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Abstract

Summary: Single-cell technologies allow characterization of transcriptomes and epigenomes for

individual cells under different conditions and provide unprecedented resolution for researchers to

investigate cellular heterogeneity in cancer. The SinCHet (Single Cell Heterogeneity) toolbox is de-

veloped in MATLAB and has a graphical user interface (GUI) for visualization and user interaction.

It analyzes both continuous (e.g. mRNA expression) and binary omics data (e.g. discretized methy-

lation data). The toolbox does not only quantify cellular heterogeneity using Shannon Profile (SP)

at different clonal resolutions but also detects heterogeneity differences using a D statistic between

two populations. It is defined as the area under the Profile of Shannon Difference (PSD). This flex-

ible tool provides a default clonal resolution using the change point of PSD detected by multivariate

adaptive regression splines model; it also allows user-defined clonal resolutions for further investi-

gation. This tool provides insights into emerging or disappearing clones between conditions, and

enables the prioritization of biomarkers for follow-up experiments based on heterogeneity or

marker differences between and/or within cell populations.

Availability and implementation: The SinCHet software is freely available for non-profit academic

use. The source code, example datasets, and the compiled package are available at http://lab

pages2.moffitt.org/chen/software/.

Contact: ann.chen@moffitt.org

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Tumor heterogeneity between and within tumors plays a critical

role in tumor aggression and the development of drug resistance.

Understanding and characterizing clonal heterogeneity enables us to

gain insights into the progression of cancer and guide the effective

therapeutic strategies (Marusyk and Polyak, 2010). New high-

throughput single-cell technologies provide unprecedented reso-

lution for researchers to explore cellular heterogeneity in cancer

(Tirosh et al., 2016). However, these technologies pose new chal-

lenges in data analysis and interpretation. Currently, there are sev-

eral single cell analysis tools available such as SCATT, TSCAN,

SPADE, vi-SNE (Amir el et al., 2013; Anchang et al., 2016; Ji and Ji,

2016; Mitra et al., 2016). Each tool has its own strengths and limita-

tions (Supplementary Table S1). There is only a limited number of

tools available for quantifying cellular heterogeneity and comparing

heterogeneities quantitatively between populations, and identifying

markers based on heterogeneity. Therefore, we have developed the

SinCHet toolbox, in MATLAB with a GUI for visualization and

user interaction, originally for cancer research but with the potential

to be used for any single cell research. The toolbox has four parts

(Supplementary Fig. S1): (1) imports continuous or categorical

omics data and output the figures and results for review; (2) per-

forms exploratory analyses including hierarchical cluster analyses

and principal components analyses (PCA); (3) Estimates the clonal
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heterogeneity using Shannon Profile (SP), provides a Profile of

Shannon Differences (PSD) to characterize the heterogeneity

differences between populations and a novel D statistic to quan-

titatively compare heterogeneities between populations; (4)

Prioritizes biomarkers based on between and/or within group cellu-

lar heterogeneity.

2 Materials and methods

2.1 Clonal richness and heterogeneity estimation
We assume proper normalization has been performed prior to using

the tool. Although data normalization is beyond the scope of this ap-

plication, some considerations for data pre-processing and normal-

ization are discussed in the supplemental materials. Currently, the

tool is developed in a two-group comparison setting.

Hierarchical cluster analyses with different linkage methods

were performed to cluster cells into phenotypic clonal groups,

referred to as clones in this application note, based on the similar-

ities of the input dataset (Supplementary Figs. S2A and S3A).

Cophenetic correlation coefficient (Sokal, 1962) is used to choose

the default linkage method. PCA analyses are available to visualize

the relationships and patterns of the samples (Supplementary Figs.

S2B and S3B). Clonal richness, i.e. counts of clones and Shannon

index (Hernandez-Walls and Trujillo-Ortiz, 2010; Southwood and

Henderson, 2000) are used to quantify clonal diversity and hetero-

geneity (Supplementary equation S1).

SinCHet provides Shannon Profile (SP) under each condition by

evaluating the heterogeneity using Shannon index at different

heights along the dendrogram (Supplementary Figs. S2C and S3C).

PSD, the profile of the differences of Shannon index calculated along

the same X-axis as SP, is used characterize the heterogeneity differ-

ences between two conditions (or populations; Supplementary Figs.

S2D and S3D). A novel D statistic is then defined as the area under

the PSD, or equivalently, the differences of the areas under the SPs

between two groups (Supplementary equation S2). We have shown

that this D statistic is empirically robust to choice of different link-

age methods for hierarchical cluster analyses (the Supplementary

Material results). Permutation is used to evaluate its statistical

significance (Supplementary equation S3). To identify the number of

existing clones under each condition, Multivariate adaptive re-

gression splines (MARS) model (Friedman, 1991; Jekabsons, 2016)

is used to detect the change points in PSD (Supplementary Figs. S2D

and S3D). The higher the clone numbers, the fewer the cells

there are in each clone, which will reduce the statistical power

for comparison. So, minimum of change points determined by

MARS is chosen as the default to provide the clonal snap

shot (Supplementary Figs. S2E–F and S3E–F) which provides the

information on clonal compositions and biomarker analyses

(Supplementary Figs. S2G–H and S3G–H). The SinCHet toolbox

also allows the user-defined number of clones along the profile for

exploration accordingly.

2.2 Biomarkers prioritization
The within- and between- population comparisons are performed

and results are all saved for further investigation (Supplementary

Tables S2 and S3). Each comparison could have its own biological

significance and results of the top-ranked markers could be visual-

ized individually (Supplementary Fig. S1 and Supplementary Figs.

S2H and S3H). Given the large amount of information generated by

each single cell experiment, a composite score, Generalized Fisher

Product Score (GF), is devised to summarize the overall difference

between- and within-population comparisons and to prioritize bio-

markers for further investigation.

For categorical data, GF is aggregation of evidence from three

separate Fisher’s exact tests for each biomarker (e.g. methylation

site).

X2
i ¼ � 2

X3

j

lnðpijÞ (1)

where pij is the P value from Fisher’s exact test for the ith biomarker

and jth comparison (when j ¼ 1, it is the dominant clone compari-

son between groups and j ¼ 2 or 3, the tests are comparisons be-

tween dominant clone and the remaining minor clones within each

population).

When the biomarker is a continuous variable, three rank sum

tests are performed to compare the difference of the expression

levels. Markers with large differences are often desired by the

researchers for validation experiments, therefore, fold change (FC)

for each of the three comparisons are also incorporated in the GF

score:

GFi ¼ X2
i þ

X3

j

ln FCij

� ��� �� (2)

FCij, is the FC for biomarker i at jth comparison as described above.

3 Results

We applied the SinCHet toolbox to published single-cell expression

and methylation datasets (Cheow et al., 2016). Data processing pro-

cedures were summarized in the supplement. For the gene expres-

sion dataset, the toolbox identified that the heterogeneity is higher

in the EGFR-mutant lung cancer tumors than the wild type group

(D ¼ –63.8, P<0.001, Supplementary Fig. S2C). This was sup-

ported by a previous report (Bai et al., 2013). Nine clones were iden-

tified by SinCHet using the default setting (Supplementary Fig. S2E

and F). The dominant clone from each group identified by SinCHet,

i.e. Clone 1 from the the wild type tumors and Clone 2 from the mu-

tant tumors, were in general agreement with the two clusters identi-

fied in the original paper. Additional clonal heterogeneity was

characterized by SinCHet, with 7 additional clones identified

(Supplementary Results). Furthermore, SinCHet was not only able

to identify the same reported top genes (e.g. MUC1, SFTPC and

KRT7; which differed significantly between EGFR-mutant and

wild-type tumors) using the GF score but also was able to identify

novel markers such as CD44, MT2A within each subpopulation

(Supplementary Table S2). For the methylation dataset, SinCHet

enabled the identification of the significantly hypermethylated loci

HOXA9, PROM1 and PAX3 as shown by the paper reported in

EGFR-mutant cells. In addition, the SinCHet top-ranked hyperme-

thylated loci PAX5, SOX9 and SPINT1 found in subpopulations

within EGFR-mutant cells might infer that some of the subpopula-

tions could acquire stochastic epigenetic aberrations during tumor

evolution as discussed in the original paper (Supplementary

Table S3).

SinCHet can quantify cellular heterogeneity and identify novel

candidate biomarkers, considering heterogeneity both between- and/

or within groups. It provides unique insights into emerging or dis-

appearing clones at different clonal resolutions between cell popula-

tions in different contexts. It could be easily applied to compare

heterogeneity between groups with versus without mutations or be-

fore versus after acquired drug resistance. It could be also applied to

2952 J.Li et al.

Deleted Text: ,
Deleted Text: ,
Deleted Text: -
Deleted Text: ,
Deleted Text: Supp. 
Deleted Text: ,
Deleted Text: vs.
Deleted Text: vs.


quantify heterogeneity during the course of cancer treatment, poten-

tially changing the face of cancer therapeutic strategies in the future.
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