 

purification, or both. Similar to Pal et al. (2017), we did identify occasional basal cells 

expressing atypical markers such as Elf5, Muc1, and Kit, but these genes did not identify the 

same cells or a coherent subgroup, and mixed phenotype adult profiles did not occur at a rate 

exceeding the expected doublet frequency in these assays, ~1% for 10× derived profiles (see 

STAR Methods; 10× Chromium V2 Guide). These data suggest that either the functional 

stem cell state can be generated by different transcriptional programs or that multiple types 

of cells can act as facultative stem cells under the assay conditions employed for functional 

testing.

Discrete Mammary Epithelial Lineages Arise Postnatally with Loss of Balanced Lineage 
Factor Co-expression

As only the relationships between the most similar cells are well represented in tSNE, it can 

be difficult to interpret cellular relationship more globally across a diverse dataset. As an 

alternate approach to investigate the relationships between single-cell expression profiles, 

differentiation states, and developmental context, we plotted the single-cell data according to 

diffusion components (DCs), a noise-tolerant, non-linear dimensionality reduction method 

that reveals a global topology for the data based on local similarities between points 

(Coifman et al., 2005; Haghverdi et al., 2015) (Figures 2A and 2E). The resulting graph 

produced an intuitive developmental picture in which primitive (E16 and E18) and adult 

cells occupied opposite ends of the DC2 axis, while P4 cells localized to intermediate 

positions (Figure 2A). The regions occupied by E16 and E18 cells largely overlap, while P4 

cells form a continuum between the more primitive cells and those of the adult. Importantly, 

while adult cells occupy discrete distributions at various extremes along the DC1 axis, E16 

and E18 cells do not bifurcate and are instead positioned midway between the two DC1 

extremes. P4 cells distribute in a unique pattern along DC1, with a small group extending 

toward a tightly grouped set of adult cells (Figure 2A, bottom right quadrant) and a second 

larger group of cells extending as a single group toward the two major adult groups (upper 

right quadrant). We provide a web tool for the interactive visualization of gene expression 

across this dataset (http://uofuhealth.utah.edu/huntsman/labs/spike/d3.php).

Graphing cells according to the ratio of transcripts for the well-known luminal and basal 

markers, Krt8 and Krt14, respectively, is concordant with in situ staining for the products of 

these lineage-associated genes over the same developmental window (Figure 2B). That is, 

we observed the following: (1) cells with mixed keratin expression predominating early 

(E18.5); (2) emergence of a minority Krt14-expressing P4 population that correlates with a 

well-defined, elongating myoepithelial cell layer lining the P4 epithelium; (3) a majority of 

P4 cells harboring a mixed lineage Krt8+Krt14+ phenotype but positioned proximal to adult 

luminal cell types in the diffusion map; and (4) the resolution of this group into cells 
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expressing Krt8 but lacking Krt14 in the adult gland, as would be expected for mature 

luminal cells lining the ducts (Figure 2B). In addition, each NMF-derived cluster represented 

a single region of the diffusion map in the first two DCs with the exception of NMF group 1. 

NMF1 corresponds to the group of cells from mixed developmental stages with stromal 

expression patterns and was largely distinguishable from epithelial cells along a higher DC 

(DCS) (Figure 2C). NMF-VII and NMF-II localize to the different extremes of DC1 and 

represent basal cells and Esr1+ luminal cells expressing Ly6a (the gene for Seal), 

respectively (Figures 1C, 2C, and S2C). NMF-IV is positioned intermediately and contains 

cells expressing Wfdc18, Csn3, Csn2, Kit, and Itga2, indicative of an alveolar luminal 

phenotype (Figures 2C and S2B) (Pal et al., 2017).

These distributions imply that embryonic cells are distinguished from adult cells by 

expression patterns that change gradually over developmental time along DC2, and by an 

intermediate phenotype with respect to lineage differentiation (DC1). We chose a set of 

markers of these differences for cross-validation in situ. Consistent with the predicted 

pattern of expression from scRNA-seq, multiplex in situ hybridization distinguished adult 

cells expressing Krt14, both Wfdc18 and Krt8, or Krt8 alone (Figure 2D). By contrast, most 

cells in the fetal mammary epithelium co-express all three markers (Figure 2D). Similarly, 

targets identified in scRNA-seq data as being commonly expressed in fetal mammary cells, 

but not adult cells, e.g., Sostdc1, were identified in situ in fetal but not adult tissue (Figure 

2D).

These in-depth analyses using tSNE, NMF, and diffusion mapping were concordant in that 

none was able to identify cellular subpopulations corresponding to the percentage of stem 

cells estimated by functional assays. Furthermore, they point to a predominance of mixed 

lineage phenotypes, corroborated in situ, in early development that is lost as development 

progresses.

Epithelial Lineage Precursors Exhibit Balanced Transcription Factor Activity

The above expression patterns suggest that, as development progresses, E18 cells resolve 

into two distinct cell types by P4. The first represents a basal population, while the second 

tends toward luminal specification in spite of persistent co-expression of some basal 

markers, such as Krt14. This population then resolves into the two distinct adult luminal 

populations. This model is consistent with the multi-potential state of fMaSCs, as well as 

recent observations from lineage-tracing experiments suggesting that independent Esr1+ and 

Esrl− populations of luminal cells are established by adulthood (Van Keymeulen et al., 2011; 

Wang et al., 2017).

We constructed pseudotemporal trajectories for this simple lineage bifurcation model using 

principal curves through proximal populations in the first two components of the diffusion 

map, although the data do not rule out other differentiation trajectories (Figure 2E) (Hastie, 

1989). We then combined pseudotemporal ordering of cells with SCENIC analysis to 

analyze the chronology of transcription program activation over mammary development 

(Figures 2F and S2C) (Aibar et al., 2017).
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Among the differentially activated regulons identified by this approach were correlated sets 

that were highly expressed in one of the three adult cell types as well as regulons that typify 

embryonic and/or P4 cells and are downregulated as development progresses (Figure 2F). 

Each major adult cell type was also characterized by certain repressed regulons, such as Ehf 

for basal, Creb3l2 for alveolar, and Atf4, Cebpd, Cebpb, and YY1 for ER+ luminal cells 

(Figure 2F). While E16 cells were largely negative for adult-associated regulon activity, 

there was a marked and balanced activation of regulons corresponding to adult cell types at 

E18 and this balanced pattern persisted into P4 cells (Figure 2F, asterisk). Primitive cells 

positioned after the branch points of the pseudotemporal trajectories grossly retained a high 

degree of similarity to their pre-branchpoint counterparts. However, differential regulation of 

lineage-associated factors could be observed. For instance, elevated Trp63 activity is evident 

in cells trending toward the basal branch, while Esr1 and Spdef activity is upregulated in P4/

NMF-IV cells that trend toward the Esr1+ luminal group (Figure 2F). The luminal 

determinant FoxA1 was upregulated in most P4 luminal cells but was subsequently 

downregulated in the Esrl− luminal cells of the adult (Figure 2F).

A Continuum of Gene Expression Profiles Defines Early Stem Cell State Transitions in the 
Mammary Gland

To gain a more highly detailed view of changing gene expression patterns over the critical 

period in early development where multipotent fMaSC generate more committed cells in the 

postnatal mammary epithelium (Figures 2 and S3) (Makarem et al., 2013a; Spike et al., 

2012), we obtained deeper transcriptomes of single cells across the E18-to-P4 transition 

using the C1 microfluidics platform (Fluidigm), with inclusion of adult cells for reference 

(Figure 1A; Table S2). For this dataset, we clustered samples by NMF into putative cell 

types based on their expression patterns of the 1,500 most variably expressed genes (Figure 

S1J). We found that six clusters provide a suitable division of the data (Figures 3A and 

S1K). NMF clusters 1–4 almost exclusively comprise cells from a single developmental 

stage, with cluster 1 predominantly comprising P1 cells, while clusters 2–4 contain adult 

cells (Figure 3A; Table S2). In contrast, the compositions of clusters 5 and 6 were mixed 

among E18, P1, and P4 cells, suggesting the presence of cell states that vary in their 

prevalence across organismal development rather than being strictly defined by the time at 

which the samples were isolated.

Similar to our Chromium-based analysis, adult cells and E18 cells occupied opposite ends of 

the resulting graph along one DC axis (DC1), with P1 and P4 cells occupying intermediate 

positions (Figure 3B). The regions occupied by E18, P1, and P4 cells overlapped 

significantly in a continuum of transcriptional changes related to advancing organismal age. 

Adult subsets again occupied the extremes of a second DC axis (DC2), corresponding to 

luminal and basal lineages based on their expression of lineage-associated keratins (Figures 

3B–3D), and could be further subdivided to reveal a population of presumptive alveolar cells 

despite their lower numbers in this analysis (Figures 3A, 3C, 3E, S4D, and S4E) (Visvader 

and Stingl, 2014). However, as in Chromium data, the lineage bifurcation noted for adult 

cells was largely absent from E18, P1, and P4 cells, and again we did not observe discrete 

subpopulations correlating in number to the predicted stem cell frequencies (Figures 3B–

3E). However, we could identify other minority cell types as NMF1 and −4 segregated from 
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the major epithelial clusters along DC5 and DC3, respectively (Figure S4A). In contrast, 

most of the variance in the remaining four NMF groups was directed along the first two DCs 

(Figures 3C and 3E).

We next found signature genes distinguishing each major predicted cell type (i.e., NMF1 to 

−6) using a pairwise, non-para-metric, rank-product (RP) approach (Breitling et al., 2004). 

We took the genes that were over-represented in each NMF group versus every other NMF 

group as the group-specific gene signature (Figures 3F and 3G). This unsupervised 

differential expression analysis led us to denote the small cluster NMF1 as “Matrix”-

expressing cells based on their expression of mesenchymal/matrix-related transcripts (e.g., 

Coll, 3, 5, 6, 12, 15, 18; Fn1; Vim), and to denote NMF4 as “lmmune”-related cells based on 

their expression of class II transcripts (e.g., B2m; Fcerlg; H2-Aa, Ab1, Eb1, M2, Q6, Q7, 

T22) (Figure 3G). NMF1 and −4 in this analysis may represent subsets of the non-epithe-lial 

groups identified from Chromium data (Figures 1 and 2). While the origins and functions of 

these minority populations remain to be determined, we note that MHC-expressing 

mammary cells have been described (Elliott et al., 1988: Forero et al.. 2016). The analysis 

also confirmed the adult basal and luminal phenotypes of NMF2 and −3, respectively, as it 

re-identified a known basal and luminal markers for each group (Skibinski et al., 2014) 

(Figure 3G; Table S2).

Identification of fMaSC Expression Programs from scRNA-Seq

The data indicate that NMF5 corresponds to the fMaSC transcriptional state, as (1) DC 

analysis localizes NMF5 to a distal position relative to adult cells, (2) most NMF5 cells 

derive from a developmental time point with very high mammary stem cell activity, and (3) 

the NMF5 signature (857 genes, hereafter “fMaSC signature”) includes Eya2, Itag6, Nrg1, 

Sostdcl, Sox10, Myb, Lsr, Sfrpl, Bcl11a, Pthlh, Sema3B, Slitrk2, and others that we 

previously identified as highly expressed in bulk fMaSC signatures, including some we have 

shown to be functionally relevant (Dravis et al., 2015; Spike et al., 2012) (Figures 3G and 

S4B). The single-cell-derived fMaSC signature also includes many genes not identified in 

our prior bulk population studies (Spike et al., 2012) (Figures 3G and S4B; Table S3). Gene 

ontology (GO) enrichment analysis revealed that the fMaSC signature comprises genes 

involved in a variety of cellular processes of potential importance for stem and progenitor 

cells, including cellular metabolism, chromatin conformation, cell cycle, and tissue 

development (Maere et al., 2005; Shannon et al., 2003) (Figure 3H).

As the data imply that fMaSCs are defined both by the unique features captured in the 

fMaSC signature and by co-expression of lineage-associated factors, we also wanted to 

identify gene sets reflecting this basal-luminal apposition. To this end, we examined the 

results of rank product tests between NMF2, −3, and −5 cells (adult luminal, adult basal, and 

fMASC groups, respectively), to identify a set of genes termed “balancer” signatures (Figure 

3I; Table S3). We generated a “basal balancer signature” (i.e., genes expressed in fMASC 

and basal cells more highly than luminal cells) of 937 genes including known basal markers 

such as Itga6 and Krt14. Similarly, we generated a “luminal balancer signature” (i.e., genes 

expressed by both luminal cells and fMaSCs more highly than basal cells) of 477 genes, 

including, for example, Cd24a and Krt8 (Figure 3I; Table S3). The co-expression of these 
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balancer signatures in individual fMaSC and their lineage-specific expression later in 

development is illustrated in Figure 3I. Although the specific mechanisms by which gene 

products belonging to balancer signatures effect the multipotent and uncommitted fMaSC 

state remain to be elucidated, we computationally identified numerous luminal balancer 

genes reported to directly interact with basal balancer genes in the MINT interaction 

database, suggesting that some of the mechanisms are likely to be direct (Figure S5A). The 

proteins encoded by balancer signature genes extend beyond transcription factors and 

represent varied aspects of signaling, metabolism, and microenvironmental response (Figure 

S5A; Table S3). These data, together with our regulon analysis, in situ detection of lineage-

associated transcripts, the pattern of lineage-associated keratin protein expression, and our 

previous single-cell RT-PCR analysis support a model in which the fMaSC state is 

established by balanced expression of lineage factors and specifiers (Figures 1C, 2C, 2D, 2F, 

and 3I) (Villadsen et al., 2007; Rodilla et al., 2015; Spike et al., 2012; Sun et al., 2010).

Loss of Lineage Factor Balance Shortly after Birth

NMF6 cells principally derive from postnatal mammary epithelia and have an expression 

signature (234 genes) composed of transcription factors such as Jun, Rela/b, Nfkb2, and 

Sox4, chromatin modifiers including Arid1a,Top2A, Jmjdlc, and Jmjd1c, cell adhesion and 

cell-cell junction proteins including claudins 1 and 6, Icam, and many others (Figure 3F; 

Table S2). Although they comprise a single group in the initial analysis, NMF6 cells are 

more dispersed along the DC2 axis than the NMF5/fMaSC group. They also exhibit less 

balanced expression of the lineager balancer signatures described above, suggesting NMF6 

cells might be divisible with regard to their relative luminal and basal characteristics 

(Figures 3C and 3I). Thus, while a few early postnatal cells have already committed to a 

basal fate and were grouped with NMF3, the majority of postnatal cells comprise NMF6 and 

appear to represent a mixed mammary precursor/progenitor (hereafter, MMPr) (Figures 1D, 

1E, 3A–3C, 3E, and 3I; Table S2).

In light of this, and as fMaSC/NMF5 and MMPr/NMF6 are relatively large groups (76 and 

66 cells, respectively), we repeated the divisive NMF procedure on NMF5 and NMF6 

independently to determine whether they show early lineage bifurcation events. We could 

subdivide NMF5 and NMF6 into two subclusters each with high cluster stability (NMF5a 

and -b, CC = 0.96; NMF6a and -b, CC = 0.88) (Figure 3A). We then examined their relative 

positions in the diffusion map and their differential gene expression (Figures 3C and 3E). 

While these subclusters occupied largely overlapping regions, NMF5a and -b were centered 

at different points along the embryonic-adult axis (DC1) and NMF6a and 6b were centered 

at different points on the basal-luminal axis (DC2) (Figures 3C and 3E).

To uncover the basis of these distributions, we delineated rank-product gene expression 

differences for NMF5a versus −5b and NMF6a versus −6b, and their potential cell fate and 

type distinctions (Table S2). The MMPr groups are characterized by genes indicative of 

lineage specification including Cdh1 and Krt8 in NM6a (luminal) and Acta2 and Krt14 in 

NMF6b (basal) (Table S2). Consistent with this, there is also a positive correlation between 

the expression of luminal and basal balancer signatures and the genes subdividing these 

MMPr groups (Figures S4C and S4F). We therefore designate these MMPr subclusters and 
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their signatures as MMPr-basal and MMPr-luminal according to their correlated balancer 

signatures (Figures 3G and 3I). In contrast, the data suggest that NMF5 is composed of a 

transcriptionally heterogeneous population not readily separated into luminal and basal 

subtypes. Rather, when subclusters from NMF5 (NMF5a and -b) were derived and 

contrasted, their differentially expressed genes correlated with graded expression of the 

fMaSC signature derived from the undivided NMF5 cluster (Figure 3J). We therefore sought 

to investigate select features represented in the fMaSC signature that distinguish fMaSCs 

from their adult counterparts.

Changes in Chromatin Regulation and Accessibility Accompany fMaSC Differentiation

The GO enrichment for chromatin regulators was of particular interest as it could help 

explain the multipotent expression pattern identified in fMaSCs (Figure 3H). To determine 

whether the fMaSC state is accompanied by altered chromatin states relative to adult 

epithelia, and to determine whether lineage-associated loci were heterochromatic, we 

examined global chromatin accessibility by assay for transposase-accessible chromatin using 

sequencing (ATAC-seq) (Andrews, 2010; Bolstad, 2018; Buenrostro et al., 2015; Langmead 

et al., 2009; Li et al., 2009; McLean et al., 2010; Quinlan and Hall, 2010; Ramirez et al., 

2014; Zang et al., 2009; Zhang et al., 2008). E18 cells have uniquely accessible regions 

(UARs) corresponding by proximity to 1,640 genes, and uniquely repressed regions (URRs) 

corresponding to 401 genes when compared to flow-sorted adult basal (Cd49f+, Epcaml

°w/med), luminal progenitor (Epcam+, Cd61+), and mature luminal (Epcam+, Sca1+) cells 

(Figures 4A–4D and S5B; Table S3). Genes at these loci correspond to developmental and 

metabolic processes and show significant overlap with fMaSC signature genes (Figures 4C 

and S5C). Overall, E18 cells show greater accessibility at fMaSC signature genes as 

expected (Figure S5D). Most fMaSC signature genes, however, were not uniquely accessible 

in E18 cells, suggesting other regulatory mechanisms of transcriptional control in response 

to changing signals in the developmental environment (Figure S5C). Interestingly, P4 cells 

showed intermediate accessibility across these loci (Figures 4A, 4B, and S5B).

We also identified UARs and URRs corresponding to each major adult lineage sorted by 

fluorescence-activated cell sorting (FACS) (Figures 4D and S5B) (Dravis et al., 2018). A 

large number of loci distinguished each lineage from the others in terms of both UARs and 

URRs (Figure S5A). fMaSCs exhibit modest and equivalent accessibility for both basal and 

luminal progenitor-associated loci, although they lack significant accessibility at loci 

associated with Epcam+Sca1+ luminal cells. Even more strikingly, fMaSCs show 

accessibility at adult lineage URRs, suggesting that in spite of their more universal 

expression of Ezh2 and associated chromatin methylation (Figures S5E and S5F), fMaSCs 

have not yet silenced chromatin regions that define discrete lineages in the adult (Figures 

4A–4C).

Closer inspection of lineage-associated genes illustrates the multilineage accessibility of 

fMaSCs compared to adult cells (Figure 4D). For example, while Sca1+ luminal cells show 

little accessibility in Krt14 and Csn3 proximal regions, Csn3 is accessible in Cd61+ luminal 

cells. Conversely, basal adult cells (Cd49f+, Epcamlow/med) have lower accessibility at Krt8 

and Csn3 than either luminal population, although basal cells generally have more open 
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chromatin across multi-lineage markers than luminal cells (reported in detail in Dravis et al., 

2018) (Figure 4D). Chromatin accessibility of P4 cells indicate that the FACS-sorted basal 

cells show greater accessibility at basal associated loci (e.g., Krt14) and luminal cells show a 

greater accessibility at luminal associated loci (e.g., Krt8, Csn3). However, each sorted 

population also shows appreciable accessibility for genes of the opposing lineages, 

indicating the P4 cells remain at an intermediate stage of lineage commitment (Figures 4B 

and 4D). These chromatin patterns mirror the gradual lineage restriction implied by 

diffusion maps of their associated single-cell transcriptomes (Figures 2F and 3G).

fMaSC Metabolic Profiles Are Lost during Differentiation

Metabolic factors are overwhelmingly represented among the fMaSC-signature gene 

ontologies (Figure 3H). Many of the fMaSC-signature genes encode enzymes involved in 

glycolytic metabolism, the Krebs cycle, and enzymes and transporters involved in 

anaplerotic mechanisms such as fatty acid oxidation. Therefore, we modeled how flux 

through these pathways might change as a function of development-associated changes in 

gene expression (Figure 5A). We noted elevated expression of several glycolytic enzymes in 

fMaSCs and MMPr cells relative to adult cells, but also a potential for shunting the 

glycolytic end-product, pyruvate, away from the mitochondria and oxidative 

phosphorylation, as in the stem cell- and tumor-associated Warburg effect (Figure 5A) 

(ShyhChang et al., 2013). fMaSCs have increased RNA for lactate dehydrogenase (Ldh), 

and ~90% of fMaSCs express Pkm2, a splice isoform of pyruvate kinase (Pkm). Pkm2 

incorporates exon 10 rather than exon 9, reported previously to increase lactate formation 

(Li and Dewey, 2011; Mazurek et al., 2005; Robinson et al., 2011) (Figures 5A–5C). 

Surprisingly, all fMaSCs co-express the Pkm1 isoform. The majority of adult cells express 

either Pkm1 or Pkm2 or had Pkm levels below isoform detection limits (Figure 5C). We also 

noted marked elevation in embryonic cells of transcripts for several Krebs cycle enzymes 

and factors capable of providing acetyl-CoA to the mitochondria via free fatty acids. These 

observations are consistent with the evolving understanding that “Warburg-shifted” cells use 

alternative mechanisms to fuel Krebs cycle reactions (ShyhChang et al., 2013) (Figure 5A). 

E18 cells also have elevated Psatl and Gpt RNA, encoding two enzymes that can balance 

interconversion of pyruvate and glutamate with alanine and α-ketoglutarate (Figure 5A) 

(Coloff et al., 2016). While numerous metabolism-related transcripts associated with E18 

mammary epithelium were also elevated in E16 cells, important differences were noted. For 

instance, Psat1 and Gpt transcripts were also elevated in E18 relative to E16, while E16 cells 

showed elevated levels for the glutamine transporter, Slc38a1 (Figure 5A).

The correlation between changing stem cell content in early mammary development and the 

above changes in expression of metabolic factors led us to hypothesize that differentiating 

cells would be more dependent on mitochondrial pyruvate transport than stem cells, an 

effect described previously in other systems (Flores et al., 2017; Schell et al., 2017). We 

therefore tested the prediction that inhibiting the mitochondrial pyruvate transporters (Mpc1, 

−2) should differentially affect stem and differentiating cells using in vitro clonal organoid 

formation assays in the presence and absence of a potent and specific Mpc inhibitor, 

UK5099 (Sigma-Aldrich) (Gray et al., 2014). UK5099 treatment significantly alters 

organoid composition in differentiation-promoting media where presumptive lineage-
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committed cells contribute significantly to organoid expansion (Spike et al., 2014) (Figures 

5D, S6A, and S6B). Multicellular fMaSC-derived organoids grown in these conditions 

contain significantly fewer cells exclusively expressing Krt8 or Krt14 and an increased 

proportion of Krt8+Krt14+ co-expressing cells. This effect is associated with a partial 

reduction in organoid-forming efficiency and size that is not observed in a maintenance 

media where stem cell capacity is preserved during culture (Spike et al., 2014) (Figures 5E, 

5F, and S6B).

The fMaSC Metabolic Program Has Parallels in Triple-Negative Breast Cancers and 
Metastases

We previously showed that bulk fMaSC signatures are related to expression profiles from 

human breast cancer patient samples (Pfefferle et al., 2013; Pfefferle et al.,. 2015; Spike et 

al., 2012). We therefore asked whether the refined single-cell-derived fMaSC signature and 

its metabolic components demarcate the same breast cancers (Cancer Genome Atlas, 2012; 

Ciriello et al., 2015; Forero et al., 2016; Forero-Torres et al., 2015; Parker et al., 2009; 

Varley et al., 2014). As we observed previously, fMaSCs share expression signature 

similarity with basal-like breast cancers, as well as occasional cancers in other aggressive 

subtypes such as luminal B and Her2 tumors (Figure 6A) (Spike et al., 2012). However, only 

Her2 tumors and basal-like tumors showed frequent elevation of fMaSC-like metabolic 

profiles, whereas the equally proliferative luminal B tumors did not (Figure 6B). We also 

generated a small eight-gene metabolic signature (Metab-8) to reflect metabolic processes 

proximal to the mitochondria in our fMaSC metabolism model (Figure 5A; Table S3). This 

signature was composed of the last three steps in lactate-directed glycolysis (Eno, Pkm, 

Ldh), three fatty acid pathway genes (Fabp5, Hadh, Acat), and genes controlling the balance 

between pyruvate, cytosolic α-ketoglutarate, alanine, and glutamate (Psat1, Gpt) (Figure 

5A). The median expression of Metab-8 was highest in basal-like cancers, which include a 

subset of the most proliferative cancers and most of the clinically designated triple-negative 

breast cancers (TNBCs) (Figures 6C and 6D). Furthermore, among TNBCs, Metab-8 was 

highest in TNBC metastatic lesions (Figure 6E).

DISCUSSION

This work provides a comprehensive scRNA-seq resource for the developing mammary 

gland. We mine the data to show that multipotent fMaSCs are typified by co-expression of 

lineage-associated factors and transcriptional programs reminiscent of opposing lineage 

specifiers described in embryonic stem cells (Loh and Lim, 2011). While the present work 

was under review, mixed-lineage expression patterns were reported for mammary cells as 

early as E14 (Wuidart et al., 2018). Although E14 cells lack stem cell activity by in vitro 
colony assays and transplantation of single cells, we have previously shown that transplant 

of intact rudiments at this stage does reconstitute mammary tissue, presumably through 

preservation of spatial cues and acquisition of repopulating capacity in the days subsequent 

to transplant (Spike et al., 2012). This suggests that additional factors are required to confer 

intrinsic mammary stem cell competence and subsequent lineage segregation.

Giraddi et al. Page 12

Cell Rep. Author manuscript; available in PMC 2018 December 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



At the population level, the fMaSC transcriptional profile is reflected in open chromatin 

across lineage-associated genes in spite of high PRC2 activity. It remains to be determined 

whether the PRC2 machinery is only operative in these cells at lineage-unassociated loci or, 

alternatively, whether there are regulatory mechanisms directly opposing PRC2-facilitated 

lineage restriction. Ultimately, as differentiation ensues a lineage bifurcation events are 

revealed where this balance is lost and opposing lineage genes become restricted. Thus, a 

continuum of E18 cell states resolve into two discrete populations by P4. One represents a 

distinct basal (myoepithelial) phenotype, and the other represents a luminal oriented 

precursor population that is itself a continuum between cells retaining basal features and 

more mature, luminally oriented expression profiles. The retention of mixed basal features in 

this majority population may have contributed to the apparently incorrect interpretation that 

prepubertal mammary epithelium is composed of basal oriented cells (Pal et al., 2017). As 

development progresses further, these mixed mammary precursors are replaced by discrete 

luminal cell types corresponding to Esr1+ and Esrl− lineages. Although basal cells form a 

transcriptionally distinct cell type in the adult, it is interesting to note (as in Dravis et al., 

2018) that they show some chromatin accessibility at luminal gene loci similar to fMaSCs. 

We speculate that this favors lineage plasticity and enables acquisition of multilineage 

potential upon transplantation, in wounding conditions or following ex vivo culture (Ge et 

al., 2017; Prater et al., 2014; Shackleton et al., 2006; Stingl et al., 2006).

Despite the similarities between fMaSC and adult basal populations in chromatin 

accessibility, fMaSCs are transcriptionally distinct from basal and other adult cells, and this 

extends beyond their active co-expression of lineage-specific genes. At the single-cell level, 

they show expression of factors that may relate to their developmental plasticity and 

proliferative potential, as well as to their connection to human breast cancers. In this regard, 

we examine metabolic transcript profiles in fMaSCs and show that they are shared by human 

breast cancers. Prompted by the changing pattern of these profiles over developmental time, 

we demonstrate a changing sensitivity to UK5099 as cells differentiate in vitro. We take 

these data to indicate that differentiating cells but not bipotent stem/progenitor cells 

critically depend upon mitochondrial pyruvate uptake. However, tools are not yet available 

to assess metabolomics directly at the resolution of single cells, and at this time we cannot 

rule out the possibility that the observed differential sensitivity relates to other effects of 

UK5099, although its affinity for secondary targets is several hundred-fold lower than for 

mitochondrial pyruvate carrier (MPC) (Gray et al., 2014).

Importantly, although proliferation is often associated with enhanced glycolytic rate, the 

fMaSC metabolic gene profile does not seem to be strictly linked to proliferation. For 

instance, there are many proliferative cells and tumor types that lack this specific metabolic 

profile (Figures 6, S6C, and S6D). In single-cell-derived organoids, Krt8+Krt14+ cells 

increase in number and proportion under UK5099 treatment, while the generation of 

presumptive lineage committed cells is blocked. Still, it would not be surprising if the 

different metabolic programs lead to different rates of proliferation and smaller colonies in 

the absence of lineage committed progenitors. Most organoids produced from adult cells 

express only Krt8, but UK5099 treatment enabled production of organoids containing both 

basal and luminal cells indicative of effects on plasticity beyond the possible proliferative 

effects (Figure S6B). It will be important to determine whether this fMaSC-related profile in 
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tumors helps pinpoint metabolic liabilities for more precise therapeutic targets than those 

aimed at all proliferating cells.

Our scRNA-seq analysis also led us to important observations on the nature of 

transcriptional heterogeneity in uncommitted cells. Although mammary stem cell estimates 

vary considerably depending upon the markers and assay used to assess their potential, the 

fetal cell population from which we derived our single-cell data exhibits 30%−50% stem cell 

activity measured by in vitro sphere formation, and 10%–30% activity measured by 

transplantation (Dravis et al., 2015; Spike et al., 2012; Trejo et al., 2017) (Figure S3). 

Despite this prevalence, our analyses did not reveal an equivalent transcriptionally distinct 

stem cell subpopulation. Similarly, although stem cell content is much lower in the adult 

basal population (~2%), our transcriptional profiling of >1,000 adult basal cells should have 

enabled us to identify a transcriptionally distinct stem cell population. However, we did not. 

Our detection of other rare transcriptional cell types suggests this was not due to the 

limitations of the sequencing and bioinformatics strategies employed. Work by Bach et al. 

(2017) also found the adult basal compartment to be relatively indivisible at the tran-

scriptome level. We acknowledge that our analysis of stem cell content and the above 

scRNA-seq data would exclude any epithelial cells lacking Epcam expression.

We consider it likely that stem cell activity is probabilistically distributed throughout the 

heterogeneous cell population and is likely to be highly dependent on external cues for its 

maintenance (e.g., Spike et al., 2014). Performance in functional assays may therefore 

critically depend on the context under which a particular cell with stem cell potential is 

challenged (Spike, 2016; Wahl and Spike, 2017). This idea may help to refine a long-

standing concept about the nature of compartmentalized functions and rigid cell types in 

complex tissues, and shed light on obdurate limitations of stem cell purification by surface 

markers. In our data, markers were often enriched in a given transcriptionally defined cell 

type but were never perfect, differing in their levels, being undetectable in some cells, and 

being expressed occasionally in unexpected cell types. Transcriptional heterogeneity may 

also help explain discrepancies in lineage tracing that have suggested lineage-restricted stem 

cells or multipotent stem cells depending on the chosen promoter for tracing, context, 

methodology, and interpretation.

Transcriptional heterogeneity associated with variable stem cell potential has also been 

identified in embryonic stem cells, intestine, lung, and skin, where perturbations of 

homeostasis can promote facultative stem cell activity and create functional states and niches 

(Blanpain and Fuchs, 2014; Hough et al., 2009). Expression profiles and their discreteness 

could be strongly influenced by environmental context. Indeed, it is tempting to speculate 

that a lack of a homeostatic niche environment is the critical feature linking early 

development, wounding, and cancer in the generation of cellular heterogeneity, mixed 

lineage phenotypes, and associated cellular plasticity among cells that may already harbor 

the intrinsic flexibility to respond (e.g., Ge et al., 2017, and the present study). 

Transcriptional heterogeneity and plasticity are likely to be even greater in tumor settings 

due to genomic instability, therapies, and inconstant microenvironments. It may be necessary 

to map the continuum of stem cell-like states to understand how they contribute to cell 

fitness in particular settings. This may also enable the development of effective therapeutic 
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combinations directed against plastic cell states that critically contribute to intra-tumoral 

heterogeneity during cancer progression.

The present work provides a resource for uncovering functionally relevant mechanisms of 

stem cell regulatory biology with coopted roles in tumorigenesis. Based on our analysis of 

the data, it also has the potential to impact the way we conceptualize “cell type” in the 

mammary gland and other complex tissues, and to replace classical models based on rigid 

cell hierarchies with a more fluid, physiologically adaptable, and robust, if experimentally 

challenging, idea.

STAR ★ METHODS
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Alexa Fluor 647 anti-CD326 (Epcam) Biolegend Cat# 118212; RRID:AB_1134101

FITC anti-Cd49f (ITGA6) Stem Cell Technologies Cat# 60037FI.1; RRID:AB_2734790

Anti-Krt14 Biolegend Cat# 905304; RRID:AB_2616896

Anti-Krt8(TROMA-1) DSHB Univ. of Iowa Cat# AB-531826; RRID:AB_531826

Anti-H3K27me3 Millipore Cat# 07–449; RRID:AB_310624

FITC-anti rat lgG2 Thermo Fisher Cat# PA1–84761; RRID:AB_933936

PE-anti rabbit IgG Santa Cruz Biotechnology Cat# SC-3739; RRID:AB_649004

Anti-BrdU Bio-Rad Cat# MCA2060GA; RRID:AB_10545551

Chemicals, Peptides, and Recombinant Proteins

UK5099 Sigma Aldrich Cat# PZ0160

bFGF Stem Cell Technologies Cat# 78003

EGF Sigma Aldrich Cat# E4127

DAPI Thermo Scientific Cat# 62248

Urea Sigma Cat# U5378

N.N.N’N’-tetrakis (2-hydroxypopryl) ethylenediamine Sigma Cat# 122262

Polyethylene glycol mono-p-isooctylphenyl ether/
Triton X-100

Sigma Cat# 93443

2,2,2’-nitrilotriethanol Sigma Cat# 90279

Critical Commercial Assays

Chromium prep 10x Genomics Cat# 120237

Nextera DNA library kit Illumina Cat# FC-121–1030

TapeStation DNA high sensitivity kit (D1000) Agilent Cat# 5067–5585

NEBNext High Fidelity 2x PCR mix NEB Cat# M0541

RNAscope Multiplex Fluorescent v2 ACD Bio, Newark CA Cat# 323110

SMARTer Ultra Low RNA kit Clontech Cat# 634936

SMART-Seq® v4 Ultra® Low Input RNA Kit for 
Sequencing

Clontech Cat# 634888

Advantage 2 PCR Kit Clontech Cat# 634206

C1 Single-Cell auto Prep Reagent Kit for mRNA Seq Fluidigm Cat# 1006201

Bioanalyzer RNA Pico Kit Agilent Cat# 5067–1513

Quanti-it Pico-green dsDNA assay kit Thermo Fisher Cat# P11496

LIVE/DEAD kit Invitrogen Cat# MP03224

AM Pure XP beads Agencourt Cat# A63880

C1 Single-Cell mRNA Seq IFC, 10–17 μm Fluidigm Cat# 100–6041

ERCC RNA spike in mix Thermo Fisher Cat# 4456740

Illumina Nextera XT DNA sample preparation kit Illumina Cat# FC-131–1096

Illumina Nextera XT DNA sample preparation index 
kit

Illumina Cat# FC-131–1002

Deposited Data

FastQ sequencing files NCBI sequence read archive and GEO https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE111113 and https://trace.ncbi.nlm.nih.gov/Traces/sra/

SAMN07138894; GSE111113

Experimental Models: Organisms/Strains

C57BL/6 Charles River Strain Code: 027

CB17/lcr-Prkdcscid/lcrlcoCrl (SCID) Charles River Strain Code: 236

Software and Algorithms

Bowtie http://bowtie-bio.sourceforge.net/ Langmead et al., 2009
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REAGENT or RESOURCE SOURCE IDENTIFIER

MACS2 http://liulab.dfci.harvard.edu/MACS/ Zhang etal., 2008

Bedtools http://bedtools.readthedocs.io/en/latest/ Quinlan and Hall, 2010

Samtools http://www.htslib.org/doc/samtools.html Li etal., 2009

Deeptools https://deeptools.readthedocs.io/en/latest/ Ramirez etal., 2014

GREAT http://great.stanford.edu/public/html/index.php McLean et al., 2010

SICER https://home.gwu.edu/~wpeng/Software.htm Zang etal., 2009

preprocessCore (R) https://www.bioconductor.org/packages/release/bioc/html/preprocessCore.html Bolstad, 2018

Plotly Plotly Technologies; https://plot.ly N/A

rtsne https://cran.r-project.org/web/packages/tsne/ van der Maaten and Hinton, 2008

NMF (R) https://cran.r-project.org/web/packages/NMF/ Lee and Seung, 1999

SCENIC https://github.com/aertslab/SCENIC Aibar etal., 2017

R 3.3.0 (for Mac OsX) https://cran.r-project.org/bin/macosx/old/ R-3.3.0.pkg

Destiny (Diffusion Maps) https://bioconductor.org/biocLite.R Haghverdi etal., 2015

TM4-MeV4.8 mev.tm4.org Saeed etal., 2003

Non-Negative Matrix Factorization mev.tm4.org Lee and Seung, 1999

Rank products mev.tm4.org Breitling etal., 2004

Cytoscape 3.3.0 www.cytoscape.org Shannon etal., 2003

BiNGO http://apps.cytoscape.org/apps/bingo Maere etal., 2005

FastQC 0.11.2 http://www.bioinformatics.babraham.ac.uk/projects/fastqc Andrews, 2010

RSEM 1.2.29 https://github.com/deweylab/RSEM/releases Li and Dewey, 2011

STAR 2.4.2a https://github.com/alexdobin/STAR Dobin etal., 2013

IGV2.3.83 https://software.broadinstitute.org/software/igv/ Robinson etal., 2011

ELDA http://bioinf.wehi.edu.au/software/elda/ Hu and Smyth, 2009

Other

Epicult-B Basal Medium (mouse) Stem Cell Technologies Cat# 05611

Epicult-B Proliferation Supplement (mouse) Stem Cell Technologies Cat# 0562

B27 Supplement GIBCO Cat# 17504044

Hydrocortisone Sigma Aldrich Cat# H4001

Collagen ase/Hyaluronidase Stem Cell Technologies Cat# 07912

Dispase Stem Cell Technologies Cat# 25300–054

Trypsin GIBCO by Life Technologies Cat# 25300–054

Fetal Bovine Serum Serum Source Cat# FB22–500

Matrigel (complete) Corning Cat# 354234

Matrigel (growth factor reduced) Corning Cat# 356231

DMEM-F12 (no phenol red) Thermo Fisher Cat# 21041025

CONTACT FOR REAGENT AND RESOURCE SHARING

Requests for further information and resources may be directed to Lead Contact Benjamin T. 

Spike (benjamin.spike@hci.utah.edu)

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice—C57BL/6 mice were obtained from Charles River as 10–16 week old adults or as 

timed pregnant mothers, or were bred in house to produce fetal, postnatal and adult tissues. 

Three-week old CB17 SCID mice were also obtained from Charles River as recipients for 

transplantation experiments and 8–10 week old CB17 SCID mice were obtained from 
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Charles River as recipients. All mice used in these studies were female. All animals were 

handled in accordance with IACUC/AAALAC and other institutional ethics guidelines.

METHOD DETAILS

Isolation of Single Cells—Mammary tissue was dissected from C57BL76 mice at the 

developmental stages indicated. The number 4 mammary gland from 10 to 16-week-old 

nulliparous C57BL/6 female mice was used for adult samples. Single cell suspensions were 

obtained as described previously (Spike et al., 2012). All dissociation reagents were 

purchased from Stem Cell Technologies (SCT), unless otherwise specified. Freshly dissected 

tissues were placed directly in EpiCult-B basal medium containing hydrocortisone. 

Following dissection, minced adult mammary glands were digested for 8–12 hours at 37°C 

in EpiCult-B basal medium containing Epicult-B proliferation supplement, collagenase and 

hyaluronidase and hydrocortisone. Mammary organ fragments resulting from overnight 

digestion were treated briefly with ammonium chloride solution (4min on ice), then 0.25% 

trypsin (5min RT) followed by dispase (4min 37°C), with washes and resuspension after 

each treatment using Hank’s Balanced Salt Solution (HBSS) supplemented with 2% FBS 

(Chemicon). Cell clumps and debris were removed by passing the suspension through a 40 

μm nylon filter (BD Biosciences). For fetal and postnatal tissues, 150 mammary rudiments 

on average were dissected on each experimental day. Dissected fetal mammary glands were 

processed as adult cells except that 90 minutes incubation in collagenase/hyaluronidase was 

sufficient to obtain single cell suspensions and trypsin was found to be unnecessary and was 

therefore omitted to avoid unnecessary stress on the cells or alterations to their 

transcriptomes. Cells were immunostained with antibodies to Epcam, Cd49f, for 20 min on 

ice where indicated. Antibody-labeled cells were resuspended and incubated in HBSS with 

2% FBS containing DAPI for live/dead discrimination. Cell sorting was carried out on a 

FACSDiva cell sorter to collect Epcamlow-highCd49fmedium-high cells for further analysis 

(Becton Dickinson).

Organoid Culture—Single cell suspension (as above) from mammary tissues at the 

developmental stages indicated were sorted for Epcam expression and plated in 4% Matrigel 

on a pre-congealed undiluted Matrigel bed in either Maintenance media or Differentiation 

media (Spike et al., 2014) supplemented where indicated with UK5099 at the doses 

indicated. Maintenance media was comprised of Dulbecco’s modified Eagle’s medium/F12 

with 5% horse serum, 10 μg/ml insulin, 20 ng/ml epidermal growth factor, 100 ng/ml 

cholera toxin, 0.5 μg/ml hydrocortisone, and 10 μg/ml ciprofloxacin with 1 × B27 

supplement (Invitrogen). Differentiation media was composed of Epicult-B mouse media 

containing B supplement (SCT), recombinant human epidermal growth factor, recombinant 

human basic fibroblast growth factor, and heparin, as previously described (Spike et al., 

2012), with ciprofloxacin 10 μg/ml. Organoids were fixed after 7 days of growth for 

immunofluorescent staining.

Immunofluorescence—Samples were fixed in 4% formalin (NBF) at 4°C overnight, 

permeabilized using 0.1 % BSA, 0.2% Triton X-100, 0.05% Tween-20 in PBS, blocked in 

10% goat serum and stained with antibodies against Keratin 8, Keratin 14 as previously 
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described (Spike et al., 2012) prior to staining with secondary antibodies and imaging on a 

Zeiss LSM 880 with Airyscan FAST. Samples were counterstained with DAPI.

In Situ RNA-FISH—RNA-FISH was performed using RNAScope Multiplex Flourescent 

V2 Kit (Advanced Cell Diagnostics, catalog number 323110). The protocol was followed as 

per the manufacturer’s recommendations with the target retrieval boiling time for 15 min 

and Protease IV at 40 °C incubation for 30 min. Slides were mounted with Slowfade 

Mountant+DAPI (Life Technologies, S36964) and sealed. All images were captured within 

one week of slide preparation. A bacterial gene probe was used as a negative control as per 

kit instructions. Images were captured on Carl Zeiss 880 Airyscan Super-Resolution 

microscope using 40X/1.2NA W objective with 1.8X digital zoom. All pictures were 

digitally edited to enhance the color and contrast levels using Zen (Carl Zeiss) and ImageJ 

(Fiji) software.

Transplantation—Single cell suspensions of primary mammary cells were obtained as 

above and varying numbers of cells were transplanted into de-epithelialized number 4 fat 

pads of recipient three-week old CB17 SCID mice as previously described (Spike et al., 

2012). Glands were subsequently dissected, mounted on glass slides and fixed at 8 weeks 

post injection and were stained with Carmine Alum to score outgrowth. Frequency of the 

repopulating unit was estimated using Extreme Limiting Dilution Analysis (ELDA).

Single Cell RNA-Sequencing

Production of cDNA Libraries

Microfluidic Assay (Fluidigm C1).: FACS-sorted, Epcam-positive mammary cells were 

resuspended in 20–30ul of ice cold HBSS/FBS. A 2ul volume of the cell suspension was 

manually counted between a coverslip and slide and the remaining cells were diluted to to 

250 cells/ul for loading onto Fluidigm C-1 platform microfluidic chips with with 10–17um 

capture well sizes. Loading and staining of cells with the Invitrogen LIVE/DEAD kit (i.e., 

Calcein-AM and EtBr) to distinguish viable from dead cells was carried out according to the 

manufacturer’s instructions. Following loading and staining, all capture wells were imaged 

in green and red fluorescent channels and brightfield including z axis examination on a Zeiss 

710 or 780 confocal microscope. Each well was then scored as containing a single live cell 

(Calcein+), single dead cell (Calcein-), multiple cells or no cells. Mean live, single cell 

capture efficiency was 73% across E18-adult (a representative image is given in Figure S2). 

After imaging, the chip was processed according to the manufacturer’s instructions to 

produce cDNA libraries from each well. Initial experiments employed ERCC RNA spike in 

controls (dil. 1:40,000), but it was determined that they provided no benefit over 

normalization according to cellular transcript abundance and spiked in controls were omitted 

from select runs to maximize sequencing of cellular transcriptomes (see analysis below, 

Figure S2, and Dillies et al., 2013, and Lin et al., 2016). cDNA yield was determined by 

Quant-iT Picogreen fluorescence on a FlexStation II (Molecular Devices). Libraries with 

sufficient yield were diluted to 100pg/ul in water. Controls were also generated from pellets 

of ~1000 cells in parallel in PCR tubes as recommended in the Fluidigm C1 protocol. The 

capture efficiency of E16 cells was low for unknown reasons and individual E16 cells were 
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therefore processed manually by first sorting single cells in 2ul starting volumes in 96 well 

plates and following tube control ratios for Smart-seq2 (Clontech) and Nextera XT reagents.

Drop-Seq Platform (1 Ox Genomics Chromium).: FACS-sorted, Epcam-positive mammary 

cells were resuspended in 500ul of HBSS. Cells were centrifuged at 4°C for 5 minutes at 

1500rpm and resuspended in 32.5ul of HBSS and processed immediately and loaded on the 

microfulidic chip together with barcoded beads and other reagents as described in the 10X 

Chromium Single Cell Reagent Kit V2 protocol (Cat# 120237,10X Genomics Inc). 

Subsequent cell lysis, first strand cDNA synthesis and amplification were carried out 

according to the instructions with cDNA amplification set for 12 cycles. cDNA quality was 

measured using TapeStation (Agilent Biosystems) after bead-based purification.

Production of Sequencing Libraries

ATAC-Seq Library Preparation.: The ATAC-seq transposition assay was performed as 

previously described with minor modifications (Buenrostro et al., 2015). Two biological 

replicates from each cell population were assayed to ensure reproducibility. For the adult 

populations, 2×104 nuclei were subjected to 2 μL TDE1 digestion in 20 μL reaction mix, 

while for the P4/fMaSC populations, 1×104 nuclei were subjected to 1 μL TDE1 digestion in 

10 μL reaction mix (lllumina Nextera FC-121–1030). The equal Tn5:cell ratio is crucial to 

ensure similar signal-to-noise ratio during downstream analysis. The cell-Tn5 mix was 

incubated at 37°C for 30 minutes. qPCR was performed to determine the cycle number for 

25% library saturation. Typically, 10–14 total cycles were performed. The library was 

purified with AMPure XP beads (Beckman A63881), and then analyzed by Agilent 

TapeStation to ensure proper digestion.

Microfluidic Library Preparation.: For C1 libraries, 125 pg of each diluted library was used 

as input for Nextera tagmentation and barcoding using volumes recommended by Fluidigm 

(https://www.fluidigm.com/productsupport/c1-support-hub). Subsequently, single cell 

Nextera libraries were individually purified using Ampure XP beads (Agencourt) and 

magnetic force at a library:bead-suspension ratio of 10:9. Bead-pellets dried just to the point 

of visible cracking were resuspended in Tris/0.1mM EDTA/0.05% Tween-20 to elute 

libraries. Nextera libraries were quantified by Quant-iT Picogreen fluorescence as above and 

fragment sizes were determined on a 2100 bioanalyzer (Agilent Genomics) (Figure S1D). 

Libraries were combined at equal ratios into pools of 50–100 uniquely bar-coded samples 

which were again precipitated using ampure beads, evaluated for fragment size using the 

bioanalyzer and quantified by Quant-iT Picogreen.

Drop-Seq Library Preparation.: Sequencing libraries were prepared as per the 

manufacturer’s protocol (Cat# 120237, 10XGenomics Inc) with Index-PCR set for 14 

cycles. Qualities of the sequencing libraries were measured using TapeStation (Agilent 

Biosystems) after bead-based purification.

Sequencing

ATAC-Seq Library Sequencing.: The ATAC-seq libraries were sequenced with 50 or 125 bp 

single- (P4) or paired-end (fMaSC and adult) lllumina HiSeq 2500.
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Microfluidic Library Sequencing.: For C1 derived libraries, pooled library were loaded at 

12–20pM on an Illumina HiSeq 2500 High Throughput Sequencing System and sequenced 

using a paired-end, 100bp+ read protocols. We obtained 160–260 million reads per 

sequencing lane totaling 1.4–14 million reads per sample. Sequencing quality was assessed 

using FastQC software (Ref. 7) and all samples exhibited acceptable sequence quality 

including base wise quality scores > 30 over the majority of the read length.

Drop-Seq Library Sequencing.: Pooled libraries were sequenced on the Illumina 

HiSeq2500 Rapid Sequencing (Illumina Inc) System as per instructions provided in the 

Drop-Seq protocol (Cat# 120237, lOXGenomics Inc). Sequencing quality was assessed 

using FastQC software and all samples exhibited acceptable sequence quality including base 

wise quality scores > 30 over the majority of the read length.

Sequence Data Submission: C1 derived FastQ files and the filtered normalized expression 

matrix (262 cells × 13355 genes) are available at the NCBI sequence read archive https://

trace.ncbi.nlm.nih.gov/Traces/sra/ under the BioSample accession SAMN07138894. 

Chromium Sequencing data is archived under GSE111113 (Bioproject PRJNA435951; 

SRA: RP133477).

Analysis

Reproducibility: Chromium data yielded coherent clusters of cells corresponding to 

established cell types in the adult gland. For example, basal cells from three independent 

isolates co-clustered by each of the approaches we employed suggesting biological 

differences supersede technical variation in the data and analysis. C1 derived single cell 

samples similarly identified known cell types and samples run on duplicate sequencing lanes 

showed an average r2 value of > 0.99 between replicates (Figure S1E). Select E18 samples 

were processed independently from the cDNA stage onward and were run independently in a 

subsequent sequencing run. The resulting expression profiles bore an average r2 value of 

0.965 when compared to their initial profiles. Averaging (Geometric means of values +1 

count each) of single cell samples showed high correlation to samples processed as pools 

(Figure S1G). Potentially as a function of our dual pre- and post pooling library cleanup 

procedure, barcoding mismatches were negligible as judged by spill over of ERCC reads to 

samples lacking ERCC at preparation, i.e., was determined to be <0.04% based on means for 

counts in non-ERCC samples co-processed with ERCC containing samples.

Mapping and Normalization: We mapped reads to a custom mouse transcriptome 

compatible with RSEM and comprised of gene models from MM10 sequences and 

sequences for the ERCC RNA spike-in set. Transcript counts were enumerated using RSEM. 

This pipeline is presented in the accompanying “Scripts and Command Line Procedures” 

document (Data S1) under the perl script “RNASIuice.pl.” As we noted variable total counts 

per cell, we applied inter-sample normalization. Since previous studies showed that Upper 

Quantile normalization compares favorably to other normalization approaches including 

RPKM, DESeq and TMM except for sensitivity to highly overexpressed genes (Dillies et al., 

2013; Lin et al., 2016), we used a derivative approach, normalizing samples for read depth 

based on the 19th ventile of expressed transcripts (i.e., count > 0; excluding ERCC spike-ins 
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if present). We first determined the sum of counts in the 19th ventile of expressed transcripts 

for each sample (σj), and then defined a standard value (α) near the lower end of σ values in 

the dataset to which samples were subsequently normalized (e.g., ~1.5 stdev below the mean 

σ). We then calculated a coefficient (W) for normalizing each sample (j) where,

W j = α
σ j

We then multiply each gene’s counts in each sample (Ci,j) by the sample specific coefficient 

and round the values to integers to obtain the normalized expression value of each gene in 

the dataset (Expi,j):

Expi, j = int W j ∗ Ci, j

In addition to its relative computational simplicity and avoidance of perturbations from very 

highly expressed genes, this approach has the added advantage of avoiding complications 

from lowly expressed genes that have been shown to contain many null values in single cell 

RNA Seq data (Marinov et al., 2014), and also avoids unwarranted assumptions about total 

RNA content and complexity between samples that has been shown to inflate Type 1 errors 

(Katayama et al., 2013). Normalized values for all transcripts were subsequently rounded to 

integers. We noted that this approach performed as well or better than normalization by 

FPKM (which assumes equivalent total RNA content per cell) or ERCC (which assumes 

equivalent cell lysis and mRNA recovery efficiency per cell) when measuring minimization 

of expression difference between technical replicates (Figure S1F) and when examining 

cluster distinction between adult luminal and basal candidates. Following normalization, we 

evaluated transcriptomic complexity for each sample by determining the number of genes 

represented by 5 or more counts in each sample following normalization. As we noted that 

most samples from each developmental stage fell within a complexity distribution unique to 

that stage, we removed from further analysis outlier samples with complexities lower than 

1.5 standard deviations below the mean complexity for all samples from the same 

developmental stage (Figure S1H). To produce a final filtered expression matrix for use in 

identifying groups of related cells, we also manually removed the majority of transcripts 

with alphanumeric gene names indicative of uncharacterized transcript accession numbers 

and Riken expression tags as well as mitochondrial genes with names beginning “mt-” from 

further analysis as well as all transcripts that were present (>0 counts) in fewer than five 

independent samples following normalization.

Sample Graphing and Clustering: Relationships between samples, cell stages and clusters 

were visualized using t-SNE and diffusion coordinates as implemented in the tsne and 

Destiny packages for R, respectively. The interactive online rendering of diffusion maps (see 

Spike Lab website link, http://uofuhealth.utah.edu/huntsman/labs/spike/d3.php) was 

generated in javascript using the Plotly libraries (Plotly Technologies). Alternative 

approaches (i.e., clustering by Spearman rank correlation) showed general agreement with 

our diffusion mapping (Figures 3 and S4C). Plots were generated with ‘plot’ or ‘plot3d’ in 
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the rgl library in R, respectively specifying fill transparency or point radius based on scaled 

count values.

We clustered samples (i.e., single cell transcriptomes) into related cell types using the 1000 

genes (Chromium) or 1500 genes (C1) with the highest local variance across the dataset. 

Local variance for each gene in the filtered matrix was defined as the ratio of the gene-

specific squared coefficient of variation (CV2) of normalized raw counts to the gene 

neighborhood CV2 value. The neighborhood CV2 value was calculated as the geometric 

mean of CV2 values for the neighboring 100 genes in a list ordered by mean expression 

values from high to low (i.e., 50 genes in each direction) (Figure S1J). We then applied non-

negative matrix factorization (NMF) with minimum value subtraction and random number 

seed generation as implemented in R (Chromium data) or the MeV suite (C1 data) on log2 

transformed data for these 1000 or 1500 genes to cluster samples. We tested multiple ranks 

(i.e., numbers of clusters, 2–15) using a cost convergence cutoff of 1.0 for 10 runs of up to 

1000 iterations per rank and divergence update rules and cost measurements (Lee and 

Seung, 1999). Cophenetic correlation coefficients, change in Residual sum of squares and 

visual inspection of cluster position in DC and t-SNE graphs was used to identify stable 

clusters that describe putative cell type changes in the data (Brunet et al., 2004).

SCENIC: We used the standard SCENIC pipeline (Aibar et al., 2017) with depth 

normalized log2 transformed values from Chromium sequencing as input (Table S1). The 

SCENIC application (version 0.1.7) uses an older mm9 genomic reference and did not 

account for 6,516 genes. Per SCENIC recommendations, we refiltered genes to exclude 

those absent (counts = 0) in > 99% of cells. SCENIC identified 10206 genes that were 

pruned to 324 regulons based on cis regulatory motif analysis and a threshold of at least 10 

co-regulated genes per regulon. Cell activity scores for these regulons were layed onto the 

pseudotemporal cell ordering from diffusion maps and were clustered based on covariance.

ATAC-Seq Analysis: ATAC-seq analysis was performed as described in Dravis et al. 

(2018). In brief, after quality check with FastQC, sequencing reads were mapped to the 

mouse genome (mm9) with Bowtie (Langmead et al., 2009). Low quality and duplicated 

reads were removed and peak calling was done with MACS2. The signal correlations 

between the biological replicates were checked to ensure reproducibility (Pearson r > 0.9) 

before the replicates were merged with samtools (Li et al., 2009). To normalize the ATAC-

seq signal between different samples, the genome-wide signal was binned into 100 bp and 

quantile normalized with preprocessCore in R. The average signal profile at all genes was 

then checked for each sample to ensure similar signal-to-noise level. Bedgraph files 

generated were converted into BigWig format and visualized on UCSC genome browser 

(https://genome.ucsc.edu/). Signal profiling, correlation analysis and clustering were 

performed using deepTools (Ramirez et al., 2014). Functional annotation of peaks and peak-

gene association were done with GREAT using the default “basal plus extension” parameter 

(McLean et al 2010). To isolate UARs and URRs, pairwise differential peaks (FC > 2 and 

FDR < 1×10−30) between each cell type were first determined using SICER-df (Zang et al 

2009), and enrichment score (ES) for each peak calculated as ES = FC × -log(FDR). Cell 

type specific regions were then isolated by cross comparison of peaks using bedTools 

Giraddi et al. Page 23

Cell Rep. Author manuscript; available in PMC 2018 December 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://genome.ucsc.edu/


intersect (Quinlan and Hall, 2010). Afterward, total enrichment score (TES) was calculated 

by adding up cell type specific ES. For example, the TES of fMaSC = ESfMasc-Ba + 

ESmabsc-Lp + ESfMaSC-ML Thus, cell-type specificity of UARs and URRs can be ranked by 

their TES.

Identification of Differentially Expressed Genes: Gene expression differences between 

NMF designated cell types (i.e., NMF clusters @ rank = 7(Chromium) or 6(C1), and 

subdivisions of adult cells and clusters 5 and 6 @ rank = 2 and 3 (C1)) were identified using 

two-class unpaired rank products analysis as implemented in the TM4 suite MeV software 

(Saeed et al., 2003) with 100 permutations per comparison and the proportion of false 

significant genes controlled so as not to exceed 0.05. Gene expression values for the 13355 

genes in the filtered expression data matrix were compared between each NMF designated 

group of cells and each other group of NMF designated cells to generate differentially 

expressed gene lists for each pairwise group-to-group comparison. Cell type specific gene 

signatures for the 6 NMF-derived clusters in C1 data were determined from the overlap of 

more highly expressed genes in their five pairwise rank products analyses.

GO Enrichment: Cell type specific gene signatures and other gene lists evaluated in the 

manuscript were assessed for their content related to specific biological functions using 

curated GO databases. GO enrichment was assessed and graphed using the BiNGO plugin 

for Cytsoscape 3.3.0 (Shannon et al., 2003; Maere et al.. 2005). We assessed the overlap of 

signature gene lists with biological process ontologies using a hypergeometric test statistic 

and Benjamini & Hochberg False Discovery Rate correction (FDR significance level = 

0.05). Enrichments were corroborated with PANTHER (pantherdb.org) and DAVID (https://

david.ncifcrf.gov).

Comparative Transcriptomics: Human tumor data was collected as previously described 

with classification based on PAM50, consensus by a pathology committee, or mode of 

sample acquisition (Parker et. al., 2009; Cancer Genome Atlas, 2012; Varley et al., 2014; 

Cirielloet al., 2015; Forero-Torres et al., 2015; Foreroetal., 2016). Differential signature 

expression was determined by ANOVA or a Kolmogorov-Smirnovtest, as indicated, on the 

median centered or normalized probe and transcript expression values with normalization as 

in Pfefferle et al. (2013), or the sum of scaled FPKM values.

Other Graphing: Additional graphics generation used R/Quartz (including plot, rgl and 

plot3d libraries), Excel, Powerpoint and Adobe Photoshop.

QUANTIFICATION AND STATISTICAL ANALYSIS

Details of the statistical tests used in this manuscript and the number of replicates (n) are 

presented in the figures and figure legends, are reiterated in the text, and described in detail 

in the methods sections above. They are also summarized below:

1. Non-negative matrix factorization, as implemented in the TM4-MeV Suite, 

employed 10 runs of up to 1000 runs each with a cost convergence cutoff set to 

1.0 with a check frequency of 40. Update rules and cost measurements were 

based on divergence. Cophenetic correlation coefficients were based on 
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Euclidean distance. Chromium data was processed using every fifth sample 

beginning with sample 1 or 2 or 3 or 4 and resulting statistical metrics were 

averaged for each rank across these runs to select a suitable NMF rank (i.e., cell 

cluster number) for further modeling.

2. Rank products, as implemented TM4-MeV suite, used a two class unpaired test 

statistic with 100 permutations and false discovery control set on the proportion 

of false significant genes not exceeding 0.05.

3. The correlation in expression of gene signatures across samples were calculated 

in Excel using the Pearson correlation.

4. GO enrichment, as implemented in the BinGO app for Cytoscape, used 

“Biological Process” definitions and a hypergeometric test and Benjamini-

Hochberg false discovery rate correction at 0.05.

5. Differentially represented ATAC-Seq peaks were called using SICER-df with FC 

>2 and FDR < 1×10−30 and associated enrichment scores were calculated as ES 

= FC × -log(FDR).

6. Quantification of organoid cultures was conducted manually on 5 replicate wells 

per treatment. Replicates and significant differences were determined using a 

two-tailed Student’s t test.

7. Extreme Limiting Dilution Analysis for transplants as implemented at the URL: 

http://bioinf.wehi.edu.au/software/elda/, were calculated to include 95th 

percentile confidence intervals and likelihood ratio tests to determine differential 

stem cell content.

8. Differences in signature expression among TCGA archived breast cancers that 

were organized by intrinsic subtype was determined by ANOVA with p values 

indicated in the corresponding figures.

9. Differences in signature expression in primary TNBC versus TNBC metastases 

was determined with a Kolmogorov-Smirnoff test with p values indicated in the 

corresponding figures.

DATA AND SOFTWARE AVAILABILITY

All software is commercially available, cited to previous publications or is included in the 

accompanying “ScriptsandCommandline” text document.

Single cell RNA-sequencing data files are available at the NCBI Sequence Read Archive 

(SRA) (https://wwvii.ncbi.nlm.nih.gov/sra/) under BioSample accession SAMN07138894 

and the NCBI Gene Expression Omnibus (GEO) under accession GSE111113 (Bioproject: 

PRJNA435951 ; SRA:RP133477).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Derivation and Clustering of Mouse Mammary Epithelial Single-Cell Transcriptomes 
from Embryonic Development to Adulthood
(A) Isolation and sequencing of mammary cells from different developmental stages. Two 

strategies are shown, Chromium Drop-Seq (10× Genomics) and C1-microfluidic capture 

(Fluidigm), with differential output (gray box).

(B) tSNE plot of single-cell transcriptomes from indicated developmental stages.

(C) The plot in (B), overlaid with relative expression levels of mammary lineage markers.

(D) NMF clustering of single-cell expression profiles (n = 6,059), shown by the white-to-

black correlation scale. Colored bars correspond to developmental context (right; y axis) or 

NMF group (x axis).

(E) Projection of NMF groups identified in (D) onto the tSNE plot from (B).

(F) tSNE plots for adult basal (Epcam+, Cd49f+, left panel) and E18 cells (right panel) 

isolated, processed, and plotted separately with colors corresponding to the NMF grouping 

in (D).
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Figure 2. Diversification of Cell Types in the Mouse Mammary Epithelium
(A) Diffusion map of single-cell transcriptomes annotated by stage of collection.

(B) A color gradient is used to depict the ratio of Krt8 and Krt14 on the same diffusion map. 

Cells with much higher levels of Krt8 levels than Krt14 are green, and cells with the 

opposite configuration are red. Orange/yellow color indicates balanced coexpression. Sphere 

radius assigned by maximum value of Krt8 or Krt14. The right three panels represent 

immuno-staining of mouse mammary epithelium for Krt8 (green) and Krt14 (red) at the 

given stages of development.

(C) Placement of NMF groups in the diffusion map from (A) and their correspondence to 

markers of known cell types as indicated. Sphere radius represents normalized expression 

values for the given factors. Color, NMF group.

(D) Multiplex fluorescent in situ hybridization for select lineage markers shown in (C), in 

adult and embryonic mammary tissue. Insets in second lower panel, Extreme digital zoom 

showing close-proximity red, green, and blue signals.
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(E) Pseudotemporal vectors through the diffusion map from (A) color-coded to represent 

lineage branch points as shown in (F).

(F)Heatmap of regulon scores from SCENIC analysis. Rows, Individual regulons. Columns, 

Cells organized according to pseudotemporal trajectories as indicated below the heatmap. a, 

Adult lineage oriented regulons; b, primitive regulons; *onset of balanced lineage regulon 

activity. Color coding is also given for NMF groups and developmental stage as in Figure 

1D.
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Figure 3. Identification of Cell Types and Signatures across Early Mammary Epithelial 
Development
(A) NMF correlation matrix of single cells (clusters/rank = 6) with NMF sample groups 1–6 

numbered and color-coded. Also shown and color-coded are the developmental stages of 

isolation for each cell, and subclusters (a and b) derived for adult cells and NMF groups 5 

and 6 independently of the correlation matrix shown.

(B) Relationships between single-cell profiles graphed according to the first three diffusion 

components, and color-coded by stage of origin, σ = 129.

(C) DC1 and two positions for the epithelial NMF groups, σ = 55.

(D)Violin plots showing expression levels of luminal-associated Krt8 and basal-associated 

Krt14 among cells of NMF groups 2 and 3.

(E) A simplified schematic of the approximate positions of NMF subclusters in the two-

dimensional (2D) diffusion map from (C).

(F) A schematic describing the rank product-based procedure for defining group-specific 

signatures.

(G) Heatmap of signature expression with cells sorted by NMF group with annotation of 

select genes. Rows, Gene expression values. Columns, Samples (i.e., single cells). Mean 

signature enrichment per cell is also given (bottom).

(H) Graphical representation of GO categories for the fMASC signature.
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(I) Mean expression in individual cells of a luminal balancer signature and a basal balancer 

signature. Also shown is the mean expression of differentially expressed gene lists 

delineating the prominent subdivision of MMPr cells. Brackets, Pearson correlation.

(J) Mean expression of the differentially expressed gene lists for NMF5a versus NMF5b 

(i.e., fMaSC subdivision). Ordering of cells from (G) is maintained in (I) and (J).
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Figure 4. Differential Chromatin Regulation between Primitive and Mature Mammary 
Epithelial Cells
(A) Tornado plots of uniquely accessible regions (UARs) (n = 1,222) and uniquely repressed 

regions (URRs) (n = 242) for fMaSCs relative to differentiated mammary epithelia as 

indicated. Loci, represented by the y axes, are held consistent between stages, while their 

intensity representing ATAC-seq signal is differential.

(B) Averaged accessibility for UARs and URRs derived from adult mammary epithelial 

lineage comparisons.

(C) The top 15 GO categories for fMaSC UARs with Bonferroni-corrected p values.

(D) Proximal chromatin accessibility at three lineage-associated loci compared across 

indicated differentiation states.
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Figure 5. Metabolism-Related Gene Expression Profile in fMaSC
(A) Mean expression levels (sphere size) of genes encoding glycolytic, Krebs cycle, and 

fatty acid metabolism enzymes across four developmental stages. Gray arrows, Modeled 

metabolic flux.

(B) Expression levels of the Pkm2 in fetal and adult mammary epithelial cells.

(C) Aligned reads matching Pkm1 and −2 in three representative adult and fetal epithelial 

cells with the percentage of similar cells at each stage. *Occasional reads are seen in introns 

and non-coding regions across the genome adjacent to encoded poly-thymine tracts, but 

these are not enumerated in the quantification of transcripts.

(D) Enumeration of Krt8 and Krt14 single-positive and double-positive cells in organoids.

(E and F) The number (E) and size (F) of organoid structures produced under treatment with 

the mitochondrial pyruvate transport inhibitor, UK5099 (n = 5). *p < 0.1, Student’s t test.
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Figure 6. Human Breast Cancers Exhibit fMaSC-Related Biology
(A-C) Expression levels of single-cell-derived fMaSC signatures in human breast cancers of 

varying molecular subtype. (A) fMaSC-Signature. (B) fMaSC-metabolism Signature. (C) 

Reduced 8 gene fMaSC-metabolism signature. p value, ANOVA between groups.

(D) TCGA breast cancer expression data plotted for median expression of a proliferations 

signature (PAM50, × axis) versus median expression of the Metab-8 fMaSC subsignature.

(E) fMASC-signature genes are overexpressed in metastatic triple-negative breast cancer. p 

value, Kolmogorov-Smirnov.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Alexa Fluor 647 anti-CD326 (Epcam) Biolegend Cat# 118212; RRID:AB_1134101

FITC anti-Cd49f (ITGA6) Stem Cell Technologies Cat# 60037FI.1; RRID:AB_2734790

Anti-Krt14 Biolegend Cat# 905304; RRID:AB_2616896

Anti-Krt8(TROMA-1) DSHB Univ. of Iowa Cat# AB-531826; RRID:AB_531826

Anti-H3K27me3 Millipore Cat# 07–449; RRID:AB_310624

FITC-anti rat lgG2 Thermo Fisher Cat# PA1–84761; RRID:AB_933936

PE-anti rabbit IgG Santa Cruz Biotechnology Cat# SC-3739; RRID:AB_649004

Anti-BrdU Bio-Rad Cat# MCA2060GA; RRID:AB_10545551

Chemicals, Peptides, and Recombinant Proteins

UK5099 Sigma Aldrich Cat# PZ0160

bFGF Stem Cell Technologies Cat# 78003

EGF Sigma Aldrich Cat# E4127

DAPI Thermo Scientific Cat# 62248

Urea Sigma Cat# U5378

N.N.N’N’-tetrakis (2-hydroxypopryl) ethylenediamine Sigma Cat# 122262

Polyethylene glycol mono-p-isooctylphenyl ether/Triton X-100 Sigma Cat# 93443

2,2,2’-nitrilotriethanol Sigma Cat# 90279

Critical Commercial Assays

Chromium prep 10x Genomics Cat# 120237

Nextera DNA library kit Illumina Cat# FC-121–1030

TapeStation DNA high sensitivity kit (D1000) Agilent Cat# 5067–5585

NEBNext High Fidelity 2x PCR mix NEB Cat# M0541

RNAscope Multiplex Fluorescent v2 ACD Bio, Newark CA Cat# 323110

SMARTer Ultra Low RNA kit Clontech Cat# 634936

SMART-Seq® v4 Ultra® Low Input RNA Kit for Sequencing Clontech Cat# 634888

Advantage 2 PCR Kit Clontech Cat# 634206

C1 Single-Cell auto Prep Reagent Kit for mRNA Seq Fluidigm Cat# 1006201

Bioanalyzer RNA Pico Kit Agilent Cat# 5067–1513

Quanti-it Pico-green dsDNA assay kit Thermo Fisher Cat# P11496

LIVE/DEAD kit Invitrogen Cat# MP03224

AM Pure XP beads Agencourt Cat# A63880

C1 Single-Cell mRNA Seq IFC, 10–17 μm Fluidigm Cat# 100–6041

ERCC RNA spike in mix Thermo Fisher Cat# 4456740

Illumina Nextera XT DNA sample preparation kit Illumina Cat# FC-131–1096

Illumina Nextera XT DNA sample preparation index kit Illumina Cat# FC-131–1002

Deposited Data

FastQ sequencing files NCBI sequence read archive and GEO https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSE111113 and https://trace.ncbi.nlm.nih.gov/Traces/sra/

SAMN07138894; GSE111113

Experimental Models: Organisms/Strains

C57BL/6 Charles River Strain Code: 027

CB17/lcr-Prkdcscid/lcrlcoCrl (SCID) Charles River Strain Code: 236

Software and Algorithms

Bowtie http://bowtie-bio.sourceforge.net/ Langmead et al., 2009

MACS2 http://liulab.dfci.harvard.edu/MACS/ Zhang etal., 2008
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REAGENT or RESOURCE SOURCE IDENTIFIER

Bedtools http://bedtools.readthedocs.io/en/latest/ Quinlan and Hall, 2010

Samtools http://www.htslib.org/doc/samtools.html Li etal., 2009

Deeptools https://deeptools.readthedocs.io/en/latest/ Ramirez etal., 2014

GREAT http://great.stanford.edu/public/html/index.php McLean et al., 2010

SICER https://home.gwu.edu/~wpeng/Software.htm Zang etal., 2009

preprocessCore (R) https://www.bioconductor.org/packages/release/bioc/html/preprocessCore.html Bolstad, 2018

Plotly Plotly Technologies; https://plot.ly N/A

rtsne https://cran.r-project.org/web/packages/tsne/ van der Maaten and Hinton, 2008

NMF (R) https://cran.r-project.org/web/packages/NMF/ Lee and Seung, 1999

SCENIC https://github.com/aertslab/SCENIC Aibar etal., 2017

R 3.3.0 (for Mac OsX) https://cran.r-project.org/bin/macosx/old/ R-3.3.0.pkg

Destiny (Diffusion Maps) https://bioconductor.org/biocLite.R Haghverdi etal., 2015

TM4-MeV4.8 mev.tm4.org Saeed etal., 2003

Non-Negative Matrix Factorization mev.tm4.org Lee and Seung, 1999

Rank products mev.tm4.org Breitling etal., 2004

Cytoscape 3.3.0 www.cytoscape.org Shannon etal., 2003

BiNGO http://apps.cytoscape.org/apps/bingo Maere etal., 2005

FastQC 0.11.2 http://www.bioinformatics.babraham.ac.uk/projects/fastqc Andrews, 2010

RSEM 1.2.29 https://github.com/deweylab/RSEM/releases Li and Dewey, 2011

STAR 2.4.2a https://github.com/alexdobin/STAR Dobin etal., 2013

IGV2.3.83 https://software.broadinstitute.org/software/igv/ Robinson etal., 2011

ELDA http://bioinf.wehi.edu.au/software/elda/ Hu and Smyth, 2009

Other

Epicult-B Basal Medium (mouse) Stem Cell Technologies Cat# 05611

Epicult-B Proliferation Supplement (mouse) Stem Cell Technologies Cat# 0562

B27 Supplement GIBCO Cat# 17504044

Hydrocortisone Sigma Aldrich Cat# H4001

Collagen ase/Hyaluronidase Stem Cell Technologies Cat# 07912

Dispase Stem Cell Technologies Cat# 25300–054

Trypsin GIBCO by Life Technologies Cat# 25300–054

Fetal Bovine Serum Serum Source Cat# FB22–500

Matrigel (complete) Corning Cat# 354234

Matrigel (growth factor reduced) Corning Cat# 356231

DMEM-F12 (no phenol red) Thermo Fisher Cat# 21041025
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