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Single cell profiling by genetic, proteomic and imaging methods has expanded
the ability to identify programmes regulating distinct cell states. The
3-dimensional (3D) culture of cells or tissue fragments provides a system to
study how such states contribute to multicellular morphogenesis. Whether
cells plated into 3D cultures give rise to a singular phenotype or whether

multiple biologically distinct phenotypes arise in parallel is largely unknown
due to a lack of tools to detect such heterogeneity. Here we develop Traject3d
(Trajectory identification in 3D), a method for identifying heterogeneous
states in 3D culture and how these give rise to distinct phenotypes over time,
from label-free multi-day time-lapse imaging. We use this to characterise the
temporal landscape of morphological states of cancer cell lines, varying in
metastatic potential and drug resistance, and use this information to identify
drug combinations that inhibit such heterogeneity. Traject3d is therefore an
important companion to other single-cell technologies by facilitating real-time

identification via live imaging of how distinct states can lead to alternate
phenotypes that occur in parallel in 3D culture.

The profiling of cell populations at the single-cell level has transformed
quantitative cell biology and unlocked the potential to understand
heterogeneous cell states. Markers of distinct cell states, be they
genetic, proteomic or morphological features, can be extrapolated to
infer cell function'”. Several computational approaches use static time
points to predict the sequence in which alternate cell states occur to
give rise to alternate phenotypes®™*. While powerful, these methods
are defined by terminal snapshots, which fail to capture the dynamics
of how cell states changing over time is a defining feature of
morphogenesis.

The 3-Dimensional (3D) culture of cells or tissue fragments to
induce complex multicellular structures, such as cysts, acini, spheroids
or organoids, allows in vitro determination of how alternate cell states

cooperate to give rise to a phenotype. Static fluorescent imaging of 3D
organoids to couple cell morphological features with the spatial dis-
tribution of fate or signalling markers has been elegantly used to
predict how cell fate changes underpin alternate phenotypes™'.
Despite the power of such approaches, most other studies typically
rely on the averaging of coarse features, such as size, viability or
sphericity, to define changes occurring in response to a treatment.
Such simple analyses reflect the combination of increased cost and
complexity of sampling 3D volumes over time compared to sampling
2-dimensional (2D) cell populations and a lack of analysis tools for the
resulting large datasets. This is a significant bottleneck in realising the
potential of 3D culture to identify the extent, repertoire, and biological
consequences of heterogeneity.
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Whether 3D phenotypes are largely homogeneous or the extent to
which heterogeneity exists in 3D culture is a poorly investigated area.
Heterogeneity may represent modest variation in a singular morpho-
genesis pattern or distinct biological programmes that occur in par-
allel to result in alternate phenotypes. These programmes may not
occur at equal frequencies. For example, a dominant phenotype -
defined by high-frequency occurrence of a particular sequence of cell
state changes in a cell population - may occur simultaneously with a
less-frequent alternate phenotype. It is the numerically dominant
phenotype that is most often quantified when using basic 3D culture
analyses with low sample numbers. However, numerically rare beha-
viours may have a disproportionate contribution phenotypically, such
as in the case of rare populations that may be metastasis-competent,
drug-resistant, or possess stem-like capabilities. 3D culture approaches
are increasingly used for drug-response modelling, tissue transplan-
tation and a myriad of other proposed functions. It is essential that the
methods for evaluating such cultures are improved such that poten-
tially heterogeneous phenotypes, which may be differentially present
in frequency, are considered.

In this work we introduce Trajectory identification in 3D culture
(Traject3d), an analysis pipeline that enables detection of hetero-
geneous phenotypes co-occurring in parallel. Similar to other recent
methods"”, we analyse 3D structures from label-free images to identify
distinct subtypes co-occurring in heterogeneous populations. How-
ever, Traject3d, differs from and improves on this concept by basing
phenotype identification on multi-day imaging of objects over time
from label-free microscopy. Therefore, unlike approaches that predict
how static snapshots might relate in time based on probability of
transitions between states (e.g. pseudotime), Traject3d identifies
alternate phenotypes based on live-imaging. This opens the door for
unbiased identification of potentially rare phenotypes that may occur
by unpredicted or low probability transitions between states. We use
image segmentation packages CellProfiler'® and CellProfiler Analyst”
with downstream analysis performed by Traject3d implemented in
KNIME? with R? and Python integrations. Our software choice is based
on accessibility: all are open-source freeware that can be used by
biologists without requirement for coding skills. We therefore provide
much-needed options for identifying heterogeneity in 3D culture by
either user-defined or data-driven methods for biologists.

We use Trajectdd to identify how biologically relevant co-
occurring phenotypes are associated with enhanced metastatic
ability or drug resistance and to identify the genetic and signalling
pathways that control these alternate phenotypes. This has enabled
us to elucidate a mechanism involving a ligand, its receptor, as well as
a downstream effector and its key target. Moreover, we identify that
co-targeting this pathway can restore sensitivity to otherwise drug-
resistant tumour cells. Although we use Traject3d to identify het-
erogeneity in 3D in tumour-derived samples, Traject3d can be used
on the data from other 3D systems that can be imaged and tracked
live over multiple days, in a label-free fashion. Traject3d is therefore
an important companion tool to other emerging single cells tech-
nologies by unlocking the capacity for data-driven, unbiased detec-
tion of co-occurring heterogeneous cell states and how these give
rise to alternate phenotypes. We expect Traject3d to therefore be
useful for identifying whether heterogeneity exists in a given sample,
and a tool to understand the mechanisms by which such hetero-
geneity may be regulated or contribute to the biological system
under study. Without tools such as Traject3d, the contribution of
heterogeneous parallel phenotype(s) in biology may continue to be
underestimated.

Results

Heterogeneity of 3D cultures revealed from live imaging

We aimed to uncover the nature and extent of heterogeneous phe-
notypes that may occur in parallel in 3D culture. We reasoned that

co-occurring phenotypes within a sample could be: i) stochastic var-
iation in a singular 3D phenotype, ii) that seemingly heterogeneous
phenotypes may represent a singular phenotype, occurring at differ-
ent speeds, that is stereotyped but asynchronous, iii) that distinct
phenotypes may occur simultaneously, or iv) a combination of these
scenarios. In contrast to the common approach of assigning a phe-
notype from imaging single timepoints, testing these possibilities
requires live imaging as potentially heterogeneous phenotypes may
occur at different points in time. Similarly, wide parallel sampling is
necessary for capturing phenotypes that may occur at disparate fre-
quencies (i.e. capturing rare as well as frequent phenotypes). To aid in
the description of our approach we provide a glossary for the defini-
tion of key concepts (Supplementary Table 1).

We developed large-scale phase-contrast live-imaging in 3D
(Fig. 1a; Methods) by adapting culture methods effectively and
extensively utilised to generate highly polarised 3D cultures, including
apical-basal polarisation and lumen formation in cell lines and
embryonic stem cells, as well as for mechanisms of cancer cell polar-
isation and invasion into Extracellular Matrix (ECM)**2, This involves a
thin coating of ECM applied to 96-well plates, onto which a suspension
of single cells is plated in low-percentage ECM-containing medium. In
this system, plated single cells undergo division and morphogenesis to
become a clonal, multicellular structure polarised around a central
lumen. We defined this transition over time as a singular, tracked
‘object’ (Supplementary Table 1). Use of this 3D culture method ful-
filled two purposes: i) the reduction of the amount of ECM used,
making the assay more cost-effective, and ii) the formation of multiple
3D multicellular structures undergoing morphogenesis in a largely
similar plane and field of view. This facilitated multiday imaging using
autofocus approaches and scalability to image hundreds of thousands
of spheroids across multiple 96-well plates in parallel using the Incu-
Cyte system. We used CellProfiler for image segmentation’® (Fig. 1a)
and tracking of 3D structures over multiple days per treatment con-
dition. This approach facilitates analysis of hundreds of thousands of
objects in an experiment (Supplementary Tables 2, 3), enabling inter-
rogation of potential co-occurring phenotypes across time with robust
statistical support.

We tested this approach by imaging a broad range of normal and
tumour-derived human and mouse cell lines as they formed 3D
spheroids over multiple days (>1.6 million objects), measuring size,
shape and movement features of objects (Supplementary Table 2;
Supplementary Figs. 1-3; see Traject3d GitHub for CellProfiler seg-
mentation and feature measurement pipelines). Visual inspection of
time-lapse imaging revealed instances of phenotypic homogeneity
across time in spheroid development (e.g. immortalised, non-
transformed RWPE-1 normal human prostate cells); in a number of
samples, distinct spheroid phenotypes occurred in parallel within a
sample across time (e.g. metastatic PC3 human prostate cancer cells)
(Supplementary Figs. 2a, b and 3a). To assess the repeatability of such
global behaviours, we compared mean shape, size and movement
features by Principal Component Analysis (PCA) from samples trim-
med to the same imaging length, to ensure appropriate temporal
comparison. This indicated that the size, shape and movement fea-
tures in a given sample were largely concordant across both intra-
experiment technical replicates and across independent experiments
(Supplementary Figs. 2c, d and 3b, c). This was further supported by
the visualisation of phenotypic space across experimental replicates
through t-distributed Stochastic Neighbour Embedding (t-SNE) of
shape, size and movement features across time (Supplementary
Fig. 2e, f). This suggested that phenotypic heterogeneity was unlikely
to be solely from stochastic variation.

PCA analysis also enabled the identification of instances of batch
effects (dashed lines) as well as segregation of samples with mostly
spherical, poorly motile phenotypes (MDCK, RWPE-2, CWR, 22Rv1,
Caco-2) from mostly elongated, motile phenotypes (MDA-MB-231,
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PC3M, PC3M-DR) (Supplementary Figs. 2c and 3b). However, this failed
to capture that some samples display co-occurring distinct pheno-
types (both round and elongated in MDA-MB-231 and PC3M-DR).
Therefore, additional approaches are needed to identify distinct phe-
notypes occurring within a sample, potentially at a lower frequency,
without which functions like PCA might otherwise skew sample ana-
lysis towards the most frequent behaviour(s).
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User-defined classification of heterogeneous states

We examined two approaches to identify co-occurring phenotypes
within 3D cultures: the application of user-defined classifications or a
data-driven unbiased subtype detection. In the first approach, to
classify spheroids into user-defined groups we required a simple click-
and-classify methodology that i) allowed classification with high effi-
ciency, and ii) contained a machine learning model that, after training,
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Fig. 1| Alternate phenotypes occur in parallel within 3D cultures. a Schema,
heterogeneous spheroids imaged in high-throughput over time. Size, shape and
movement characteristics extracted for thousands of spheroids. Machine learning
used to classify user-defined phenotypic states, frequency of which was quantified
over time. b Representative phase images of spheroids exhibiting variable mor-
phology over time. n =3 independent experiments, 3 wells/condition/experiment.
Scale bars, 50pum. ¢ Proportion of PC3 spheroids exhibiting user-defined classifi-
cation states. Shaded region, s.e.m. across experiments. n =3 independent
experiments, 3 replicates/condition/experiment. Total number of spheroids
quantified in Supplementary Table 3. d Representative phase images of spheroids.
Outlines, user-defined state classification. Scale bar, 100pm. Time-lapse of boxed
regions shown. Arrowheads and schema indicate changes in classification over
time. Scale bars, 50 um. n =3 independent experiments, 3 wells/condition/experi-
ment. e Schema of PC3 subline derivation. PC3 were selected in vitro for epithelial
shape (PC3-Epi), high surface E-Cadherin (E-cad+) or mesenchymal characteristics
after macrophage co-culture (PC3-EMT). PC3 were injected into murine tail veins
and harvested from alternate metastatic sites; GS689.Li (liver), GS672.Ug

(urogenital tract) and GS694.Lad (adrenal gland, after in vivo injection of PC3
JD549.Ki). Sublines were isolated after serial passage across endothelial barriers
(TEM2-5 vs TEM4-18). TEM4-18 were injected into tail veins and cells harvested from
lymph node (GS683.LALN) and lung mets (JD1203.Lu). f Representative phase
images of PC3 subline spheroids, 72 h. Outlines, user-defined state classification.
n=3 independent experiments, 3 wells/condition/experiment. Scale bar, 100pm.
g Representative outlines of phenotypes formed by PC3 sublines. h Quantitation of
PC3 and sublines. Heatmap shows Area as mean of Z-score normalised values
(purple to yellow), and classification into Round, Spread or Spindle as a Log2 Fold
Change from control (PC3) (blue to red). Proportion of control at each timepoint is
also Z-score normalised (white to black). Bubble size represents p-values, Student’s
t-test (two-sided) and Cochran-Mantel-Haenszel test, Bonferroni adjusted, to
compare Area and proportion of each classification to control respectively. Dot
represents p-value, Breslow-Day test, Bonferroni-adjusted for homogeneity of odds
ratio across experimental replicates. n =3 independent experiments, 3 wells/con-
dition/experiment. Number of spheroids quantified in Supplementary Table 3.

could be converted into ‘rules’ that were exported and applied to
subsequent data sets. The key here is to enable a user to apply con-
sistent classification to each new data set as it was acquired rather than
wait until all data collection was complete before generating a classi-
fication model, an approach that while valid is not always practical in a
laboratory setting. The Fast Gentle Boosting machine learning model
in CellProfiler Analyst' met these criteria, enabling us to classify
spheroids into user-defined states (Fig. 1a).

In contrast to the largely homogeneous RWPE-1 spheroids,
PC3 spheroids could be classified into three categories (based on
extensive visual examination of time-lapse movies) with high fidelity to
the true user classification (91-97%; Fig. 1b-d; Supplementary Figs. 2a
and 4a-c): objects that remained round (‘Round’), those that locally
spread (‘Spread’) and those displaying an elongated shape (‘Spindle’).
To aid in visualisation of these classifications we computationally
selected a representative outline of each state and identified the
measurements of area, shape, and motility that define them (Supple-
mentary Fig. 4d-f; Methods). Such heterogeneity could also be
observed from maximum projections of sequential optical sections via
confocal imaging of PC3 spheroids (Supplementary Fig. 5a, b).

Applying user-defined classifications to multiday imaging
revealed that the relative proportions of distinct states in a sample vary
over time in a strikingly consistent fashion across independent
experiments (Fig. 1c). Applying state classification to still frames from
live imaging revealed a remarkable plasticity to cell state, wherein
distinct states are neither static nor disconnected. This diverges from
previous approaches which use phenotype classification from limited
timepoints*¥ that might be extrapolated to assume that states are
either static or transitions are unidirectional. Although most objects
start as round, objects can move between state classifications over
time, both at different times and rates, and near noncontacting
spheroids undergoing alternate distinct behaviours (Fig. 1b; Fig. 1d,
arrowheads). This indicates that state classification without applica-
tion longitudinally to live imaging likely underestimates state oscilla-
tions that may lead to distinct phenotypes.

A key question in identifying heterogeneous phenotypes is whe-
ther distinct states are associated with alternate behaviours. If so, then
repeated or independent selection for these behaviours should con-
verge on the same cell states. We tested this using a series of existing
cell lines that were independently derived for altered invasive or
metastatic abilities and examining their temporal state changes. We
compared independent subclone derivation from the heterogeneous
parental PC3 cells (Fig. 1b-d) for, i) in vitro selection for epithelioid
characteristics (PC3-Epi*®) or high surface E-cadherin expression (E-
cad+*), ii) in vitro selection for mesenchymal characteristics after
initial co-culture of PC3-Epi with macrophages, then isolation of the
resultant PC3-derived cells (PC3-EMT™), iii) in vitro enrichment for

trans-endothelial migration (TEM2-5, TEM4-18%), and iv) in vivo
selection for metastasis by harvesting from alternate metastatic sites
after tail vein injections without (GS672.Ug, GS689.Li, GS694.LAd™),
or with (GS683.LALN, JD1203.Lu*’), prior in vitro trans-endothelial
migration (Fig. le).

Imaging of spheroids from these PC3-derived lines (Fig. 1f), and
from other cell lines (Supplementary Figs. 2 and 3), highlighted that
heterogeneous behaviours can alter analysis in complex ways, such as
that while spherical non-motile spheroids stayed distinct throughout
multi-day imaging, highly motile or elongated phenotypes could
eventually cause spheroid merging, at late time points. We therefore
limited our analysis to a time interval where the majority of single
spheroids could be appropriately detected as individual objects across
all samples being compared - in the case of PC3 cells and its deriva-
tives, generally 96 h.

We quantified over time the size (Area) of objects, the proportion
of objects classified into user-defined categories in the parental PC3
(Round, Spread, Spindle), and the relative fold-change in these pro-
portions of each subline compared to the parental (Fig. 1f-h) (>1.2
million objects, 4 days of imaging: Supplementary Table 2). For ease of
visualisation of multiple timepoints (-96 h) we condensed changes into
mean phenotype (Area, state) in 12-hour intervals (Fig. 1h). Statistical
comparison of changes was analysed through a Cochran-Mantel-
Haenszel test, wherein statistical significance is only achieved where an
effect was consistent across independent experiments. Furthermore,
we use the Breslow-Day test to assess the differential magnitude of
effect across biological replicates. In the heatmap, a non-significant
value indicating consistent magnitude of effect is represented by a
black dot. Therefore, these heat maps depictions of change across
time represent not only the change in a parameter in relation to the
control sample, but also the significance and consistency across
repeated experiments.

We observed three main trends in these independently generated
cell lines, wherein one classification type was enriched at the expense
of the other two: i) the Spread state was largely selected in those with
epithelial characteristics (PC3-Epi and E-cad+), ii) Spindle state in a
subset selected from metastases (GS689.Li, GS683.LALN, GS694.LAd)
or two rounds of in vitro selection for trans-endothelial migration
(TEM4-18), or iii) modest increase in Round state from other metastatic
samples or a single round of trans-endothelial migration (TEM2-5,
GS672.Ug, JD1203.Lu). Notably, when clustered by Euclidian distance,
due to differences in the strength of the trend, J]D1203.Lu was dis-
tanced from the other lines, exhibiting an increase in Round state. The
PC3-EMT sample was the only instance of induction of dual behaviours
(Spread and Spindle). This reveals that independent selection of sub-
lines for a certain behaviour (e.g. metastasis or invasion) converges on
similar phenotypic characteristics. This suggests that heterogeneity
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represents functionally different co-occurring phenotypes. Ensuring
accurate detection of the repertoire of phenotypes is therefore
essential, as rare phenotypes may include those that have special
characteristics, such as metastasis competency. This approach can
therefore be used to identify distinct 3D behaviours within a sample
and assess the consistency of behaviours across time and independent
experimental replicates.

Data-driven identification of heterogeneous states by Traject3d
An open, essential question is how many cell states may co-occur in a
sample. For instance, is elevation of both Spread and Spindle states in
PC3-EMT cells (Fig. 1h) an enrichment of two independent phenotypes
or a phenotype that that oscillates between these states, or a de novo
state that resembles both classifications and is consequently poorly
classified? The application of user-defined states, while powerful for
identifying specific phenotypes of interest, suffers from limitations;
these include a requirement for manual training, an unknown depth
limit to which a user can manually identify states, the use of static
images preventing classification based on motility features, and forced
classification into user-specified classes regardless of fit. To overcome
some of these limitations and address such questions, we developed a
method of data-driven subtype classification and analysis of behaviour
patterns over time to identify unique events.

To identify distinct states in a data-driven manner, thousands of
objects tracked from time-lapse images need to be analysed for size,
shape and movement features across what may be a hundred, or more,
time points (Fig. 2a). To reduce computation time we calculated the
cross-correlation of these features across the 22 cell lines previously
analysed (Supplementary Table 2, Supplementary Fig. 1) and manually
identified a subset of non-redundant features (Supplementary
Table 4). Size is defined by Area, shape via Zernike polynomials, and
movement features generated by CellProfiler (Displacement, Distance
Travelled, Integrated Distance and Linearity). We did not use texture
features as these are affected by variations in the focal plane of ima-
ging. Using these non-redundant features we collectively analysed data
from samples and their controls for remaining analyses (Supplemen-
tary Table 3) allowing direct comparison of phenotypes. As discussed
previously, a key point is that the above samples were similar enough
in their morphogenesis characteristics that image sequences of the
same length were compatible.

This multi-dimensional data was used to identify distinct states
using PhenoGraph*’, an approach common for such datasets in mass
cytometry (Fig. 2a). We selected this over other algorithms (ClusterX*,
DensVM*, FlowSOM*, k-means**) as it allowed unsupervised cluster-
ing into subpopulations without reliance on prior dimensionality
reduction (such as t-SNE). To reduce computation time, we sub-
sampled 20,000 objects evenly across phenotypic space using
GeoSketch®, then fitted the remaining data to the identified states (see
Methods). A challenge in identifying distinct states is generating a
meaningful label for each subtype; in single-cell sequencing this can be
done by mapping expression profiles onto reference datasets to
identify if they represent known cell types. This does not exist for
analysis of time-lapse 3D imaging.

To aid in visualisation and interpretation, we generated a method
for computationally selecting representative outlines for each identi-
fied state (Supplementary Fig. 6; Methods). Notably, some phenotypes
that an expert user can distinguish as distinct can nonetheless result in
objects with similar features, such as some non-round states and
instances of spheroids merging. As the underlying features are highly
similar, in a small number of cases these can be classified as the same
state (see state K in Supplementary Fig. 6). In a perfect experimental
system these events would not occur. However, they are bona-fide
occurrences likely to be observed in most methods utilising 3D cultures
in vitro. Therefore, Traject3d provides an honest capture of the reality
of 3D culture and allows the user to interpret biological significance,

rather than pre-emptively excluding data and introducing bias. We
visualised the data using t-SNE (Fig. 2a,b)****%, which performed super-
iorly to PCA but equivalently to UMAP* (Supplementary Fig. 7a,b)***.
We quantified the identified states to determine enrichment or
depletion relative to the control (Fig. 2a). In contrast to expert user
definition of three states (Fig. 1), a data-driven approach identified
sixteen states occupying defined regions in phenotypic space (State A-
P; Fig. 2b, c¢), that occurred with remarkable consistency across time
and independent experimental replicates (Fig. 2d). Comparison of this
approach to user-defined classifications revealed subdivision both
largely within (e.g. state C within Round), as well as borderline between
(e.g. state I across Spread and Spindle), user-defined state classifica-
tions (Fig. 2b, c). Comparison of the relative proportion of objects
within each classification revealed six states with highest frequency in
parental PC3 cells: states C, H, O (largely Round), state I (borderline
Spindle/Spread), and states K, M (borderline Round/Spread) (Fig. 2d).
These included states that were frequent but decreased over time
(state C), were somewhat constant (states H, K), or increased over time
(states I, M). In addition, ten rare (<5%) states were observed, with
some (states G, L, P) increasing in frequency at later time points. A
data-driven approach to state classifications can therefore provide
clarity to regions where user-defined classifications perform poorly.
Having a granular analysis of state (sixteen states) allowed data-
driven clustering of independently derived PC3 sub-lines and the
states that define them. We quantified global state frequency relative
to control (parental PC3 cells; Fig. 2e) and used PCA of size, shape and
movement features to visualise the relationships between states
(Supplementary Fig. 8a, b). This revealed three broad groupings of
states defined by: largest size (L, D), a lack of motility (E, C,K,H, O, G, ],
M), or possessing motility (B, F, P, I, N, A) (Fig. 2b, c, e). Similar to user-
defined states, statistical comparison to control was performed using
Cochran-Mantel-Haenszel and Woolf tests to take into account the
consistency and magnitude of change across experimental replicates.
Rather than adopting a singular shape, the epithelioid group (PC3-
Epi, E-cad+) shared a range of shapes from round to modest elongation
that were all defined by a lack of motility (K, H, O, G, J, M; Fig. 2e). A
second group of cells (GS689.Li, GS694.LAd, GS683.LALN, PC3-EMT,
TEM4-18) were largely defined by motile, enlarging, elongated cells
(states B, F, P, I, N). The third group of cells (TEM2-5, GS672.Ug) were
defined by modest changes from the parental PC3 cells, while
JD1203.Lu possessed a large switch to two predominant states (states
E, C) that lack motility. Notably, shape alone was insufficient to define
behaviours as a small, round state (state A) possessed enhanced
motility and was one of the features of the metastatic cells. Similarly,
cell elongation (state E) was a feature of both epithelioid cells (Group
A) and metastatic cells (Group B) as it occurred with an absence of
motility. These data indicate that both user-defined and data-driven
analysis of heterogeneity can be used to independently detect states
occurring in 3D culture, even those at low frequency. However, only
data-driven approaches provided the granularity and incorporation of
motility features required to detect the full repertoire of cell states.

Identification of distinct states leading to alternate morpho-
genesis patterns
An important feature gleaned from live imaging is that behaviour in 3D
is highly dynamic. This suggests that in addition to identifying the
repertoire of cell states, the order in which they occur across time
needs to be considered to uncover how alternate states lead to alter-
nate phenotypes. Static imaging or sequence prediction from limited
observations will likely underestimate the complexity of state changes
that can define a phenotype, emphasising that timelapse imaging is key
to understanding distinct phenotypes.

A challenge in basing analysis on 3D objects over time is that a)
objects must remain as single objects during observation and b) that
objects with different motility characteristics may not be equally

Nature Communications | (2022)13:5317



Article

https://doi.org/10.1038/s41467-022-32958-x

a Tracked object Data-driven b Data-driven state detection and State
features state detection phenotypic space visualisation A ®
remove (time-independent) . B @~
) - temporal C (@]
E qﬂ) é order D ’*
©n E <0
utoOO® [ JNG) g
oo ®5E> ¢ a
@) C H @
@)@ [ G | e
TR > 8
Phenotypic space Global K @
visualisation state frequency L esde
s M
é '{reatmem N *
o 1e °o O
2 s (|0 P D
@@=[ o e
tSNE 3 g Control é
C User-defined d
_ state 06— PC3 state L? Moveme':nt t‘i
5] o o . O . .
o 0 . . e
s 5 o o I
o Round Ee]
£ 54 S;:Jenad g o -~
e spindle S, | O>=. |
: g o ;. <
T $ o4 . - -
g © Q0 ; =
% e 8 L. . HE
< 5 0 o
g 024 o O . . . o
g O A 1 Low
o K' e M @~ 0o - . ) )
NP v o =D
00 2 s |0 O c
Time (h) 0 25 50 75 100
7
\-._f. wo?
A/
State Frequency El o _ 323 -
2 83 37 33z
oS 48 B2 ggalz
o oement, o fosgf B: BEECE
ol o e OH.OO 0o [0o0@o7
5 .- j 0 |® OO 2o 0oc0O@O
== ' | eo[@-0 -0 eceee
s s o - 0 O OO OO OOOOO
GS683LALN sl o . © O 00 00 000
g5 o o o000 00 20000
gl ¢ ¢ 0o 0000 00000
s 4 : : 0| @O Oo GOOOOT |
5 I I Oll0O@O oo oDe@e
s 0 |O OO O OOOOO
g gy : 3l JOOICICROON |©
-~ < 0|0 @0 o0 @0 e o
= = Q|0 oo oo OOOOO
8 =z o [|@ 00 00 CO0ee
: R 0@ Oc 00000
5 o O 01/® 2O 0 @000O
> All data points
win I mx s 0sd @ang M T .
Proportion of objects in region 038 s 280 palue
tSNE 1 (Log2, per Sample) low  High b z'_"g 9 3329 3 -EEE S’\?gs")
& .° :

tracked using a singular tracking algorithm. For instance, multiple
unique spheroids may touch in one frame of an image sequence or split
into daughter objects in another frame. This is a challenge for analysis as
two tracked spheroids can share a common event (aggregate object).
To partially address this we applied a tracking label correction at points
of splitting/merging where the largest daughter object retains the label
of the parent; other child objects are assigned new unique labels (see
Methods for more detail). This allows for retaining at least one of the

objects rather than discarding what could otherwise be days of tracking.
Such instances are then represented by the appearance of cell states
enriched for touching or splitting (e.g. cell state K). This allows bias-free
capture of the events in 3D culture and the option for user interpreta-
tion of the biological significance of the events.

As distinct cell states are identified in data stripped of time, cell
state is agnostic of the tracking labels. However, some behaviours may
include motility that is faster than the imaging interval frequency.
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Fig. 2 | Identifying the repertoire of distinct states that occur in 3D cultures.
a Schema, analysis of heterogeneous spheroids, regardless of temporal order,
enables data-driven subtype classification, visualisation of phenotypic space, and
frequency relative to control. b t-SNE of states in PC3 and sublines. Plot points
coloured by data-driven state classification. Black dashed lines highlight regions
corresponding to data-driven states mentioned in text. Data comprised of each
spheroid identified in each image of the experiment. Number of spheroids quan-
tified in Supplementary Table 3. t-SNE analysis performed on 20,000 objects
subsampled via GeoSketch, with iterations = 2000, theta = 0.5, perplexity = 50.

¢ t-SNE of the relative distribution of spheroids for PC3 and sublines. Plot points
coloured by user-defined state classifications, and data-driven state enrichment:
purple-to-yellow shows per sample proportion of total objects in each data-driven
state, quantified before t-SNE. Black dashed lines, highlight regions corresponding
to data-driven states mentioned in text. Data comprised of each spheroid identified
in each image of the experiment. Number of spheroids quantified in Supplementary
Table 3. t-SNE analysis performed on 20,000 objects subsampled via GeoSketch,

with iterations = 2000, theta = 0.5, perplexity = 50. d Proportion of PC3 spheroids
exhibiting each data-driven state classification over time. Shaded region represents
s.e.m. across experiments. n =3 independent experiments with 3 wells/condition/
experiment. Number of spheroids quantified in Supplementary Table 3. Repre-
sentative outlines shown, arranged by average movement, and coloured by average
size (green scale). e Quantitation of data-driven state classifications in PC3 subline
pairs. Representative outlines shown, arranged and coloured (light to dark green)
by average class motility and size, respectively. Heatmap shows classification of
spheroids as a Log2 Fold Change from control (PC3) (blue to red). Proportion of
control in each class is shown (white to black). Bubble size represents p values,
Cochran-Mantel-Haenszel test (Bonferroni-adjusted), to compare each classifica-
tion to control. Black dot represents p-value, Woolf test (Bonferroni-adjusted), for
homogeneity of odds ratio across experiments. n =3 independent experiments, 3
wells/condition/experiment, number of spheroids quantified in Supplementary
Table 3.

While most features used to define cell states (size, shape) are unaf-
fected there may be some contribution of imperfect tracking to
motility features resulting in some underestimation of motility con-
tribution to some cell states. Therefore, while Traject3d can analyse
the data generated from image segmentation and tracking of time-
lapse imaging, a key consideration is that any analysis will be restricted
by the limitations above, some of which are inherent to 3D culture
analysis. We therefore may detect many, but not all types of beha-
viours. Nonetheless, Traject3d clearly identified behaviours that were
distinguished by their motility features (Fig. 2e; Supplementary Fig. 9).

While computational approaches exist that predict the temporal
order of state transitions from a limited set of static timepoints®*,
Traject3d uses true temporal ordering of individually tracked spher-
oids from live imaging. In brief, we restored the temporal order of the
assigned data-driven state classifications and filtered the tracked
spheroids retaining only those which i) existed from the beginning of
imaging and ii) were tracked for a length of time compatible with
comparison (see Methods). In the instances of spheroid merging or
splitting the size and shape of the new aggregate object has changed
significantly such that CellProfiler assigns it a new unique tracking
label, which is inherited by the daughter objects. These ‘new’ objects,
as defined by the assignment of a new tracking label, do not exist long
enough for inclusion in the comparison of patterns, and therefore do
not contribute to the identification of trajectories. As a result, and
accounting for the above considerations in tracking distinct pheno-
types over time in 3D culture, we were able to analyse the temporal
sequences of 18,922 spheroids tracked every hour over four days
(Supplementary Table 5). This allowed us to analyse recurring tem-
poral patterns of state changes across time that lead to each pheno-
type (Fig. 3a).

Traject3d identified twenty-three distinct patterns of state
change, which we term ‘trajectories’ (Supplementary Fig. 10). Each
pattern is summarised by a motif that represents the frequency of
state(s) across time, accompanied by the representative outlines of the
most frequent state in each time period (Fig. 3a, Supplementary
Fig. 11). To aid in the interpretation of each trajectory classification, a
representative spheroid corresponding to the sequence of the most
frequent state, with matching pseudo-coloured outline, is provided
(Fig. 3a-e; Supplementary Fig. 11). This was computationally selected
in an unbiased manner, by selection of a spheroid sequence over time
whose temporal state classifications most closely matched its trajec-
tory group’s sequence of most frequent state across time (see Meth-
ods). Although some trajectories appear similar when binned into
fewer time periods, such as having the same state as the most frequent
(e.g. state C), they differ by distinct patterns of transitions between
states over time (Fig. 3a, Supplementary Fig. 12). This illustrates the
fact that distinct phenotypes arise by either using distinct cell states or
by using the same states in a different order over time. Animations of

these changes per trajectory are provided as Supplementary Videos 1-
23. The quantities of identified states and trajectories were robust
against changes in the parameters used to identify state and trajectory
clustering (k-nearest neighbour parameter; Supplementary Fig. 13,
Supplementary Note 1).

As shown previously for the quantification of user-defined and
data-driven states, we compared enrichment or depletion of trajec-
tories relative to control using statistical tests (Cochran-Mantel-
Haenszel and Woolf) that consider consistency across experimental
replicates. Parental PC3 displayed most trajectories (eighteen) simul-
taneously with a frequency of 2-15%, as well as five rarely (<2%)
occurring trajectories (Fig. 3b-e). Traject3d identified and grouped
remarkably consistent trajectories between the two independently
isolated epithelioid lines (Group I, pink; PC3-Epi, E-cad +), versus
highly invasive/metastatic cells (Group II, brown; PC3-EMT, TEM4-18,
GS689.Li, GS694.LAd, GS683.LALN) or in those with more minor
invasion (Group IlI, purple; JD1203.Lu, GS672.Ug, TEM2-5). Cell group-
specific trajectories could be observed, such as: the largely round
trajectory 6 for epithelioid cells (Group I; Fig. 3c), trajectory 7 that
represents motile objects enriched in state I (elongated state; Fig. 3d)
in Group I, or a lack of both trajectories for Group IlI (Fig. 3b, green
highlighted box). Instances where cell groups differed by a single tra-
jectory could also be identified (e.g. trajectory 21 between PC3-Epi and
E-cad +; Fig. 3b, green highlighted box).

Each cell group was not defined by alteration of a singular tra-
jectory, but by a change in several co-occurring phenotypes (e.g.
decrease in trajectories 8/13/15/18 and increase in trajectories 19/16/6/
10 in epithelioid group I; Fig. 3b). Although Trajectories 6 and 7 are
differentially frequent between cell groups, both trajectories share a
large fraction of common states (states C, H, K) and have a similar
repertoire of state transition profiles (Fig. 3¢, d). These differ in that the
epithelioid-enriched trajectory 6 mostly remains in the common,
poorly motile states (states C, H, K), while trajectory 7 invokes rarer (I,
M) states at later time points. This emphasises that only imaging over
time to identify the patterns of change, rather than static imaging to
assign a phenotype, could distinguish between phenotypes with
similar states.

The similarity between clustering of the data based on their state
and trajectory classifications is worth noting, although it is expected.
The trajectories are built from the cell states, ordered in sequence
from live imaging. However, a deconstructed view of the data cannot
alone capture how states may transition from one to another over time
to form distinct phenotypes. While clustering of these cell lines by
their user-defined (Fig. 1h) and data-driven (Fig. 2e) states generally
resulted in similar groupings, only analysis of the same data over time
enabled grouping of the former outlier, lung metastasis-derived
JD1203.Lu, into Group IIl. Moreover, this analysis uncovers the time
points at which trajectories differ, which can occur at distinct time
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points between different trajectories under comparison. This empha-
sises that analysis from a single timepoint, or without consideration of
time, fails to elucidate the true repertoire and order of heterogeneity.
This shows that Traject3d can robustly identify distinct phenotypes in
a data-driven fashion, facilitating identification of behaviours asso-
ciated with a particular biological function such as epithelioid orga-
nisation or metastatic activity.

Component

Traject3d allows deconvolution of bulk sequencing to identify
morphogenesis pathway regulators

Traject3d identifies co-occurring phenotypes within a sample,
and whether these phenotypes differ between samples. We rea-
soned that this may allow deconvolution of bulk RNAseq, as
changes in gene expression profiles that underpin each phenotype
should be altered in a similar trend to the phenotypes themselves;
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Fig. 3 | Data-driven identification of distinct phenotypes occurring in parallel
over time. a Schema, illustrating analysis of temporal data to determine mor-
phogenesis trajectories. Analysis of size, shape and movement characteristics,
regardless of temporal order, enables classification of data-driven states. These
states can be visualised by distributing them in 2-dimensional space based on mean
features. By restoring temporal ordering of tracked spheroids, a sequence of state
events for each spheroid can be generated. Recurring trajectories of state change
over time are determined from this, and summarised as a state frequency motif
over time. Using the most frequent state at each timepoint, a spheroid is selected to
represent each trajectory. Transitions between states are quantified, before visua-
lisation projected onto state space and as a chord diagram. b Heatmap shows
quantitation of trajectory classification of spheroids as a Log2 Fold Change from
control (PC3) (blue to red). Proportion of control in each trajectory is shown (white
to black). Bubble size represents p-values (Cochran-Mantel-Haenszel test) com-
paring each classification to control. Black dots represent p value (Woolf test)

testing homogeneity of odds ratio across experimental replicates. n=3 indepen-
dent experiments, 3 wells/condition/experiment. Spheroids quantified, after fil-
tering, in Supplementary Table 5. Trajectories discussed in text, highlighted in
green. Trajectories discussed in text highlighted in green. Cell Groups (1, pink; II,
brown; 111, purple) derived from dendrogram. c-e Trajectory visualisation. Colours
represent previously identified states and correspond to those used in Fig. 2b.
Behaviour motif depicting frequency (proportion) of states in 12-hour time inter-
vals, with outline of the most abundant state shown at top. Using the most frequent
state at each timepoint, a spheroid was selected to represent the trajectory, phase
images shown, outline colour indicating state at given timepoint. Scale bars, 30 um
(triangle) and 300pm (square). Transitions between states shown globally as a
chord diagram, with time interval in greyscale. PCA used to arrange states in
2-dimensional space; transitions (shown as proportion; greyscale) between (lines)
and maintaining (circles) states are overlaid onto this for select time intervals.

Traject3d identifies which cell lines to pair to perform such
comparisons.

Using this approach, we selected two pairings that represent one
cell line per pair from each of epithelioid (Group I) versus invasive
(Group II) phenotype. Cell Pair 1 (PC3-Epi versus PC3-EMT) resulted
from direct derivation: co-culture of cells cloned for epithelial phe-
notype (PC3-Epi) with macrophages in vitro before re-isolation of the
epithelial cells alone (PC3-EMT>®) (Fig. 1f). For Cell Pair 2, cells were
derived independently: sorting for high levels of surface E-cadherin (E-
cad +), compared to cells that metastasise to liver (GS689.Li*). This
ensured that we avoid derivation-specific effects, such as the induction
of trajectory 21 specific to Pair 1's derivation (Fig. 3b, e; green
highlighted box).

We mined existing RNAseq experiments of these pairs for differ-
ential expression and pathway activity (Fig. 4)***°. Known epithelial
identity genes were amongst the highest transcripts expressed in cells
in Group I from the cell pairings (PC3-Epi, E-cad +) (Fig. 4a, b). As an
Epithelial-Mesenchymal Transition (EMT) was apparent in the invasive
cells from both cell pairings (PC3-EMT, GS689.Li; Fig. 4c), we queried
the changes in EMT-related transcriptional regulators. This revealed
that the master transcriptional regulator of EMT, ZEB1, was strongly
induced in invasive cells™ (Fig. 4d). We calculated the Top 50 epithe-
lioid or EMT-associated genes, defined as those with highest differ-
ential expression in common between epithelioid (PC3-Epi, PC3-E-
cad +) versus mesenchymal (PC3-EMT, GS698.Li) cell pairings (Fig. 4e).
As ZEBI is typically a repressive transcription factor of genes asso-
ciated with epithelial identity, we compared the identified “Top 50
epithelioid genes’ to RNAseq data from control versus ZEB1-depleted
(two independent clones) mesenchymal PC3-EMT cells. This revealed
that 20% of the ‘Top 50 epithelioid genes’ had their expression sub-
stantially restored (often 10-fold on a Log2 scale) after expression of
ZEBI shRNA (red, asterisks; Fig. 4e). Conversely, the cell lines selected
for epithelial characteristics (PC3-Epi) or high E-cadherin expression
(E-cad +) in either pair lacked ZEB1 expression and displayed robust
levels of the ZEBl-repressed target gene E-cadherin and the master
regulators of epithelial-specific splicing patterns ESRP1/2% (Fig. 4e, f).
This suggests that the balance between epithelioid and invasive state
trajectories within each cell line may be controlled by a ZEBI-
driven EMT.

We reasoned that if we were able to use the phenotypic changes
detected by Traject3d to deconvolve molecular regulators from bulk
RNAseq, then introducing such alterations in parental PC3 cells should
recapitulate the same phenotypic changes. Indeed, ZEB1 or ESRP1/2
depletion in parental PC3 (Supplementary Fig. 14a, b) resulted in a
significant switch between the broad user-defined states of Round and
Spindle (Fig. 5a-d). This initially suggested that the ZEBI-ESRP1/2 axis
may function to control cell shape. However, the data-driven approach
revealed that while ZEBI1 depletion did affect predominantly elongated
cell states, ZEBI was not a regulator of cell shape per se. Rather, ZEB1

depletion broadly repressed states with increased motility (states L, D,
B, P, 1, N; Fig. Se, f) irrespective of their shape (note state A is round but
motile), while increasing the prevalence of elongated, but poorly
motile states (states E, M; Fig. 5e, f). This led to a depletion of invasive
trajectory 7, which contained these motile states (e.g. state I) (Fig. 5e-j;
see Fig. 3d for trajectory summary). Paradoxically, ZEB1 depletion also
decreased the highly round trajectory 3 (Fig. 5h, j), concomitant with
the enrichment of several trajectories containing varied cell shape, but
all lacking motility (trajectories 19, 6 10, 23, 1, 18, 5) (Fig. 5f, h, k). This
reveals an unexpected function of ZEBI in the adoption of motility
rather than cell shape; in the absence of ZEB1 cells move out of a round
state (e.g. state C, and leading to Trajectory 3), but become unable to
adopt motility features, instead displaying a range of alternate shape
states that ultimately leads to multiple alternate phenotypes (trajec-
tories 19, 6 10, 23, 1, 18, 5) (Fig. 5f, h, k).

Depletion of ESRP1/2 resulted in mostly Spindle-type user-defined
classification (Fig. 5c, d), which suggested that these splicing factors
supress this shape change. In contrast to a control of motility by ZEB1,
data-driven analysis of ESRP1/2 revealed that these splicing factors are
largely negative regulators of cell elongation, but not motility. Elon-
gated states, both motile (states L, D, B, I) and non-motile (states E, M),
were upregulated upon ESRP1/2 depletion, but motile non-elongated
states (state A) were not (Fig. 5g). This resulted in induction of the
moderately locally invasive trajectory 7 upon ESRP1/2 depletion, but
not highly motile trajectories 17 or 21 (Fig. 5i). Similar to ZEB1 deple-
tion, ESRP1/2 knockdown also paradoxically increased the round,
nonmotile trajectory 3 (though as expected in the opposite orientation
to ZEB1 depletion) (Fig. 5h-j). This suggests that three general types of
phenotype exist in this population: i) a mostly round and non-motile
state, ii) phenotypes with varying shape states but without motility,
and iii) highly motile states, irrespective of their shape. A ZEB1-ESRP1/2
pathway controls plasticity between these states. Accordingly, deple-
tion of ZEB1 or ESRP1/2 reduced or enhanced invasion in orthogonal
invasion assays (Supplementary Fig. 14c-e). These data confirm that
Traject3d can be used in conjunction with bulk RNAseq of cell popu-
lations to identify key regulators of heterogeneity. Moreover, by ana-
lysing changes over time, Traject3d can be used to interrogate the
specific cellular features that identified molecular regulators con-
tribute to alternate phenotypes, such as cell shape by the splicing
factors ESRP1/2 versus motility by ZEBI.

An HGF ligand and c-Met receptor coupling control ZEB1 nuclear
translocation

Our data indicated that heterogeneity in expression of ZEB1-ESRP1/2
module underpins the appearance of invasive trajectories (trajectories
21, 7, 17) in Group Il cells (GS689.Li, GS694.LAd, GS683.LALN, PC3-
EMT, TEM4-18; Fig. 3b). Group Il cells (JD1203.Lu, GS672.Ug, TEM2-5),
however, express similar levels of ZEBI-ESRP1/2, yet lack trajectories
21, 7,17 (Fig. 3b). This suggests that an additional factor is required to
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Fig. 4 | Deconvolution of molecular pathways underpinning different pheno-
types. a Schema of PC3 subline pairs. Pair 1is PC3 selected for epithelial shape (PC3-
Epi) then made to undergo EMT by co-culture with macrophages (PC3-EMT). Pair 2
is PC3 FACS sorted for high surface E-cadherin (E-cad +) vs PC3 harvested from a
liver metastasis following in vivo selection (GS689.Li). Two PC3-EMT lines stably
expressing ZEBI shRNAs were also examined to identify ZEB1-influenced tran-
scripts. Venn diagram summarizes RNAseq profiling which identifies 36 ZEB1-
responsive genes upregulated in both Pair 1 and 2 and depleted upon ZEBI shRNA-
induced knockdown. b Comparison of transcript levels (shown as Log, Fold
Change) in Cell Pair 1 between epithelioid (PC3-Epi) vs invasive (PC3-EMT) samples.
p-values shown as -Log;o (Negative Binomial GLM fitting and Wald statistics using
DESeq2). ¢ MetaCore analysis of pathways maps from RNAseq profiling of PC3-Epi
and PC3-EMT (Pair 1) and E-cad+ and GS689.Li (Pair 2) identified pathways com-
monly upregulated across both cell pairs in PC3-EMT (vs PC3-Epi) and in GS869.Li
(vs E-Cad +). Molecular processes enriched in these data sets are ranked by p value
(MetaCore version on 2017-10-26, -Log;o). d Comparison of expression of EMT
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transcription factors (TFs; GRHL1-3, ZEB1, SNAI1-3, TWIST1) between PC3-Epi and
PC3-EMT (Pair 1) and E-cad+ and GS689.Li (Pair 2) cells indicates that ZEB1 is the
most upregulated EMT TF in both cell pairs (in PC3-EMT and GS689.Li). Data are
presented in the heatmap as Log, Fold Change from green to magenta.

e Comparison of the top and bottom 50 most differentially expressed genes that
were concordant between both cell pairs revealed that within the Top 50
epithelioid-associated genes, 20% of these transcripts were altered in expression
upon shRNA targeting the transcriptional repressor ZEB1. ZEB1-responsive genes
are indicated by red asterisk or red text. f Western blot analysis of PC3 sublines was
performed using anti-E-cadherin, N-cadherin, vimentin, ZEB1, ESRP1, ESRP1/2 and
GAPDH antibodies. GAPDH blot is loading control for vimentin and sample integrity
control for other blots. Representative of n = 2 independent experiments. Note that
ZEBI had inverse expression compared to E-cadherin and ESRP1/2 in all PC3-
derivative cell lines, except TEM2-5. Note that N-cadherin expression was not
concordant with ZEBL.

drive these changes. Pathway analysis from RNAseq (Fig. 4c) indicated
that differential expression of the HGF signalling pathway was asso-
ciated with invasion, with HGF ligand but not c-Met receptor transcript
levels induced in the invasive lines from Cell Pairs 1 and 2 (PC3-EMT,
G5689.Li; Supplementary Fig. 15a). Addition of HGF to activate, or
Cabozantinib to inhibit, c-Met signalling in parental PC3 cells robustly
induced or completely abolished collective invasion, respectively
(Supplementary Fig. 15b, c, d).

Application of broad user-defined classification suggested that
HGF activation versus inhibition resulted in a switch between round
versus spread and spindle shape (Supplementary Fig. 15¢,f). This initi-
ally pointed to shape changes as a major function of HGF signalling.
However, data-driven approaches, similarly to analysis of ZEBI,
revealed that HGF signalling largely controls motility. Cabozantinib
treatment led to a loss of motility associated with elongation (states L,

D, B, F, P, 1, N; Supplementary Fig. 15g,h) and enrichment of non-motile
trajectories (trajectories 20, 4, 5; Supplementary Fig. 15i). HGF stimu-
lated the states with the highest motility (B, F, P, I, N; Supplementary
Fig. 15h), but most prominently state A, which is a round state with
extreme motility that is rare in parental PC3 cells. Accordingly, tra-
jectory 17, to which state A is almost exclusively associated, was
robustly induced upon HGF treatment (Supplementary Fig. 15i; green
highlight box). This identifies HGF signalling as additionally required
to ZEBI1 to induce motile phenotypes.

We also examined whether HGF may act by controlling ZEB1
localisation. The identification of ZEB1 function in controlling motility
rather than cell shape per se required live imaging, however, expres-
sion of exogenous, fluorescently tagged ZEBI1 to track localisation
would perturb cell behaviour. To overcome this, we examined endo-
genous ZEBI localisation in fixed 3D spheroids classified into the three
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user-defined states (Round, Spread, Spindle) (Supplementary Fig. 16a),
with and without HGF treatment. Total ZEB1 expression, as well as the
ratio of nuclear:cytoplasmic localisation, was modestly higher in
spheroids displaying Spindle shape in comparison to Round and
Spread spheroids both at steady state and upon HGF treatment
(Supplementary Fig. 16b, c). Notably, the addition of HGF only caused a
modest alteration to ZEB1 total expression and a modest but

significant increase in ZEBI nuclear translocation in Spindle-state
spheroids. However, HGF treatment robustly increased the proportion
of Spindle-state spheroids in the population (from 22.5% in DMSO
condition to 49%) (Supplementary Fig. 16d). These data therefore
suggest that the main effect of HGF is not to increase nuclear ZEBI in
spheroids already exhibiting Spindle state, but rather to increase the
proportion of spheroids with Spindle features (which have the highest
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Fig. 5 | ZEB1 controls 3D motility features, not cell shape. a-d Phase images and
quantitation of PC3 spheroids expressing Scramble, (a, b) ZEBI or (c, d) ESRPI/2
shRNA. Scale bars, 100pum. Heatmaps show Area and Round, Spread or Spindle
quantitation as described in Fig. 1h. n=2 or 3 independent experiments respec-
tively, 4 wells/condition/experiment, quantified in Supplementary Table 3. e t-SNE
of spheroids from a-d. Plot points coloured by data-driven and user-defined state
classifications. Purple-to-yellow shows per sample proportion of total objects in
data-driven states, quantified before t-SNE. Black dashed lines, highlight regions
corresponding to data-driven states. Data comprised of each spheroid identified in
each image frame. t-SNE performed on 20,000 objects subsampled via GeoSketch,
with iterations = 5,000,000, theta = 0.25, perplexity = 25. f, g Quantitation of data-
driven state classifications. Representative outlines shown, arranged and coloured
(light to dark green) by average class motility and area, respectively. Heatmaps
show classification as Log, Fold Change from control (Scramble) (blue to red).
Proportion of control in each class shown (white to black). Bubble size represents p-
values (Cochran-Mantel-Haenszel test and Bonferroni adjusted), comparing clas-
sifications to control. Dots represent p value (Woolf test and Bonferroni-adjusted),

for homogeneity of odds ratio across experiments. Row order and dendrograms
match Fig. 2e. n described in a. h, i Heatmaps show trajectory classification as Log,
Fold Change from control (Scramble) (blue to red). Proportion of control is shown
(white to black). p-values, Cochran-Mantel-Haenszel test to compare classifications
to control, represented by bubble size. p-value, Woolf test for homogeneity of odds
ratio across experimental replicates, represented by dots. n =3 independent
experiments, 3 wells/condition/experiment. Row order and dendrograms match
Fig. 3b. n described in a and spheroids quantified in Supplementary Table 5. Tra-
jectories discussed in text, highlighted in green. j, k Trajectory visualisation. Col-
ours represent previously identified data-driven states and correspond to e-g.
Behaviour motif depicting frequency of states in 12-h intervals, with outline of most
abundant state shown. Phase images representing trajectory shown with outlines
indicating state. Scale bars, 30 pm (triangle) and 75 um (circle). Transitions shown
as chord diagram, time interval greyscale. PCA used to arrange states in
2-dimensional space; transitions (proportion; greyscale) between (lines), and
maintaining (circles), states overlaid.

ZEB1 nuclear levels of all three shapes). However, further investigation
would be required to confirm a direct causal effect of increased
nuclear ZEB1 on spindle shape and rule out the involvement of other
mechanisms. Together, this emphasises the utility of combining Tra-
ject3d with existing bulk RNAseq or immunofluorescence approaches
to identify molecular drivers of heterogeneity, such as the possible
HGF-ZEBI-ESRP1/2 axis identified here.

Traject3d identifies molecular combinations that can attenuate
heterogeneity in treatment-resistant cells

We applied Traject3d to an independent set of treatment-resistant
cancer cells to identify enrichment for specific states and trajectories,
and to determine whether we could identify drug combinations that
affect specific trajectories. We profiled additional PC3-derivative lines
representing metastasis to liver (PC3M)>* and resistance to Docetaxel
(Dx) treatment (PC3M-DR). We asked whether these subtypes would be
dependent on the aforementioned HGF-ZEB1 pathway controlling
plasticity and if inhibiting this pathway could restore treatment sen-
sitivity (Fig. 6a).

ZEB1 was either expressed equivalently to (PC3M) or below
(PC3M-D®) parental PC3 levels, but PC3M and PC3M-D® displayed
robust activation of c-Met, the latter of which could be effectively
inhibited by the tyrosine kinase inhibitor Cabozantinib in all lines
(Supplementary Fig. 17a). Both PC3M and PC3M-DF spheroids reliably
displayed increased area from early timepoints throughout the time
course (Supplementary Fig. 17b, c¢). Using broad, user-defined state
classifiers, these spheroids exhibited increased Spread and Spindle
states over time at the expense of roundness, with PC3M-DR particu-
larly enriched for Spindle state. While Area was sensitive to Cabo-
zantinib across cell lines, surprisingly, the use of user-defined
classifications suggested that Cabozantinib only effectively inhibited
Spread and Spindle state in the parental PC3 cells despite movies
clearly showing decreased spindle and spread behaviours (Supple-
mentary Fig. 17b, ¢). As expected, all phenotypes in PC3M-DF spheroids
were refractory to Docetaxel treatment alone. The combination of
Cabozantinib with Docetaxel treatment in PC3M-D® resulted in a delay
to Spindle state induction (Supplementary Fig. 17c). Notably, Spindle
shape did still occur at later timepoints but lacked a concurrent
increase in Area and instead represented the shape of individual or
dual cells rather than spheroids. The use of simple, user-defined clas-
sifications therefore gave the impression that PC3M and PC3M-DF are
largely refractory to these treatments.

Traject3d performed superiorly in identifying how pharmacolo-
gical perturbation of treatment resistance-associated phenotypes
result from alternate cell states. Traject3d clarified that the apparent
induction of both Spread and Spindle states in PC3M and PC3M-DR
represented poor distinguishability between user-defined Spread and

Spindle classifications (L, I, N) (Fig. 6b-d, see Supplementary Fig.17d for
comparison). Traject3d allowed discrimination of large, motile, elon-
gated states that were common to both PC3M and PC3M-DF spheroids
(D, 1, L) from those that were specific to PC3M-D® spheroids (N)
(Fig. 6d). Moreover, Traject3d distinguished states with equivalent
user-defined classifications that were differentially sensitive (L, D) or
refractory (I, K, N) to Cabozantinib alone, as well as those specifically
inhibited by dual Cabozantinib and Docetaxel treatment in PC3M-D?
spheroids (A, I, N). Notably, two rare states (A, N) were induced speci-
fically in PC3M-DR spheroids and could only be inhibited by the com-
bination of Cabozantinib and Docetaxel treatment. Rare cell state A is
notable in that it overlapped with Round classification but displayed
higher motility than other ‘round’ states. This highlights the utility of
Traject3d in identifying treatment resistance-associated behaviour
states, as seemingly similar user-defined states can represent distinct
biological phenotypes with differential sensitivity to interventions.
Reconstructing state changes over time provided clarity as to
how alternate states can give rise to alternate phenotypes, particu-
larly in drug-sensitive versus drug-insensitive scenarios. This revealed
multiple types of behaviours that had been induced in parallel in
PC3M and PC3M-DR. This included trajectory 16, typified by elon-
gated but poorly motile states K and M (Fig. 6d-f). It also included
three distinct types of motility phenotypes. Both cell types induced
the modestly invasive trajectory 7 (Fig. 3d, Supplementary Figs. 11-12)
typified by state I (Fig. 6e). PC3M displayed a second type of motility:
induction of the very large, motile, elongated trajectory 21 (Fig. 3e,
Supplementary Figs. 11-12) typified by the large, modest motility state
L (Fig. 6e). PC3M-D® possessed equivalent levels of both above
invasive phenotypes but added a third type: trajectory 17 (Fig. 6g,
Supplementary Figs. 11-12), comprised of extremely motile spheroids
typified by the round, highly motile state A (Fig. 6e). Notably, each of
these three motile trajectories was differentially sensitive to treat-
ment. Trajectory 17 was sensitive, while trajectories 16 and 7 were
refractory, to Cabozantinib treatment; only dual Cabozantinib/Doc-
etaxel treatment was successfully able to abolish trajectory 17
(Fig. 6e). This emphasises that induction of biological features, such
as metastasis or drug-resistance, can be associated with multiple,
parallel phenotypes being induced, such as the three distinct types of
invasion in PC3M-D®. Given that each of these invasion states is dif-
ferentially drug sensitive in the same sample - something that was
not detected by simple user-defined classifications - this emphasises
the importance of data-driven heterogeneous phenotype detection
over time when profiling 3D cultures that Traject3d now provides.

Application of Traject3d to organoids grown in dome culture
As a complement to the 3D culture and imaging approach utilised
above we applied Traject3d to an alternate modality: the imaging of
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organoids grown in dome-based culture (Supplementary Fig. 18a). We
examined primary organoids from a genetically engineered mouse
model of colorectal cancer, intestine-specific mutant K-ras, loss of
TP53 and activation of Notch signalling (villinCre®™ Krasciop+ TrpS3™™
Rosa26™<9; KPN)**. We included stimulation with two EMT-associated
ligands, TGFf1 and IL-6, to examine potential effects on organoid
behaviour. We imaged 97,697 objects and tracked 11,295 object series
over multiple days (Supplementary Table 6). Imaging every two hours
for 6 days indicated that cells formed stereotypical spherical orga-
noids varying in size by 6 days, with lumens already apparent in many
organoids by two days (Supplementary Fig. 18b). Data-driven identifi-
cation revealed 14 cell states (A-N; Supplementary Fig. 18c). This
included the prototypical organoid morphology of a monolayer of
cells around a single central lumen (states H, L). Also detected were

Scale bars:

1 Principal
Component

instances of clusters of cells not (at that point) forming into proto-
typical organoid morphology (e.g. states A, D, E, G). As a quality con-
trol, instances where air bubbles were detected as objects (state I) were
separated on the t-SNE maps from other objects, as were instances of
organoids merging (state C) (Supplementary Fig. 18¢), both of which
were extremely rare (see proportion of events in Control in Supple-
mentary Fig. 18d).

Examination of cell state alone revealed each treatment (TGFf1,
IL-6, or vehicle control) could increase the frequency of large motile
states (states J, K) that were very rare in control (0.5% and 0.2%,
respectively) but still only resulting in rare occurrences (0.8-1.3% and
0.4-1.2%, respectively). TGFp1 alone modestly decreased the frequency
of prototypical spheroid organoids (states H, L; Supplementary
Fig. 18d). Importantly, when restoring time to tracked objects to
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Fig. 6 | Data-driven analysis identifies distinct phenotypes with differential
sensitivity to pharmacological treatment. a Schema, subline derivation from
liver metastases in nude mouse bearing splenic explant of PC3. PC3M cells were
treated with escalating doses of Docetaxel (Dx.) until resistant (PC3M-D) then
treated with Cabozantinib. b, ¢ t-SNE of spheroids treated with Cabozantinib and/or
Docetaxel. Plot points in b coloured by data-driven state classifications. Purple-to-
yellow in (c) shows per sample proportion of total objects in each data-driven state,
quantified prior to t-SNE. Black dashed lines, highlights regions corresponding to
data-driven states. Data comprised of each spheroid identified in each image frame.
n=3 independent experiments, 4 wells/condition/experiment. Spheroids quanti-
fied in Supplementary Table 3. Analysis performed on 20,000 objects subsampled
via GeoSketch, with iterations = 5000, theta = 0.25, perplexity = 100. d Quantitation
of data-driven state classifications. Representative outlines shown, arranged and
coloured (light to dark green) by average class motility and size, respectively.
Heatmap shows classification as Log, Fold Change from control (PC3 + DMSO)
(blue to red). Proportion of control in each class shown (white to black). Bubble size
represents p values, Cochran-Mantel-Haenszel test (Bonferroni adjusted), to

compare classifications to control. Black dot represents p-value, Woolf test (Bon-
ferroni-adjusted), testing homogeneity of odds ratio across experiments. Row
order and dendrograms match Fig. 2e. n described in b. e Heatmap shows trajec-
tory classification as a Log, Fold Change from control (PC3 + DMSO) (blue to red).
Proportion of control is shown (white to black). Bubble size represents p-values,
Cochran-Mantel-Haenszel, comparing classifications to control. Black dot repre-
sents p value, Woolf test, testing homogeneity of odds ratio across experiments.
Row order and dendrograms match Fig. 3b. Spheroids quantified in Supplementary
Table 5. Trajectories discussed in text, highlighted in green. f, g Trajectory visua-
lisation. Colours represent previously identified states and correspond to b, d.
Behaviour motif depicting frequency of states in 12-hour intervals, with outline of
most abundant state shown. Phase images representing trajectory shown with
outlines indicating state. Scale bars, 75pm (round (f)) and 30um (triangle (g)).
Transitions shown as chord diagram, time interval greyscale. PCA used to arrange
states in 2-dimensional space; transitions (proportion; greyscale) between (lines),
and maintaining (circles), states overlaid.

identify and quantify trajectories, we identified that despite modest
effects on some cell states (Supplementary Fig. 18d) there was no
difference in phenotype of these organoids over time with any of the
applied treatments (TGFfl, IL-6, or vehicle control), other than
extremely minor changes in the presence of rare air bubbles in the
culture. It is notable that while the most frequent trajectory observed
captures a stereotypical presentation of organoid formation (trajec-
tory 6), there are not infrequent co-occurring phenotypes, including
where clusters of cells do not give rise to an organoid (trajectories 1, 3,
4), and clusters of cell aggregates without (trajectory 7) or with (tra-
jectory 5) merging with other objects (Supplementary Fig. 18e,f). This
emphasises how multiple, often unreported, phenotypes can co-occur
within a sample. Traject3d provides a methodology to now detect such
populations, enabling future testing of their biological significance.
Moreover, this emphasises that the addition of time from live imaging
is essential to detect the contribution of alternate cell states to
phenotype.

Discussion

We here described Traject3d, a method for quantitative, data-driven
identification of distinct states over time from label-free multi-day
time-lapse imaging of 3D culture. This allows identification and
molecular dissection of a range of cellular states based on morpho-
logical data exhibited by cells as they expand in culture to form 3D
multicellular structures. The identified trajectories are intrinsically
distinct on a biological level, illustrated here by differential metastatic/
invasive potential and drug resistance. This approach is equally
applicable to other signalling and phenotypic distinctions for any 3D
culture of interest.

Traject3d allowed us to answer simple, yet fundamental, ques-
tions regarding 3D culture. First, it provides quantitative demonstra-
tion that heterogeneity in 3D culture is widespread across a variety of
cell types. Second, it reveals that heterogeneity represents the pre-
sence of multiple independent phenotypes that occur in parallel.
These are biologically distinct, such as multiple modes of invasion
occurring in the same sample in parallel yet being differentially sen-
sitive to pharmacological or genetic perturbation. This contrasts to the
analysis of single-cell omics technologies in which a limited number of
terminal snapshots of state are computationally inferred into a pre-
dicted sequence, usually by detecting bifurcation points when differ-
ent states are detected® . Traject3d uses real-time tracking to identify
the true state order. This reveals that alternate phenotypes can result
from exhibiting a unique combination of states (bifurcation points),
but can also occur by using the same states in a different order.
Moreover, several phenotypes are distinguished by motility features,
which are unlikely to be identified from a low number of terminal
snapshots of state. Therefore, by identifying how cell states can lead to

alternate phenotypes co-occurring within the same cell sample, Tra-
ject3d is a new complementary technology for the expanding arsenal
of single cell technologies.

One powerful feature of Traject3d is the ability to deconvolve bulk
RNAseq to identify biologically important pathways controlling alter-
nate phenotypes. As proof of application, we identified that HGF sig-
nalling is one pathway controlling an alternate phenotype. The
granular analysis that Traject3d provides distinguished that while an
elongated state is usually associated with invasion, rather than con-
trolling shape per se, ZEBI controls cell motility. Importantly, invasion
can occur in small, round, highly motile cells. By implication, inference
of invasive potential solely from shape'” will likely under-power pre-
diction of metastatic capabilities as instances of both elongated, non-
motile states and instances of non-elongated, highly motile states can
and do occur. The biological importance of this is underscored by our
finding that three differentially drug-responsive motility phenotypes
co-occur in parallel in drug-resistant PC3M-D® cells, including a non-
elongated shape, yet highly motile phenotype. Notably, Met levels and
signalling are upregulated in advanced prostate cancer patients,
associated with Olaparib-resistance in prostate cells and regulate
invasion in vitro and tumourigenesis in vivo®, suggesting that such
phenotype plasticity might be a general feature of drug-resistant cells.

In our experiments, distinct states also occurred near each other,
suggesting either cell-autonomous behaviours or alternate capacity of
neighbouring cells to respond to environmental cues. Some states
were present in all trajectories, some were enriched across fewer tra-
jectories, and others were largely but non-exclusively restricted to
specific trajectories. Most trajectories, however, even those with dis-
tinct morphogenesis patterns, share a similar repertoire of states. This
indicates that distinct phenotypes can occur by using rarer states at
differing frequencies or in a different temporal order. An essential
advancement that Traject3d provides is to therefore untangle these
possibilities by analysing cells states in true temporal order from live
imaging.

We explored two approaches for defining states, user-defined and
data-driven de novo identification. Both approaches can identify dif-
ferent states present in 3D culture, even at low frequencies. Although
user-defined classifications enable interrogation of specific pheno-
types of interest, the data-driven approach has the advantage of
identifying subtle differences in phenotype that are beyond user
inference, such as the incorporation of motility features that were
essential for the definition of several phenotypes. A caveat for data-
driven approaches in general is the requirement for collection of all
data for processing together en masse to determine common and
distinct cell states. This may not be practical for all applications.
Therefore, a user-defined classification may be preferred during data
collection and project development before final analysis with granular
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clarification of phenotypes. This makes these two methods valuable
companion approaches.

Given the complexity of live imaging, an open question is if this is
needed versus simple evaluation of limited timepoints. Our analyses
show that this is not a one size fits all answer; in PC3-derivative lines,
alternate phenotypes occur through induction of alternate rarer cell
states or by using similar cell states in different ways. While, with
enough static samples, one may capture enough heterogeneity to
detect the former route for alternate phenotypes, this approach would
not detect the latter. In contrast, in examining tumour-derived orga-
noids, although some rarer states could be induced with select treat-
ments, the overall phenotypes were largely unaffected across time.
This suggests that inferring complex phenotypes from limited time-
points likely underappreciates complex phenotypes that live imaging
can reveal, and in the case of organoids, could aberrantly over-
extrapolate rare states as indicating different ending phenotypes.

In this work we used Traject3d to identify the landscape of tem-
poral states in a series of cancer cell lines with varying metastatic
capacities and differential drug resistance. While we can detect het-
erogeneity in 3D with this method, we cannot a priori predict the
behaviours that will occur in a tumour in vivo. Moreover, we can only
sample in vitro that which is isolated from a patient during sample
derivation. Consequently, our method does not indicate all hetero-
geneity patterns that can and do exist in vivo but gives insight into
which parallel phenotypes occur in materials grown ex vivo. Further
validation of these phenotypes in vivo is required for full elucidation of
the impact of heterogeneity within patient tumours.

Parallelisation of live imaging was essential for identifying distinct
cell states with robust statistical support, which we achieved by
adapting 3D culture approaches to work with perfect-focus algorithms
in 96-well plates using the IncuCyte system. In principle, Traject3d
could be applied to the analysis of imaging data from other systems,
provided that the resulting images can be segmented, with analysis
results depending heavily on the quality of image segmentation and
object tracking. Due to the relatively slower growth and movement
dynamics of 3D culture compared to 2D approaches, inbuilt approa-
ches in CellProfiler are sufficient for analysis of many 3D cultures but
may need to be adapted for some downstream uses. CellProfiler
pipelines that successfully work for segmentation and tracking across
multiple 3D cultures are provided in the Traject3d GitHub repository.
It may also be possible to use other image segmentation methods,
such as ilastik®® or machine learning/neural networks that may be
better at distinguishing objects that are touching or images with low
contrast between objects and background. Images segmented in this
way can then be loaded into CellProfiler to generate the measurements
in a format compatible with use by Traject3d.

A larger consideration is that no amount of improved tracking or
segmentation will compensate for the fact that in 3D objects move and
can consequently collide, merge, and split. This isn’t simply poor
segmentation or tracking, but rather bona fide events and a reality for
the experimentalist. To identify distinct recurring morphogenesis
patterns (trajectories) we need to compare tracked objects over the
same period of time. We did this for 18,922 spheroids objects and
11,295 objects from organoid studies over multiple days. Despite this
extremely large number of tracked objects analysed this meant that we
are unable, by definition, to include objects tracked for shorter periods
of time. This could occur for many reasons, including splitting/mer-
ging, but also because an object touches the edge of, or leaves, the
field of view. Therefore, some data needs to be filtered out of imaging
so that the data that makes it through this quality control is robust and
appropriate. The inherent limitation to our approach, as with many
imaging approaches, is therefore that Traject3d analysis can only
detect those events that can be accurately segmented and tracked.
Despite detecting complex, varied 3D behaviours this may possibly

underestimate even stronger heterogeneity due to objects that we
have been unable to track extensively. As a design principle, we do not
exclude such merging/splitting events based on a priori assumptions
of their value or lack thereof. Rather, we include capture of these
events where possible, and allow the user to conclude biological
importance (such as presentation of when air bubbles or merging
events occur).

In this work we analysed 3D cell line spheroids grown in a singular
plane for ease of imaging, as well as tumour-derived primary organoid
cultures grown in domes. Both approaches were equally amenable to
Traject3d, though the method utilised in PC3 cultures results in mini-
mal ECM use and cost and allows capture of more objects per field of
view. Traject3d could therefore be applied to other live-imaged 3D
culture modalities, provided accurate segmentation and tracking can
be performed on sufficient sample sizes. Moreover, Traject3d could be
expanded to include signalling reporters from fluorescence imaging
for distinct cell states or used to investigate the effect of changing the
microenvironment through altering extracellular matrix embedding of
cells. Similarly, Traject3d could also be adapted to study co-culture
using fluorescently tagged labels or dyes to label different cell types.
The challenge in this would be determining what happens computa-
tionally when these populations physically interact (i.e. come into
contact), as currently the design of Traject3d is based on what happens
to distinct objects in parallel. In addition, although we focus on tumour
cell lines and organoids as proof of principle, Traject3d could be
equally applied to alternate systems such as induction of pluripotent
stem cells into distinct cell types, the differential sensitivity to 3D
cultures to treatment with pharmacological agents or immune cells, or
any other system that utilises 3D culture. Moreover, combining Tra-
ject3d’s ability to detect heterogeneous parallel phenotypes with
multiplex barcoding, CRISPR and cell isolation technologies may
unlock the potential to perform functional genomics in 3D, by allowing
direct observation of genotype-to-phenotype manipulations in large-
scale screens.

A crucial question is how the identification of distinct phenotypes
within a 3D culture that Traject3d provides aids the experimentalist?
We propose that by identifying co-occurring phenotypes in a sample,
Traject3d allows interrogation of an overlooked phenomenon in
biology: an incomplete response. For example, if two populations co-
exist in a sample, one that is resistant to perturbation while the other is
sensitive, the overall response of the sample depends on the ratio of
these two subpopulations. In perturbation of a sample, a modest
response - as determined by the average response of all cells - could in
reality be a complete response in one subpopulation concurrently with
insensitivity in the other. Conversely, a robust - yet incomplete -
response may relate to sensitivity of the majority of the cells, and
insensitivity of a numerically minor but phenotypically important
subpopulation of cells. An incomplete response, and the assumption
of acquired resistance, is a key clinical problem in oncology. Without
tools to identify heterogenous, parallel subpopulations, whether de
novo resistance is acquired upon drug treatment, or whether a rare
and already drug-resistant subpopulation existed that becomes
expanded upon treatment is unclear. As one potential application of
heterogeneity analysis, Traject3d provides the tools to distinguish
these possibilities, and opens the door to identify perturbation com-
binations that affect all subpopulations, perhaps resulting in a com-
plete response across all subpopulations.

With the increasing utilisation of 3D approaches to understand
cell behaviour, not only in cancer biology but also developmental
biology, regenerative medicine, neuroscience, and many other fields,
analysis of the associated complexity of 3D phenotype(s) and how they
vary over time has presented a major challenge. We therefore present
Traject3d as an open-source software pipeline to identify spatio-
temporal multicellular heterogeneity in 3D culture.
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Methods

Cell Culture

Parental PC3 (ATCC, CRL-1435) and PC3 variants: PC3 E-cad +, TEM4-
18, TEM2-5, GS689.Li, GS694.LAd, GS683.LALN, JD1203.Lu, GS672.Ug
(M. Henry, University of lowa), PC3-Epi and PC3-EMT (K. Pienta, Johns
Hopkins School of Medicine), PC3M, PC3M DR and CWR (H. Leung,
Beatson Institute) cells were maintained in RPMI-1640 (Gibco), 10%
fetal bovine serum (FBS; Gibco) and 6mM L-glutamine (Gibco). PC3M-
DR cells were cultured in 2 nM Docetaxel (Sigma). RWPE-1 and RWPE-2
cell lines (ATCC, CRL-11609 and CRL-11610) were maintained in kera-
tinocyte serum-free medium (K-SFM) supplemented with 50 pg/ml
BPE and 5 ng/ml EGF (all Gibco). 22Rv1 cells (H. Leung, Beatson Insti-
tute) were grown in phenol-free RPMI-1640 (Gibco), 10% charcoal-
stripped FBS and 6mM L-glutamine. MDCK-II (K. Mostov, UCSF) and
Caco-2 cells (L. Machesky, Beatson Institute) were cultured in mini-
mum essential medium (MEM; Gibco) containing 5% or 20% FBS,
respectively. MDA-MB-231 (M. Olson, Beatson Institute), Pdx1-Cre, LSL-
Kras®2™* (KC), PdxI-Cre, LSL-Kras®2>* LSL-Trp53%72"* (KPC), PdxI-Cre,
LSL-Kras®?®"* LSL-TrpS3"* (KPfIC) and PdxI-Cre, LSL-Kras®?""*, Pten"
cells (Pten) (J. Morton, Beatson Institute) were grown in Dulbecco’s
Modified Eagle’s Medium (DMEM; Gibco), 10% FBS and é6mM
L-glutamine. 293-FT (Thermo Fisher Scientific) were cultured in
DMEM, 10% FBS, 6mM L-glutamine and 0.1 mM non-essential amino
acids (NEAA).

Growth factors or inhibitors were added as follows: 50 ng/ml
Hepatocyte Growth Factor (HGF) (PeproTech) and 10 uM Cabozanti-
nib (Bio-Techne). Cells were screened for mycoplasma contamination
routinely. PC3, RWPE-1 and RWPE-2 cells were authenticated using
short tandem repeat (STR) profiling.

Generation of stable cell lines

Stable knockdown was achieved by co-transfecting HEK 293-FT
packaging cells with pLKO.1 shRNA plasmids with lentiviral packa-
ging vectors (VSVG and SPAX2, Addgene) using Lipofectamine 2000
(Thermo Fisher Scientific). Viral supernatants were collected, cell
debris removed using PES 0.45um syringe filters and then con-
centrated, as per the manufacturer’s instructions, using Lenti-X Con-
centrator (Clontech). PC3 cells were then transduced with the
lentivirus for 3 days before selection with 2.5ug/ml puromycin
(Thermo Fisher Scientific). Sequences of shRNAs used are listed in
Supplementary Table 7.

RNAseq data analysis
mRNA expression data were mined from publicly available RNAseq
data sets for PC3 sublines: PC3 E-cad+ vs GS689.Li; SRS354082, or PC3-
Epi versus PC3-EMT14; GSE4823%7,

Data were examined for differential expression analysis using the
R environment version 3.4.2, utilizing packages from the Bioconductor
data analysis suite®. Differential gene expression was analysed based
on the negative binomial distribution using the DESeq2*® package
version 1.18.1.Pathway Maps analysis was performed using MetaCore
from Clarivate Analytics (https://portal.genego.com; November 2017).
Plots were generated using Prism 8 (GraphPad).

Immunoblotting

2 x 10° cells were plated per well on a 6-well plate for 24 hours then
treated with the growth factors or inhibitors described above for a
further 24 hours. Plates were washed once with ice cold PBS then RIPA
buffer was added for 15 minutes (50 mM Tris-HCI, pH 7.4, 150 mM
NaCl, 0.5 mM MgCl,, 0.2mM EGTA, and 1% Triton X-100 with cOm-
plete protease inhibitor cocktail and PhosSTOP tablets (Roche)). Cells
were scraped and samples clarified by centrifugation at 15,800 g at
4 °C for 15 minutes. BCA Protein Assay kit (Pierce) was used as per the
manufacturer’s instructions to determine protein concentration. SDS-
PAGE was then performed on 4-12% gradient gels using 20 pg lysate

and proteins transferred to PVDF membranes using the iBlot 2 transfer
system (Thermo Fisher Scientific). Membranes were incubated in
Rockland blocking buffer (Rockland) for 1hour with agitation and
primary antibodies added overnight at 4 °C (all 1:1,000, unless stated
otherwise). Antibodies used were as follows: anti-GAPDH (14C10) (CST
2118 (1:5,000)), anti-Met (25H2) (CST 3127), anti-Met phospho 1234/
1235 (D26) (CST 3077), anti-N-cadherin (D4RIH) (CST 13116), anti-
vimentin (V9) (Santa Cruz, sc-6260), anti-E-cadherin (Clone 36) (BD
Biosciences 610181), anti-ESRP1 (210-301-B89S) and anti-ESRP1/2 (210-
301-C31S) (both Tebu-bio) and anti-ZEB1 (Sigma HPA027524). Mem-
branes were washed with 1x TBST three times for 10 minutes and
appropriate secondary antibodies added for 1hour. After three 15-
minute washes in 1x TBST membranes were imaged using a ChemiDoc
Imager (BioRad) after exposure to ECL Extreme or ECL Pico (Expe-
deon) or using an Odyssey Imaging System (LI-COR Biosciences).
Bands were quantified using either Image Lab 6.1 (BioRad) or Image
Studio Software 6.0 (LICOR Biosciences). Number of independent
experiments (n) is stated in the appropriate Figure Legend and quan-
titation is shown as mean = s.d. p values are shown on each graph as
follows; n.s. = not significant, *p <0.05, *p<0.01, **p<0.001 and
*+p < 0.0001. GAPDH was used as a loading control for each immu-
noblot and a representative image for each sample set is shown where
appropriate. anti-ZEB1 (Sigma HPA027524), anti-ESRP1 (210-301-B89S),
anti-ESRP1/2 (210-301-C31S), anti-N-cadherin (D4R1H), anti-Met (25H2)
(CST 3127) and anti-Met phospho 1234/1235 (D26) (CST 3077) were
validated by western blot using specific sShRNAs or inhibitors. Addi-
tional validation information is available from manufacturers.

Invasion assay

96-well ImageLock plates (Essen Biosciences) were coated with 10%
Growth Factor Reduced Matrigel (GFRM) (BD Biosciences) diluted in
medium overnight at 37 °C. 70,000 PC3 cells were re-suspended in
100 pl medium per well and plated for 4 hours at 37 °C. The resultant
monolayer was wounded using a wound-making tool (Essen Bios-
ciences), washed twice with medium and overlaid with 25% GFRM
(50 pl) for an hour. 100 pl medium was then added and plates imaged
every hour for up to 4 days using the IncuCyte® ZOOM or S3 (Essen
Biosciences). Growth factors or inhibitors were added, at the con-
centrations described above, to both the GFRM and to the medium.
Incucyte ZOOM Live Cell Analysis System Software 2018A or Incucyte
S3 Live Cell Analysis System (2021 A) (Essen Biosciences) were used
to calculate Relative Wound Density (RWD) for each well. Results are
presented as RWD for the timepoint at which the average RWD of the
control samples is 50% (Tmaxl/2). Number (n) of independent
experiments and replicates/condition are detailed in appropriate
Figure Legends. Values, mean * s.d. p values were calculated using
Students t-test (two-tailed) or One-Way ANOVA and are shown on
each graph as follows n.s. = not significant, *p<0.05, *p<0.01,
***p < 0.001 and ***p < 0.0001.

Fixed 3D spheroid culture and analysis

Single cell suspensions were made (1.5 x 10* cells per ml) in the
appropriate medium supplemented with 2% GFRM. 150 pl of this mix
was plated per well in a 96 well plate (Greiner) precoated with 10 pl of
GFRM for 15 minutes at 37 °C. DMSO or 50 ng/ml HGF was added for
24 h after 2 days. Wells were then washed with PBS and fixed in 4%
paraformaldehyde for 15 minutes. Samples were blocked in PFS (0.7%
fish skin gelatin/0.025% saponin/PBS) for 1 hour at room temperature
(RT) with gentle shaking and anti-ZEB1 antibody (Sigma, HPA027524)
added overnight (1:100) at 4 °C. After three washes in PFS, Alexa Fluor
488 Donkey anti-rabbit secondary antibody (1:200, A21206), HCS
CellMask™ Deep Red Stain (1:50000, H32721) and Hoechst 34580
(1:1000, H21486) (all Thermo Fisher Scientific) were added for 45 min
at RT. Samples were maintained in PBS, after 3 x 5-min washes in PBS,
until imaging was carried out. Spheroids were imaged using an Opera
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Phenix™ High Content analysis system (x64 objective). Each spheroid
was imaged in 30 consecutive planes (2um step size).

Harmony High-Content Imaging and Analysis Software (Perki-
nElmer, Version 4.6) was used to analyse maximum intensity projec-
tions of all planes. For 3D morphology assay Hoechst and HCS
CellMask were used as described above to define nuclei and whole
spheroid shape, respectively. Used in combination these dyes allowed
the generation of a nuclear mask (all nuclei) and a cytoplasmic mask
(whole spheroids excluding all nuclei) for each spheroid. Total inten-
sity of anti-ZEBI staining (with Alexa Fluor 488 Donkey anti-rabbit
secondary antibody) was then measured in the nuclei (N) and in the
cytoplasmic region (C) of each spheroid. Spheroids in contact with the
image border were excluded. The morphological properties of each
spheroid were calculated to classify them into three subpopulations
(Round, Spread and Spindle) using machine learning following manual
training. Data is presented in box and whiskers plots as nuclear to
cytoplasmic ratio (N:C) of total ZEBI intensity or total ZEBI intensity
for each spheroid/subpopulation/treatment. The proportion of each
spheroid subpopulation (Round, Spread, Spindle) is also presented for
each treatment. n=2 experimental replicates with 4 technical repli-
cates/condition. P-values (Student’s 2-tailed t-Test): ***p < 0.001 and
##p <0.0001. 965 (DMSO) and 875 (HGF) spheroids were imaged
in total.

Single-cell suspensions of PC3 were also set up as above, fixed and
stained with Hoechst (1:1000) and Alexa Fluro 568 Phalloidin (Thermo
Fisher, A12380) (1:200). Spheroids were imaged using an Opera Phe-
nix™ High Content analysis system (x20 objective). Each spheroid was
imaged in 43 consecutive planes (2um step size). n =3 experimental
replicates with 3 technical replicates/condition.

3D spheroid culture and live imaging

Single cell suspensions were made as described above in 96 well
ImageLock plates (Essen Biosciences). HGF, Cabozantinib or Docetaxel
were added at concentrations described above. Plates were then
incubated at 37 °C for 4 h then imaged using an IncuCyte® ZOOM or S3
(Essen Biosciences). Images were taken every hour for 4-6 days at 2
positions in the middle of each well using a 10x objective lens. Number
of independent experiments (n), technical replicates/condition and
number of spheroids quantified are stated for each experiment in
corresponding Figure Legend and in Supplementary Tables 2, 3, and 5.

Organoid culture and live imaging

The murine villin®™®; Kras®?®"; Trp53"%; Rosa26™¥* organoid line
RBVKPN RKAC13.1g, generated in**, was cultured in Advanced DMEM/
F12 (ADF, Gibco) supplemented with 2mM L-Glutamine, 10 mM HEPES,
100U/ml penicillin-streptomycin, 1x B27-supplement and 1x N2-
supplement (all Gibco), adjusted to complete culture medium (CCM)
with 50 ng/ml Recombinant Human EGF and 100 ng/ml Recombinant
Murine Noggin (both Peprotech). Organoids were maintained in
domes of 20 pl GFRM (BD Biosciences) in 6 well plates containing 2 mL
of CCM at 37 °C, 5% CO”.

Organoids were washed in cold PBS to remove GFRM and dis-
sociated into small clusters and single cells using StemPro Accutase
(Gibco) at 37°C for 10 min. Dissociation was stopped with equal
volume of sterile 1% BSA (Merck) in PBS and cells centrifuged at 600 g
for 5 min at 4 °C. The supernatant was removed and cells re-suspended
in 1 ml ADF medium. Cells were combined with an equal volume of
Trypan Blue (Gibco), counted and adjusted to 2 x 10* cells/ml in GFRM.
Whilst kept on ice, 10 pl GFRM domes were plated in the centre of 96-
well flat bottom TC-treated microplate (Corning). Plates were tipped
upside down to allow domes to hang whilst polymerizing at 37 °C for
10 min. CCM (100 pl) containing either vehicle (0.1% BSA/PBS), 5 ng/ml
TGFp1 or 10 ng/ml IL-6 (both Bio-Techne) was placed over each dome
and the plate equilibrated at 37 °C for 30 min.

Plates were then imaged using the IncuCyte® S3 IncuCyte Orga-
noid Analysis Software Module. Entire wells were imaged every 2 hours
for 6 days using a 4x objective lens. Cultures were maintained by
replenishing CCM every 3 days. This module was also used to generate
outlines of imaged objects, which were then exported into CellProfiler
for analysis.

Statistics & reproducibility

No statistical method was used to predetermine sample size and no
data were excluded from the analyses. The experiments were not
randomized and the Investigators were not blinded to allocation dur-
ing experiments and outcome assessment. P values and the specific
statistical test and adjustments used for each experiment are descri-
bed in relevant Figure Legends and Methods Section.

Generating rules for user defined classification of 3D

PC3 spheroids

We used CellProfiler’® (https://cellprofiler.org/, v3.1.8) to process the
phase images acquired using the IncuCyte system, tracking spheroids
through the time course of the experiment, and generating a database
which contained measurements of size, shape, and movement fea-
tures. This CellProfiler pipeline consisted of the following modules and
functions: Images (image input), Metadata (metadata extraction),
NamesAndTypes (assignment of meaningful names), Groups (grouped
data sets), ColorToGray (converted images to greyscale), Smooth
(smoothed images to remove small artifacts), Enhance Edges
(improved object identification), IdentifyPrimaryObjects (identified
spheroids and excluded artifacts and border objects), Measur-
eObjectSizeShape (measured several size and shape features of each
spheroid), MeasurelmageAreaOccupied (measured total area in each
image occupied by spheroids), TrackObjects (tracked each spheroid
through sequential frames), and ExportToDatabase (generated Cell-
Profiler Analyst properties file). Specific settings in each module were
altered to optimise segmentation and analysis of spheroids of distinct
characteristics. An example pipeline is provided on the Traject3d
GitHub repository.

CellProfiler Analyst'® (https://cellprofiler.org/, v2.2.0) was used to
apply iterative, user-supervised machine learning to spheroids mea-
surements in the resulting database. Specifically, PC3 spheroids were
classified into bins based on their morphology: Round, Spread and
Spindle. Machine learning to differentiate between these classes, using
a maximum of 20 rules with Fast Gentle Boosting, and trained until
accuracy was assessed using a confusion matrix (each class >90%
accuracy in Supplementary Fig. 4c). Once generated, these classifica-
tion rules were saved as a.txt file and directly imported into CellProfiler
for classification without need for re-training after each acquisition of
new data.

Measuring and classifying 3D PC3 spheroids

We then imported the phase images acquired using the IncuCyte
system into a second custom CellProfiler pipeline. This CellProfiler
pipeline is similar to the one described above except that ExportTo-
Database was replaced with three FilterObjects modules. We imported
the classification rules generated in CellProfiler Analyst into each of
these modules and filtered spheroids into Round, Spread and Spindle
categories. Finally, we included ExportToSpreadsheet, Over-
layOutlines and Savelmages modules in order to: a) export a data table
containing classification, size, shape and movement measurements for
each spheroid at each timepoint (saved as PhaseGrayCysts.csv in a sub-
directory called Data), and b) to generate a binary image of spheroids
outlines suitable for overlay onto the appropriate phase image
downstream using KNIME (saved in PhaseGrayCystOutlines sub-
directory). In the resulting data table, each table row is an object
(spheroid) in the biological replicate, and each column is either
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metadata (i.e. well, image filename, coordinates in image, classifica-
tion) or a measurement of size, shape, and movement.

Analysis of non-PC3 Cell lines

22 human prostate, breast, colorectal, canine kidney, and murine
pancreatic cell lines (Supplementary Table 2) were cultured and
imaged over multiple days. CellProfiler was used to segment the
resulting images, track spheroids, and measure features of size, shape
and movement. The resulting datasets of spheroids measurements
were imported into a custom KNIME pipeline, in which they were
merged with their corresponding experimental keys.

Correlation analysis to calculate Pearson correlation coefficient
was performed, and results presented as a heatmap generated using
the pheatmap®® R package. Mean size, shape, and movement features
were calculated per replicate (well), and PCA performed. Data were
subsampled using GeoSketch®, and t-SNE performed using the Rt-
SNE®° package. Subsampling depth and t-SNE parameters were as
stated in respective figure legends. In the case of murine PDAC clones,
PCA was performed on data averaged per experimental replicate. PCA
and t-SNE results were plotted using ggplot2®, and t-SNE point density
was calculated using the MASS®* package.

Identification and quantification of phenotypes

We created a custom computational pipeline using KNIME Data Ana-
lytics Platform, enabling us to manipulate the large datasets generated
by CellProfiler. This pipeline deals with analysis for both methods (user-
defined and data-driven) of phenotype identification. The pipeline was
built using the KNIME Analytics Platform* (https://www.knime.com/,
v4.0.2) with R (https://cran.r-project.org/, v3.6.2) and Python (https://
www.python.org/, v3.8) integrations. However, since analysis of the
data presented in this work newer versions of R have been released; we
have adapted and tested the analysis pipeline to use the newest version
(v4.2.0) of the R software. Initially, the data is imported and then pre-
processed, before reaching a branchpoint at which the analysis diver-
ges to address each method. Thus, the user has a choice of running
either of, or both, the branches depending on which method they wish
to perform. Below we describe the different steps and outcomes of this
analysis pipeline, in addition to the specifics of its use on the datasets
presented in this work. Some parameters in the CellProfiler and KNIME
pipelines can be adapted for use with other datasets. For further
information and instructions, refer to the associated user manual
provided in the Traject3d GitHub repository.

Pre-processing

Combine experimental replicates and metadata: The data from each
experimental replicate is imported and merged with its respective
experimental key. This ensures that each well position is labelled with
specific sample details. This merging is performed for each biological
(experimental) replicate, before concatenating all replicates into one
data table. We imported each experiment independently, before
concatenating the resulting data tables.

Data filtering: The user can optionally filter the dataset by frame
number, object lifetime (number of timepoints, e.g. hours, a spheroid
was tracked for), or treatment. In our analyses, data acquired only up
until 96 hours was utilised. This was based on the observation that
some spheroids began to merge after this point. The resulting spher-
oids counts are shown in Supplementary Table 3.

Parse user-defined classifications: If user-defined classifications
were generated in CellProfiler Analyst, and applied to a dataset, Cell-
Profiler includes one binary column for each classification in the out-
put data table. The pipeline parses these binary classification columns,
and generates a single column containing the assigned classification
(i.e. “round”, “spindle”, or “spread”).

Tracking label correction: This method relies on temporal infor-
mation about spheroid morphology, which enables us to identify

recurring patterns of morphological change. For the analysis to work it
is important that the tracking information is linear. However, when
tracked objects split into two, or more, daughter objects, CellProfiler
assigns the tracking label of the parent to all children. This means that
downstream there can be multiple morphological tracks (spheroids)
with the same label, complicating analysis. For this reason, we correct
the tracking labels to ensure that each label corresponds to only one
spheroid. To do this, in cases where a spheroid has split, we assign the
parent label to the daughter spheroid with the largest area, and all
other children (and their subsequent tracking events) are assigned a
new label.

Normalisation: Finally, we calculate the Aspect Ratio (length/
width) of the spheroids and normalise the dataset by Z-scoring each
measurement column.

Feature analysis

Spheroid feature quantification: We generate a heatmap of mean fea-
ture (area, shape, movement) over time, with statistical comparison
between control and treatment groups. The user selects the features to
be plotted, size of time interval for comparison, and which sample to
use as reference. For this work, Z-score normalised data for spheroid
area are presented in 12-hour time intervals as a heatmap generated
using the ggplot2®’ R package. Mean spheroid area was calculated at
each time interval per treatment. P values, comparing reference and
non-reference samples, correspond to circle size (values as indicated
in Figures). Statistical comparison was performed by Student’s t-test,
two-tailed, and a Bonferroni adjustment was applied to account for
multiple testing. Experimental (n) and technical replicate numbers and
the total number of spheroids imaged are stated in each Figure
Legend, and in Supplementary Table 3.

PCA of replicates: For quality control purposes, two PCA analyses
are performed, and results of each plotted using ggplot2°®'. In the first
of the two, feature (area, Zernike moments, Displacement, Dis-
tanceTraveled) measurements are averaged such that each point in the
PCA represents an individual well, and in the second this is done per
experimental replicate.

Spheroid counts: The pipeline generates a line plot of normalised
spheroid counts over time. Each treatment group is plotted as a
separate line per experimental replicate and normalised to its
respective initial count. An output of the initial counts is
generated (CSV).

User-defined phenotypes

Phenotype Quantification: We generate a heatmap of user-defined
state frequency over time, with statistical comparison between control
and treatment groups. The user selects the size of time interval for
comparison, and which sample to use as reference. For this work,
Z-score normalised data for user-defined state classification is pre-
sented in 12-hour time intervals as heatmaps generated using the
geplot2®' R package. User-defined state classification is presented as a
relative proportion of the total spheroids in a treatment, at a given
time interval. P values, comparing reference and non-reference sam-
ples, correspond to circle size (values as indicated in Figures). Statis-
tical comparison was performed on a contingency table of spheroid
counts using the Cochran-Mantel-Haenszel test, which takes into
account biological replicates. A comparison is only statistically sig-
nificant where the effect was present across all biological replicates.
We use the Breslow-Day statistic to test the assumption that the
magnitude of effect of the treatment is homogeneous across all strata
(biological replicates) - a non-significant p-value indicates homo-
geneity and is represented by a black dot in the heatmap. For this, we
used the DescTools®® R package. In both statistical tests, a Bonferroni
adjustment was applied to account for multiple testing. Biological (n)
and technical replicate numbers and the total number of spheroids
imaged is stated in each Figure Legend, and in Supplementary Table 3.
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Phenotype mean features: We calculate the means of all measured
features for the user-defined states, which is output as a heatmap
generated using pheatmap*.

Representative outlines: To obtain a representative shape for each
state, we first select the outlines of the 30 spheroids nearest to the
group’s mean morphological measurements. We then built on the
approach outlined by Tweedy et al.** to select one of these objects as
the group representative. Specifically, for each object: a predefined
number of points were equidistributed along its two-dimensional
boundary, the resulting boundary was expressed as a complex func-
tion of arc-length (with the real and imaginary parts corresponding to
the x and y coordinates, respectively), and the power spectrum was
computed. We then transformed all objects to a common scale by
dividing the power spectrum of each one by its maximum value. To
determine the object whose shape was most representative of a given
cluster of objects, we performed principal component analysis on the
associated set of scaled power spectra and selected the object that was
closest (by Euclidean distance) to the global maximum of the esti-
mated two-dimensional kernel density across the first two principal
components.

Colour and overlay outlines: Binary (white on black background)
images of spheroids outlines, as output by CellProfiler, were imported
into KNIME, and segmented to identify individual spheroid outlines.
We then compared the coordinates of the outline centroids, as cal-
culated within KNIME, to those (of spheroids in the corresponding
image) contained in the data table. This enabled us to link a spheroid
state classification, be it user-defined or data-driven, with a specific
outline. We then coloured the outlines by classification, recompiled
the outline image, and overlaid it onto its corresponding phase image.

t-SNE: The analysis pipeline allows subsampling at a user-defined
depth and method, random sampling versus Geometric Sketching
(GeoSketch)*. t-SNE parameters are also user-defined, and elements of
the resulting plot, such as point size and colour scheme, are adjustable.
For the datasets in this work, subsampling and t-SNE parameters are as
stated in respective figure legends. Generally, subsampling prior to
t-SNE performed using GeoSketch, to ensure uniform sampling across
phenotypic space. t-SNE was subsequently performed using the Rt-
SNE®® package, with PCA initialisation on the subset of non-redundant
features listed in Supplementary Table 4.

Data-driven phenotypes

Data-driven State identification: We first subsampled the dataset of
PC3 and derivative lines using the Geometric Sketching* (GeoSketch)
algorithm, to retain 20,000 objects. Using this algorithm enabled us to
reduce computation time required for analysis, while retaining a sub-
set of data evenly distributed across phenotypic space. We then
applied the PhenoGraph*° algorithm, as implemented in the cytofkit2*
R package, on features listed in Supplementary Table 4, with a k-
nearest neighbours value of 40. This subset was determined by
selecting for non-redundant features based on cross-correlation ana-
lysis of preliminary datasets (Supplementary Fig. 1, Supplementary
Table 4).

Trajectory Identification: Data are reconstructed into a temporal
sequence of state classification, for each tracked spheroid. To ensure
that we compare spheroids that existed from the start of imaging, we
first filter tracked objects to exclude any without a tracked event at
t=20 hours, before trimming the sequences at the point at which
tracking ceases for 50% of objects. We then remove objects with more
than two consecutive missing values, and impute any remaining
missing values by LOCF (Last Observation Carried Forward) in reverse
using the imputeTS® R package. To allow us to cluster the spheroids
based on their sequences of state classification, we convert the cate-
gorical (state classification) sequence data into 50 numerical dimen-
sions by Multiple Correspondence Analysis (MCA) using the
FactoMineR®® package. Finally, we classify the tracked objects into

trajectories using PhenoGraph*®, as implemented in the cytofkit2*"
package, with k-nearest neighbours = 40, and generate a heatmap of
results using the pheatmap®® package. The resulting spheroid counts
are shown in Supplementary Table 5.

Trajectory Motifs: A state frequency motif is plotted for each
identified trajectory, using a user-specified time interval. We calculated
state frequency at 12-hour time intervals and plotted frequency motifs
using the ggseqlogo® R package, where state frequency is indicated by
symbol (letter) height.

Trajectory Transition Plots: A two hour wide sliding window was
used to calculate the frequency of transitions between states at each
time interval, before compiling into 12-hour time intervals for plotting.
Each interval was filtered to remove transitions that occurred at less
than 2% frequency; this helps remove noise and generate more easily
interpretable transition plots. The above was applied to each identified
trajectory. Chord diagrams were plotted using the circlize®® R package,
whereas PCA transition plots were plotted using ggplot2°'.

Trajectory Representative Spheroid: For each trajectory, we first
calculated state frequency and, in turn, the state with the highest fre-
quency, at each timepoint. We refer to this as the consensus sequence.
For each spheroid classified into a particular trajectory we then remove
timepoints which are missing a classification and compare its sequence
of state classifications to the consensus sequence, computing the
(inverse) generalized Levenshtein distance using the base R adist
function. This equates to a similarity score for each spheroid in com-
parison to the consensus sequence. The spheroid with the highest
score is selected to represent the trajectory. Spheroid outlines were
overlaid onto original phase images as described above.

Quantification of Data-driven State and Trajectory Classifications:
We quantified state and trajectory classification, which we present as
heatmaps generated using the ggplot2® R package. Values are pre-
sented as log, fold change from reference sample. Dendrograms for
the row and column order of Figs. 1h, 2e, 3b were computed using the
complete linkage method for hierarchical clustering of the Euclidian
distances. P values, comparing reference and non-reference samples,
correspond to circle size (values as indicated in Figures). Statistical
comparison was performed on a contingency table of counts using the
Cochran-Mantel-Haenszel test, which takes into account experimental
replicates. A comparison is only statistically significant where the
effect was present across all experimental replicates. We use the Woolf
statistic to test the assumption that the magnitude of effect of the
treatment is homogeneous across all strata (experimental replicates) -
a non-significant p-value indicates homogeneity and is represented by
a black dot in the heatmap. We performed the Woolf test using the
vcd®® R package. Statistical tests for the quantification of data-driven
states were Bonferroni adjusted. Experimental (n) and technical
replicate numbers and the total number of spheroids imaged as stated
in each Figure Legend, and in Supplementary Tables 3 and 5.

Colour and overlay outlines: As described for user-defined states.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

The RNAseq data from PC3 sublines used in this study are available in
either the Short Read Archive database for PC3 E-cad +, GS689.Li in
SRS354082), or the Gene Expression Omnibus for PC3-Epi, PC3-EMT14
in GSE48230. Unprocessed and uncropped western blot images are
provided in Supplementary Fig. 19 and as Source data. Unprocessed
imaging data supporting the findings of this study are available from
the corresponding author on request. Due to the large size (-125GB) of
the complete imaging data, large requests are anticipated to be rea-
sonably answered within 4 weeks. Source data are provided with
this paper.
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Code availability

All CellProfiler and KNIME analysis workflows, as well as a download
link for sample data can be found in the Traject3d GitHub repository
(https://github.com/davebryantlab/Traject3d).
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